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1. Inverse source reconstruction 

 

2. (Blind) source separation 
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Electroencephalography (EEG) 

Cellular (primary) currents due to synchronous firing of large 

populations of equally spatially coaligned neurons are accompagnied by 

extracellular return (secondary) currents measurable as extracranial 

electric potentials by EEG. 

 

 

Figure by Lauri Parkkonen 
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Volume conduction: attenuation and spatial smearing 

Primary current generator (dipole) 

Resulting EEG scalp potential: ~5-10 μV 
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Volume conduction: attenuation and spatial smearing 

Primary current generator (dipole) 

Resulting EEG scalp potential: ~5-10 μV Artifacts: ~100 μV  
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Volume conduction: superposition of activity 

Resulting EEG scalp potential: ~5-10 μV 

Primary current generator (dipole) 
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Volume conduction: superposition of activity 

Resulting EEG scalp potential: ~5-10 μV 

Primary current generator (dipole) 

linear 
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Volume conduction: superposition of activity 

Primary current generator (dipole) 

Resulting EEG scalp potential: ~5-10 μV 
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Volume conduction: difficulties caused by 

Primary current generator (dipole) 

Resulting EEG scalp potential: ~5-10 μV 

 

Difficulties for data analysis: 
 

• Low SNR (small effect sizes, 

high p values) 

• Localization/interpretation 
 



10 Stefan Haufe, BBCI Winter School 2014, Berlin 

Assume there is a brain area modulated by, e.g., the experimental condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Illustration: sensor-space analysis 
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Assume there is a brain area modulated by, e.g., the experimental condition. 

 

 

 

 

 

 

Due to contributions from other brain areas + noise, we will observe lower 

correlations and distorted correlation patterns in the EEG. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Illustration: sensor-space analysis 
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Model for EEG data 

 

                                                                 : discretized brain 
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Model for EEG data 
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Model for EEG data 
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Model for EEG data 

 

                                                                 : discretized brain 

 

 

EEG scalp potential                     at      electrodes is a function of 
 

  : primary current at brain location        
 

  : mapping describing the propagation of secondary currents 

to sensors for unit primary currents at 
 

                    : lead field (forward mapping for      brain locations) 

 

  : primary current density 
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Model for EEG data 

 

                                                                 : discretized brain 

 

 

EEG scalp potential                     at      electrodes is a function of 
 

  : primary current at brain location        
 

  : mapping describing the propagation of secondary currents 

to sensors for unit primary currents at 
 

                    : lead field (forward mapping for      brain locations) 

 

  : primary current density 

 

  : electrical activity of no interest (sensor noise, artifacts)         
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    depends on  
 

• Conductivities of brain/skull/skin etc. 

• Head geometry obtained from structural MRI 

• Electrode positions (3D scanner) 
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    depends on  
 

• Conductivities of brain/skull/skin etc. 

• Head geometry obtained from structural MRI 

• Electrode positions (3D scanner) 

 

    is evaluated at                 brain locations      in 3D volume or on cortical 

surface. 
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  , pre-calculated 

Columns : 
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The lead field (forward mapping) 
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Vectorfield, plotting magnitudes here. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

   

 

The current density 
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The current density 
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We would like to invert the mapping     to obtain the current sources         .   

 

 

 

 

 

 

   

 

The Inverse Problem  
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We would like to invert the mapping     to obtain the current sources         .   

 

 

 

 

 

 

   

 

The Inverse Problem  

 

Potential benefits: 
 

• Increase in SNR 

• Localization/interpretation 
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However, the inverse problem  

(estimating     from     )  

has infinitely many solutions.  

 

The Inverse Problem  
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The Inverse Problem  

? ? 

? 

However, the inverse problem  

(estimating     from     )  

has infinitely many solutions.  
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The Inverse Problem  

? 

? 

Solving the inverse problem = selecting the sources that best 

match prior expectations (assumptions), while explaining the data. 

? 

However, the inverse problem  

(estimating     from     )  

has infinitely many solutions.  
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Inverse methods 

MNE 

MCE 

WMNE 

Loreta 

sLORETA 

eLORETA 

Laura 

Electra 

WROP 

S-FLEX 

Champagne 

 

Every method performs well if its specific assumptions are met. 

 

Aquavit 

DICS 

LCMV Beamformer 

Nulling Beamformer 

FOCUSS 

Minimum Entropy 

Dipole Modeling  

Multipole Modeling 

MUSIC/RAP-MUSIC 

DCM 

No method can perform well in all realistic situations. 
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Assuming the noise          is Gaussian distributed with covariance      , 

the maximum-likelihood approach to estimating the source current density is 

 

                                                   with 

 
 

 

   

 

Maximum-likelihood and maximum a-posteriori estimation 
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Spatial constraints 

Since      links source activity to brain locations, constraints on the spatial 

structure of the current density can be imposed. 
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Since      links source activity to brain locations, constraints on the spatial 

structure of the current density can be imposed. 

 

Smoothness 

• Assumption: neighboring voxels show similar activity 

• Examples: (weighted) minimum norm estimate, LORETA 

 

 

 

 

Spatial constraints: smoothness 

[Jeffs et al., 1987; Pascual-Marqui  et al., 1994] 
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Since      links source activity to brain locations, constraints on the spatial 

structure of the current density can be imposed. 

 

Smoothness 

• Assumption: neighboring voxels show similar activity 

• Examples: (weighted) minimum norm estimate, LORETA 

 

 

 

 

• Technically: L2-norm penalty 

 

• Solution linear in data:  

 

•     is precomputable  very efficient 
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Spatial constraints: smoothness 

[Jeffs et al., 1987; Pascual-Marqui  et al., 1994] 
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Spatial constraints: sparsity 

 

Sparsity 

• Assumption: only a small part of the brain is active during task 

• E.g., minimum current estimate (MCE), FOCUSS 

 

 

 

 

 

 

[Matsuura et al., 1995; Gorodnitsky et al., 1995] 
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Spatial constraints: sparsity 

 

Sparsity 

• Assumption: only a small part of the brain is active during task 

• E.g., minimum current estimate (MCE), FOCUSS 

 

 

 

 

 

• Technically: L1-norm                                leads to sparsity  

 

• Solution nonlinear in data, iterative optimization required   

 

[Matsuura et al., 1995; Gorodnitsky et al., 1995] 
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Limitations of smooth and sparse inverses 

Smooth inverses 

• Difficulty to distinguish sources 

 

 

 

 

• Occurence of „ghost sources“ 
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Limitations of smooth and sparse inverses 

Smooth inverses 

• Difficulty to distinguish sources 

 

 

 

 

• Occurence of „ghost sources“ 

 

 

 

Sparse inverses 

• Scattered sources in the presence of noise 
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1. Mixed-norm penalties, e.g.,   

 

 

 

 

Combining sparsity and smoothness 

[Haufe et al., 2008; Vega-Hernández et al., 2008] 



43 Stefan Haufe, BBCI Winter School 2014, Berlin 

Combining sparsity and smoothness 

 

1. Mixed-norm penalties, e.g.,   

 

 

 

 

2. Sparsity in different spatial basis 

 

E.g.                                  with                      and  

 

 Solution has simple spatial structure 

[Haufe et al., 2008; Vega-Hernández et al., 2008] 

[Haufe et al., 2011] 
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Combining sparsity and smoothness 

 

1. Mixed-norm penalties, e.g.,   

 

 

 

 

2. Sparsity in different spatial basis 

 

E.g.                                  with                      and  

 

 Solution has simple spatial structure 

[Haufe et al., 2008; Vega-Hernández et al., 2008] 

[Haufe et al., 2011] 
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Comparison 
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Localization of hand areas in somatosensory cortex 

Electrical stimulation at both thumbs  

(Median nerves) 

 

 N20 event-related potential in the EEG 

 

 

 

 

 

 

 

 

There should be two lateralized symmetric 

sources in the somatosensory cortices. 

[Haufe et al., 2008] 
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Technicalities 

 

• Compensating for bias towards superficial sources 

 

• Fixing current orientations in cortically-constrained estimation 

 

• Measuring distances on the cortical manifold 

 

• Achieving sparsity for vectorial currents 

 

• Dealing with time series data 
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Reconstruction of time series 

 

Problem with L1-norm penalties: sparsity pattern may differ for each sample, 

causing jumps in the source time series between voxels. 

 

 

 

 

 

Figure from Gramfort et al., 2013 
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Reconstruction of time series 

 

Problem with L1-norm penalties: sparsity pattern may differ for each sample, 

causing jumps in the source time series between voxels. 

 

Remedy for stationary time series: select the same set of active voxels/basis 

functions for all samples. 

 

 

 

 
[Haufe et al., 2008; Ou et al., 2009] 

Figure from Gramfort et al., 2013 
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Reconstruction of time series 

 

To model nonstationarity:         

• Decompose time series into time-frequency atoms 

 

 

 

• Mixed-norm penalty 

 

 

 

[Gramfort et al., 2013] 
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Reconstruction of time series 

 

To model nonstationarity:         

• Decompose time series into time-frequency atoms 

 

 

 

• Mixed-norm penalty 

 

 

 

Figure from Gramfort et al., 2013 

[Gramfort et al., 2013] 
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Reconstruction of time series 

 

To model nonstationarity:         

• Decompose time series into time-frequency atoms 

 

 

 

• Mixed-norm penalty 

 

 

 

 

 

 

Other dynamical constraints: Random walk model, Kalman filter, … 

Figure from Gramfort et al., 2013 

[Gramfort et al., 2013] 

[Schmitt et al., 2002; Galka et al., 2004] 
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Other source localization paradigms 

 

Dipole fits: instead of estimating currents of                   dipoles with fixed 

locations, estimate current+location of                  dipoles. 
 

Nonconvex cost function, danger of local minima. 

 [e.g., Scherg, 1992] 
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Other source localization paradigms 

 

Dipole fits: instead of estimating currents of                   dipoles with fixed 

locations, estimate current+location of                  dipoles. 
 

Nonconvex cost function, danger of local minima. 

 

Scanning Techniques:  

• Subspace methods (MUSIC, RapMUSIC): for each voxel, compute angle 

between space spanned by dipole at that voxel and space spanned by data. 

The angle is taken as an index of activation at that voxel. 

 

[e.g., Scherg, 1992] 

[Schmitt, 1986; Mosher and Leahy, 1999] 
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Other source localization paradigms 

 

Dipole fits: instead of estimating currents of                   dipoles with fixed 

locations, estimate current+location of                  dipoles. 
 

Nonconvex cost function, danger of local minima. 

 

Scanning Techniques:  

• Subspace methods (MUSIC, RapMUSIC): for each voxel, compute angle 

between space spanned by dipole at that voxel and space spanned by data. 

The angle is taken as an index of activation at that voxel. 

 

• Beamformers: for each voxel, find a spatial filter which maximizes the SNR 

of signals originating at that voxel. The SNR at each voxel is taken as an 

activity index.  

 

Activity indices of scanning techniques do not explain the data. 

[e.g., Scherg, 1992] 

[Schmitt, 1986; Mosher and Leahy, 1999] 

[van Veen et al., 1997] 
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(Blind) source separation 

 

If temporal constraints are available, one might drop spatial constraints. 

 Useful if no accurate leadfield (e.g., no individual structural MRI) exists. 
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(Blind) source separation 

 

If temporal constraints are available, one might drop spatial constraints. 

 Useful if no accurate leadfield (e.g., no individual structural MRI) exists. 

 

Factorize current density into                                      ,  where 
 

  are                                latent factors (sources, components) 

  of brain activity with specific temporal dynamics, and 
 

  are their corresponding source space activation patterns. 

 



59 Stefan Haufe, BBCI Winter School 2014, Berlin 

(Blind) source separation 

 

If temporal constraints are available, one might drop spatial constraints. 

 Useful if no accurate leadfield (e.g., no individual structural MRI) exists. 

 

Factorize current density into                                      ,  where 
 

  are                                latent factors (sources, components) 

  of brain activity with specific temporal dynamics, and 
 

  are their corresponding source space activation patterns. 

 

The overall decomposition of the EEG becomes 
 

      ,  where 

 
 

  are sensor-space activation patterns to be estimated. 
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The factor/component time series 
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The factor/component time series 

 

    

    

       , to be estimated 

 

 

 

 

 

 

 

 

Each             is linked to a static sensor-space activation pattern        rather 

than to a brain location.   
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The sensor space activation patterns 

 

    

    

          , also to be estimated 

 

Columns: 

 

 

 

 

 

 

The activation patterns        represent  the time invariant current density of the 

component            .  
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Source localization of activation patterns 

 

    

    

Recall that                    .  

 

 Using the techniques described in the first part, the estimated         can be 

source-localized by estimating       using a precomputed leadfield       . 

 

 

 

 

 

 

The source space activation patterns       represent  the time invariant current 

density of the component            .  
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Forward and backward models 
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A BSS method may either directly fit the forward model 
 

 (that is, estimate       and         jointly), 

 

or fit a backward model                             
 

 parameterized only by the extraction filters 

 

If           and         are uncorrelated, both approaches are equivalent,  
 

 and related through                              ,  
 

 where          and         are the covariance matrices of            and         . 

 

 

Forward and backward models 

[Parra et al., 2005; Haufe et al., 2014] 
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A BSS method may either directly fit the forward model 
 

 (that is, estimate       and         jointly), 

 

or fit a backward model                             
 

 parameterized only by the extraction filters 

 

If           and         are uncorrelated, both approaches are equivalent,  
 

 and related through                              ,  
 

 where          and         are the covariance matrices of            and         . 

 

Both forward and backward models provide solutions of the inverse problem, 

 as long as           is "raw" (not nonlinearly preprocessed) EEG data. 

Forward and backward models 

[Parra et al., 2005; Haufe et al., 2014] 
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Both filters and patterns can be visualized as scalp maps. However, their 

meanings are completely different. 

 

 

 

 

 

 

 

 

 

Parameter interpretation 

[Haufe et al., 2014] 
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Parameter interpretation 

 

   Patterns tell us how 

the   brain activity           is 

   expressed in each  

   sensor. 

 

       depends only on           . 

 

   

[Haufe et al., 2014] 
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 and all noise sources. 
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Both filters and patterns can be visualized as scalp maps. However, their 

meanings are completely different. 

 

 

 

 

 

 

 

 

 

 

Parameter interpretation 

 

   Patterns tell us how 

the   brain activity           is 

   expressed in each  

   sensor. 

 

       depends only on           . 

 

   Only patterns can be 

  source localized 

   by virtue of 

[Haufe et al., 2014] 

 

   Filters tell us how to  

   weight sensors to 

   extract the brain 

   activity          . 

 

         depends on             

 and all noise sources. 
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For model fitting, a backward modeling approach is typically adopted, 

 

 
 

where     encodes assumptions on the sources     

BSS methods 
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For model fitting, a backward modeling approach is typically adopted, 

 

 
 

where     encodes assumptions on the sources     

BSS methods 

PCA 

ICA 

TDSEP 

xDAWN 

CCA 

CSP 

SPoC 

cSPoC 

SSD 

DSS 

LDA 

SVM 

LLR 

SSA 

SCSA 

MVARICA 

CICAAR 

PISA 

MOCA 
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BSS methods by assumption 

Brain activity differs between experimental conditions. 

 (ERP studies) 

  Linear classifiers (LDA, SVM, LLR) 

 

 

[e.g., Blankertz et al., 2010] 
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BSS methods by assumption 

Brain activity differs between experimental conditions. 

 (ERP studies) 

  Linear classifiers (LDA, SVM, LLR) 

 

Brain activity correlates with behaviour or stimulus variables. 

 (ERP studies) 

  Linear regression (OLS, Ridge regression, LASSO) 

 

Brain activity of interest is the strongest component of the EEG. 

 (e.g. for artifact removal, dimensionality reduction) 

  Principal component analysis (PCA) 

 

Brain activity of interest correlates across subjects/stimulus repetitions. 

 (Hyperscanning ERP studies) 

  Canonical correlation analysis (CCA) 

 

[e.g., Blankertz et al., 2010] 

[e.g., Parra et al., 2005] 

[e.g., Parra et al., 2005] 

[e.g., Dmochowski  et al., 2011] 
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BSS methods by assumption (2) 

Brain components are mutually independent. 

 (many uses including artifact removal) 

  Independent component analysis (ICA)  

 
[e.g., Makeig et al.] 
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BSS methods by assumption (2) 

Brain components are mutually independent. 

 (many uses including artifact removal) 

  Independent component analysis (ICA)  

 

Brain components are Granger-causally interacting. 

 (brain connectivity studies) 

  SCSA, MVARICA 

 

[e.g., Makeig et al.] 

[Gomez-Herrero et al., 2008; Haufe et al., 2010] 



80 Stefan Haufe, BBCI Winter School 2014, Berlin 

BSS methods by assumption (2) 
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Brain activity is (non-) stationary. 

 (dimensionality reduction) 

  Stationary subspace analysis (SSA) 

[e.g., Makeig et al.] 

[Gomez-Herrero et al., 2008; Haufe et al., 2010] 

[von Bünau et al., 2009] 
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BSS methods by assumption (2) 

Brain components are mutually independent. 

 (many uses including artifact removal) 

  Independent component analysis (ICA)  

 

Brain components are Granger-causally interacting. 

 (brain connectivity studies) 

  SCSA, MVARICA 

 

Brain activity is (non-) stationary. 

 (dimensionality reduction) 

  Stationary subspace analysis (SSA) 

 

[e.g., Makeig et al.] 

[Gomez-Herrero et al., 2008; Haufe et al., 2010] 

[von Bünau et al., 2009] 

If the brain activity of interest can be characterized in several ways, multiple 

BSS methods may lead to the same solution. 
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BSS for oscillations 

 

Not all EEG phenomena are phase-locked to certain events. There are also 

rhythms, the amplitude of which modulates depending on the mental state.  
 

Most rhythms are idle rhythms, i.e., are attenuated during activation. 

 

Figures by Benjamin Blankertz 
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Spatio-spectral decomposition (SSD) 

 

Signal of interest is narrow-band oscillation. 

 

 

 

 

 

 

 

               and               are the covariances of the data filtered in the central  

and flanking frequency bands.  

 

     is obtained as the solution to the generalized eigenvalue equation 
 

                                          ( in Matlab:                                               ) . 
[Nikulin et al., 2011] 
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Common spatial patterns (CSP) 

 

Power of oscillations differs between two experimental conditions C1 and C2. 

  

 

 
 [Koles et al., 1990] 
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Common spatial patterns (CSP) 

 

Power of oscillations differs between two experimental conditions C1 and C2. 

  

 

 

 
 

Example: BCI based on motor imagery of left and right hand. 

 

[Koles et al., 1990] 

Figures by Benjamin Blankertz 
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Source power correlation analysis (SPoC) 

 

Instantaneous amplitude (envelope) of oscillations correlates with continuous 

variable (behaviour, stimulus properties, etc.) . 

 

 

 

 

 

 

 

 

 

 

 

 
 

[Dähne et al., 2014] 
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Source power correlation analysis (SPoC) 

 

Instantaneous amplitude (envelope) of oscillations correlates with continuous 

variable (behaviour, stimulus properties, etc.) . 

 

 

 

 

 

 

 

 

 

 

Instantaneous amplitude correlates across subjects/stimulus repetitions 

 Canonical SPoC (cSPoC) . 

 

 
 

[Dähne et al., 2014] 

[Dähne et al., 2014, Submitted] 
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Extraction of steady-state auditory evoked potentials 

 

Rhythmic auditory stimulation elicits phase-locked rhythmic activity in auditory 

cortex = SSAEP (same as for visual stimulation and SSVEP). 

 

Linear relationship between loudness (in dB) and SSAEP amplitude.  

 
 

[Picton et al., 2003] 

[e.g., Galambos et al., 1981] 
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Extraction of steady-state auditory evoked potentials 

 

Rhythmic auditory stimulation elicits phase-locked rhythmic activity in auditory 

cortex = SSAEP (same as for visual stimulation and SSVEP). 

 

Linear relationship between loudness (in dB) and SSAEP amplitude.  

 

Experiment: apply 40Hz artifical sound stimulus modulating loudness. 

 

 

 

 

 

 

 

Task: identify SSAEP component. 
 

[Dähne et al., 2014] 

[Picton et al., 2003] 

[e.g., Galambos et al., 1981] 
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Extraction of steady-state auditory evoked potentials 

 

 

Results: 

• Compared to single sensors, SPoC leads to higer SNR (peak height) and 

higher correlation with the sound volume (r=0.6 vs. r=0.1) 

• SPoC activation pattern localizes to left and right auditory cortices 

• Similar results for SSD instead of SPoC  
 

[Dähne et al., 2014] 
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Summary 

 

• EEG data are mixed due to volume conduction in the head 

 

• To increase SNR, and achieve interpretability, the inverse problem 

needs to be "solved" 

 

• Can be done using a physical model of volume conduction (inverse 

source reconstruction) or using purely statistical models (source 

separation) 

 

• In any case, a unique solution is only obtained if prior 

assumptions/constraints are imposed 

 

• Correctness of the solution relies on correctness of assumptions 
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Origin of blurring 

1 mm 

d=1 

d=2 

• Both sources explain data equally well 

 

• Source 1 has L2-norm: 

 

• Source 2 has L2-norm: 

 

   

Source 1 Source 2 
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Origin of sparsity 

 

 

 

 

 

 

 

 

 

The level sets of Likelihood and constraint almost always intersect at the 

coordinate axes. 

 

 

Likelihood 

L1 constraint 
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No sparsity using L2-norm 

 

 

 

 

 

 

 

 

 

The level sets of Likelihood and constraint almost never intersect at the 

coordinate axes. 

 

 

Likelihood 

L2 constraint 
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Depth compensation 

Superficial sources contribute more to the EEG than deep ones. 

 

 Many superficial sources „cost less“ than one deep source. 

 

Location bias towards superficial sources. 
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Depth compensation 

Superficial sources contribute more to the EEG than deep ones. 

 

 Many superficial sources „cost less“ than one deep source. 

 

Location bias towards superficial sources. 

 

 

Countermeasure: minimize norm of weighted sources   

  

 

 

with diagonal or blockdiagonal       encoding a voxel-specific  penalty 
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Depth compensation 

 

1. Norm of the columns of the lead field 

 

2. Voxel-wise (co-) variance of the minimum-norm solution 

 

3. Norm + distance from EEG sensors 

 

 

 

»                                      Choice of       is crucial. 

 

»                                       

[Jeffs et al., 1987] 

[Pascual-Marqui, 2002; Haufe et al., 2008] 

[Marzetti et al., 2008] 
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Sparsity of Vector Fields 

[Haufe et al., 2008; Ding et al., 2008; Ou et al., 2009] 

Dipole orientations are 3D vectors,  

current distributions are 3D vectorfields 

 

Technicality: L1-norm sets single dimensions to 0 

 

 Estimated sources are not physiologically 

plausible (parallel to coordinate axes) 
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Sparsity of Vector Fields 

[Haufe et al., 2008; Ding et al., 2008; Ou et al., 2009] 

Dipole orientations are 3D vectors,  

current distributions are 3D vectorfields 

 

Technicality: L1-norm sets single dimensions to 0 

 

 Estimated sources are not physiologically 

plausible (parallel to coordinate axes) 

 

 

 

Solution: L1,2-norm penalty 

 

 Dipole dimensions can only be pruned jointly 
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Sparsity of Vector Fields 

[Haufe et al., 2008; Ding et al., 2008; Ou et al., 2009] 

Dipole orientations are 3D vectors,  

current distributions are 3D vectorfields 

 

Technicality: L1-norm sets single dimensions to 0 

 

 Estimated sources are not physiologically 

plausible (parallel to coordinate axes) 

 

 

 

Solution: L1,2-norm penalty 

 

 Dipole dimensions can only be pruned jointly. 
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More „physiological“ constraints 

 

 

 

 

 

 

 

 

 

1. Sources on cortex, arbitrary orientation 

2. Sources on cortex, orientation normal to surface (dangerous!) 

3. Regions of interest   

4. Symmetric configurations 

 


