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1.  Neural activation is reflected in

• Electromagnetic field changes

• Hemodynamic Activity

2.  Modalities are complementary

3.  Multimodal is better than single modality

4.Understanding the coupling is essential
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Neural activation is reflected in electromagnetic field changes
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Electric Dipole

ground: V ≡ 0

∆V > 0

∆V < 0

E

The dependence of the potential polarity is due to the fact that the potential differences measured
with respect to ground depend on the electrode position within the electric field of a dipole.
Activated neurons generate transient electric dipols due to inhomogeneous charge distributions.
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The dependence of the potential polarity is due to the fact that the potential differences measured
with respect to ground depend on the electrode position within the electric field of a dipole.
Activated neurons generate transient electric dipols due to inhomogeneous charge distributions.Synapse
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Neural activation is reflected in electromagnetic field changes

Measured by:

•intracranial electrodes
•Electrocorticograms (ECoG)

•Electroenchephalography (EEG)
•Magnetoencelography (MEG)

Data Specs:

•High temporal resolution

•Low spatial resolution
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Coupling



Blood-Oxygen Level Dependent Signal
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Neural activation is reflected in BOLD contrast

Single whisker deflection in rats

Optical measurements:

deoxyhemoglobin (Hb)

oxyhemoglobin (HbO)

total hemoglobin (HbT)



Blood-Oxygen Level Dependent Signal
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Neural activation is reflected in BOLD contrast

Measured by:

•Intrinsic optical imaging

•Near-infrared Spectroscopy (NIRS)
•functional Magnetic Resonance Imaging (fMRI)

Data Specs

•High spatial resolution
•Low temporal resolution

Devor, PNAS, 2005
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Neural activation is reflected in BOLD contrast

Measured by:

•Intrinsic optical imaging

•Near-infrared Spectroscopy (NIRS)
•functional Magnetic Resonance Imaging (fMRI)

Data Specs

•High spatial resolution
•Low temporal resolution

Single whisker deflection in rats

Optical measurements:

deoxyhemoglobin (Hb)

oxyhemoglobin (HbO)

total hemoglobin (HbT)



Multimodal Neuroimaging: Benefits and Challenges
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Benefits

‣ Clinical Applications

‣ Better Diagnosis (e.g. Epilepsy)

‣ Therapy: Hybrid Brain-Computer Interfaces

‣ Basic Research

‣ Better Understanding of Single Modalities

‣ Better Understanding of Modality Coupling

Challenges

‣ Recording Setups (Artifacts)

‣ Analysis Approaches (No Gold Standard)



Outline
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1. Analysis of Multimodal Neuroimaging Data

• Supervised Learning Approaches

• Unimodal Unsupervised Approaches

• Multimodal Unsupervised Approaches

2. Applications

• Hybrid BCIs: NIRS and EEG

• Cleaning Artifacts from Multimodal Recordings

• Estimating the Neural Information in fMRI Signals

• Multisubject Analyses
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Analysis of Multimodal Neuroimaging Data
Felix Bießmann}, Sergey Plis§, Frank Meinecke}, Tom Eichele⇤, Klaus-Robert Müller},‡

Abstract—Each method for imaging brain activity has techni-
cal or physiological limits. Thus combinations of neuroimaging
modalities that can alleviate these limitations such as simultane-
ous recordings of neurophysiological and hemodynamic activity
have become increasingly popular. Multimodal imaging setups
can take advantage of complementary views on neural activity
and enhance our understanding about how neural information
processing is reflected in each modality. However dedicated
analysis methods are needed to exploit the potential of multi-
modal methods. Many solutions to this data integration problem
have been proposed, which often renders both comparisons of
results and the choice of the right method for the data at hand
difficult. In this review we will discuss different multimodal
neuroimaging setups, the advances achieved in basic research
and clinical application and the methods used. We will provide
a comprehensive overview of mathematical tools reoccurring
in multimodal neuroimaging studies for artifact removal, data-
driven and model-driven analyses, enabling the practitioner to try
established or new combinations from these algorithmic building
blocks.

Index Terms—Multimodal, Neuroimaging, EEG-fMRI, EEG,
fMRI, MEG, MEG-fMRI, NIRS.

I. INTRODUCTION

IN the past decade multimodal neuroimaging methods have
become an indispensable tool for neuroscientific research

and clinical application [75]. The present review aims to
introduce the main ideas for the analysis of multimodal
neuroimaging data, and reports applications thereof. We do not
attempt to cover all available literature, instead we try to equip
the practitioner with a set of simple algorithmic tools that have
proved useful for multimodal data analysis, in particular for
artifact removal, data-driven and model-driven analyses. We
also provide references to related work for further reading.
Multimodal neuroimaging methods combine single imaging
modalities that yield complementary views on brain activity,
such as electrophysiological and hemodynamic measurements
(see figure 1). Neurophysiological measurements can be either
invasive intracranial electrode measurements or non-invasive
recordings such as electroencephalograms (EEG) [18] or mag-
netoencephalograms (MEG) [43]. Hemodynamic activity can
be measured invasively using intrinsic optical imaging [96]
or non-invasively by functional magnetic resonance imaging
(fMRI) [190] and near infrared spectroscopy (NIRS) [120].
As we attempt to span a broad field, we will need to be
less detailed than more specialized reviews as for instance for
optical imaging data analysis [61, 139], for EEG data analysis
[25, 188] or for special cases of multimodal analyses such as

}Dept. Machine Learning, Berlin Institute of Technology, Berlin, Germany
⇤ Dept. Biological and Medical Psychology, University of Bergen, Norway
§ The Mind Research Network, Albuquerque, New Mexico, United States
‡ Institute for Pure and Applied Mathematics, UCLA, Los Angeles, USA
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Fig. 1. Venn Diagram of multimodal neuroimaging analysis methods
(see also section V and figure 4 for an explanation of the underlying
information theoretic quantities); certain aspects of the brain activity
are reflected in electrophysiological recordings and others in hemo-
dynamic measurements; while some aspects such as fast neuronal
oscillations are only detectable in electrophysiological signals (area
1), other aspects (such as activity in deep brain structures) are easier
to investigate using hemodynamic signals (area 2); aspects that are
reflected in both modalities can be subdivided into signals originating
from neural activity (area 3) and non-neural physiological processes
reflected in both modalities, such as muscle contractions that lead
to head movement (area 4); besides these common artifact sources,
there are many artifacts that are reflected in one modality only (area
5 and 6); the choice of the analysis method determines which aspects
of the data will be found;

for EEG-fMRI data [109, 175, 217, 239, 240, 247]. In section
II we will give merely a short introduction to popular unimodal
neuroimaging setups and combinations thereof that have been
used in multimodal imaging. We will discuss technical and
physiological limitations and some analysis methods estab-
lished for each setup.

There are many advantages of multimodal setups compared
to unimodal measurements. Firstly combinations of modalities
can exhibit synergistic effects by exploiting the complementary
information from multiple data sources. In clinical applications
one needs high temporal resolution to capture the temporal
dynamics of epileptic activity and at the same time high
spatial resolution to determine the origin of the seizure in
the brain. While unimodal methods typically do not have
both high temporal and high spatial resolution, multimodal
methods can combine the advantages of single modalities
yielding a view on brain activity with an unprecedented
spatiotemporal resolution. The need to overcome limitations
of classical unimodal setups in clinical applications motivated
the first multimodal studies [116, 130, 143]. Besides
its potential for diagnostic purposes high spatiotemporal
resolution is crucial for a better understanding of the

Biessmann et al., IEEE Reviews in Biomedical Engineering, 2011

Most of what will be discussed today is described in detail in

Matlab Code, toydata examples and real data examples available at
http://www.user.tu-berlin.de/felix.biessmann/mmreview/
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1. No gold standard analysis for Multimodal Neuroimaging 

2. Analysis approaches are difficult to categorize

3. Many analyses combine different methods

4. Most of these methods are based on simple algebra

5. Use these tools to tailor your analyses to your needs
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• Supervised Analyses

• Unimodal Unsupervised Analyses

• Biologically Inspired Models 

• Multimodal Unsupervised Analyses

x(t) = m�(t) + ✏

w

>
mxm(t) = y(t) + ✏

xm(t) = Amsm(t) + ✏

xm(t) = Ams(t) + ✏



Supervised Analyses
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Supervised analyses fit data            to some label  

          

         ,          Data from either modality / Stimulus

Examples: 

GLMs, Linear Discriminant Analysis, Support Vector Machines

w

>
mxm(t) = y(t) + ✏

xm(t) y(t)

xm(t) y(t)



Supervised Analysis: General Linear Models
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Figure 1 

 

 

Figure 1  Example of combined fMRI experiments with neurophysiological recording 

A: Upper column shows anatomical images and the multi‐channel electrode used in this study.  Blue 

arrow represents positions of recording sites on the electrode, 7 out of 10 channels are seen. Lower 

column is the BOLD responses (P<0.001) tested by full‐field visual stimulation before collecting 

spontaneous activity. Note that the electrode is MRI compatible and almost no distortion to activation 

map.  B: Example of spontaneous fluctuation of the neural signal in different frequency bands. δ/θ, α, β, 

γL, γ, γH, γVH, MUA (Multi‐Unit Activity) correspond respectively to 1‐8, 8‐12, 12‐24, 24‐40, 40‐60, 60‐

100, 120‐250, 1000‐3000Hz.  Spikes were extracted by thresholding high‐passed signal with amplitude.  

Arrows represent synchronous activation in gamma and spiking range. C: Example of spontaneous 

fluctuation of BOLD.  Upper trace shows the average of BOLD fluctuations from all voxels seen below. 
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 EEG Bandpower as Label for fMRI GLM
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EEG features as regressor
e.g. Moosmann et al., Neuroimage, 2003

y(t) 2 R1

w

>
mxm(t) = y(t) + ✏

Fig. 1. Analysis of EEG acquired simultaneously with MRI. This figure gives a schematic representation of the different steps (indicated by arrows) in the
data analysis (described in more detail under Methods): Step 1: application of a filter algorithm for MR artifact correction; Step 2: time-frequency
decomposition by wavelet analysis; Step 3: estimation of the alpha power by averaging alpha band frequencies; Step 4: convolution with the hemodynamic
response function to estimate a predictor for the BOLD signal.
Fig. 3. Single-subject results of one slice (z ! 0) for negative correlation analysis between alpha predictor and BOLD signal. (a) Interleaved EEG-fMRI study;
P " 0.001 uncorrected. (b) Continuous EEG-fMRI study; P " 0.001 uncorrected.

xm(t) y(t)EEG alpha bandpower fMRI voxel time series
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EEG features as regressor
e.g. Moosmann et al., Neuroimage, 2003

w

>
mxm(t) = y(t) + ✏

Fig. 1. Analysis of EEG acquired simultaneously with MRI. This figure gives a schematic representation of the different steps (indicated by arrows) in the
data analysis (described in more detail under Methods): Step 1: application of a filter algorithm for MR artifact correction; Step 2: time-frequency
decomposition by wavelet analysis; Step 3: estimation of the alpha power by averaging alpha band frequencies; Step 4: convolution with the hemodynamic
response function to estimate a predictor for the BOLD signal.
Fig. 3. Single-subject results of one slice (z ! 0) for negative correlation analysis between alpha predictor and BOLD signal. (a) Interleaved EEG-fMRI study;
P " 0.001 uncorrected. (b) Continuous EEG-fMRI study; P " 0.001 uncorrected.

SPM negative activation patterns
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EEG features as regressor
e.g. Moosmann et al., Neuroimage, 2003

w

>
mxm(t) = y(t) + ✏

Cross-correlogram with NIRS

sible for synchronized alpha oscillations (Creutzfeldt,
1975). If so, one might expect correlations between local
thalamic blood oxygenation and alpha activity.
Indeed, in the interleaved EEG-fMRI study we found

positive correlations between the BOLD signal and alpha
activity in the thalamus, but also in cerebrospinal fluid
cavities. Cardiac cycle and breathing associated vessel pul-
sations, cerebrospinal fluid movement, and tissue deforma-

tion are well-known causes for MRI artifacts, which occur
predominantly around ventricles, large vessels, and cisterns
(Dagli et al., 1999; Windischberger et al., 2002). The cis-
ternal BOLD signal changes reported here may be ascribed
to such artifacts. By means of the advanced continuous
EEG-fMRI approach we hoped to reduce these artifacts and
to accentuate the thalamic signal. However, under these
conditions, no positive correlations were found at all, not
even in the thalamus or ventricles, given a statistical thresh-
old of P ! 0.001. At a lower statistical threshold of P !
0.05, positive correlations were found in the thalamus, the
lateral ventricles (central part, temporal horn, occipital
horn), the third ventricle, and the cisterna ambiens. Since
the thalamus constitutes the lateral walls of the third ven-
tricle and directly underlies the central part of the lateral
ventricle, a possible thalamic signal cannot be unambigu-
ously separated from ventricular artifacts. The (positive)
thalamic activation pattern for the 24- to 28-Hz band was
very similar to that for the alpha band, but was not present
for the 3- to 6-, 54- to 58-, and 34- to 38-Hz bands,
respectively. The findings for the 24- to 28-Hz band might
be indicative of an artificial origin of the BOLD signal in
this region, but might also be ascribed to a harmonic of the
alpha frequency. In conclusion, while our data provide some
evidence for a thalamic activation positively associated with
alpha activity, definite proof will be a matter for further
validation studies (e.g., using ECG-triggered MRI data ac-
quisition).
What do these results imply about the “generator” of the

alpha rhythm? It is known from intracerebral electrode
recordings in dogs that alpha activity occurs not only in the
occipital cortex but also in the thalamus, although with
larger intracortical than thalamocortical coherences (da
Silva et al., 1973). The lateral geniculate nucleus (consti-
tuting the caudal thalamus) was shown to have a small,
although significant influence on corticocortical coherences;
the pulvinar (posterior thalamus) has been shown to have an
even larger influence (Lopes da Silva et al., 1980). How-
ever, after mathematically “disconnecting” the thalamus
through elimination of all intracortical coherences explain-
able by thalamic input, there was still an appreciable amount
of corticocortical coherences. Thus, there must be factors
other than the thalamus that are responsible for the large
values of intracortical coherences. A persisting reactive
posterior alpha rhythm (the alpha rhythm was attenuated by
forced eye-opening) in a 57-year-old man with infarction of
the ventral midbrain and the dorsomedial thalamus bilater-
ally (Yazawa et al., 2001) lends support to this theory. On
the other hand, a study investigating the effect of thalamic
arteriovenous malformations on the EEG pattern showed
that lesions in the posterior thalamus result in alpha-rhythm
suppression, including its total elimination (Lukashevich
and Sazonova, 1996). Interestingly, the same group found
alpha-rhythm suppression to a similar extent also with le-
sions in the body of the caudate nucleus (Sazonova and
Lukashevich, 1995). Certainly cerebral lesions in general

Fig. 6. Simultaneous NIRS-EEG study (example). (a) Visual stimulation
task: Cross-correlation coefficients of the convolved stimulus function and
[deoxy-Hb]-changes. Maximal negative correlation is visible at a time
delay of 8 s. The modulation frequency reflects on/off cycling of the
stimulus. One representative subject. (b) Block design—cross-correlation
of alpha activity vs [deoxy-Hb]: maximal positive correlation at a time
delay of 8.2 s. The modulation frequency reflects eyes-open/eyes-closed
cycling in the dark room. (c) Spontaneous alpha activity vs [deoxy-Hb].
Maximal positive correlation at a time delay of 8.4 s.

154 M. Moosmann et al. / NeuroImage 20 (2003) 145–158
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Supervised analyses fit data            to some label  

Problems

Choice of target variable difficult (often there is none)

EEG Bandpower regressor incompatible with physics

When regressing onto stimulus, all variance related to 

label (not necessarily neural activation) is used

w

>
mxm(t) = y(t) + ✏

xm(t) y(t)



Unimodal Unsupervised Analyses
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Many unsupervised analyses learn mapping         

from (modality specific) neural sources         

to unimodal measurements

Examples:

Principal/Independent Component Analysis, Clustering

xm(t)

Am

xm(t) = Amsm(t) + ✏

sm(t)
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Pearson, Philosophical Magazine, 1901

Introduction Linear PCA Linear Kernel PCA Non-Linear Kernel PCA Summary

Principal Component Analysis

Pearson, K. 1901. On lines and planes of closest fit to systems of points in space. Philosophical Magazine 2:559-572. 
http://pbil.univ-lyon1.fr/R/pearson1901.pdf 

 

Which line fits data best?

7 / 38

Which line fits this data best?

Introduction Linear PCA Linear Kernel PCA Non-Linear Kernel PCA Summary

Principal Component Analysis

Pearson, K. 1901. On lines and planes of closest fit to systems of points in space. Philosophical Magazine 2:559-572. 
http://pbil.univ-lyon1.fr/R/pearson1901.pdf 

 

NoiseSignal Which line fits data best?

The line w that minimizes the
noise and maximizes the signal

[Pearson, 1901]

8 / 38

The line that maximizes the variance
after projecting the data onto it
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Pearson, Philosophical Magazine, 1901

Introduction Linear PCA Linear Kernel PCA Non-Linear Kernel PCA Summary

Maximizing variance in a data set

We obtained some data X = [x1, x2, . . . , x
N

] 2 RD⇥N

PCA finds a direction w⇤ 2 RD such that

w⇤ = argmax
w

w>XX>w (1)
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Introduction Linear PCA Linear Kernel PCA Non-Linear Kernel PCA Summary

Maximizing variance in a data set

We obtained some data X = [x1, x2, . . . , x
N

] 2 RD⇥N

PCA finds a direction w⇤ 2 RD such that

w⇤ = argmax
w

w>XX>w (1)

When optimizing eq. 1 we have to constrain w

kwk2 = w>w = 1 (2)

yielding the Lagrangian

L = w>XX>w + �(1�w>w) (3)

9 / 38

We store the data in a matrix

such that the variance of the data 
projected onto the line is maximized

PCA finds a line
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Pearson, Philosophical Magazine, 1901

Setting up the Lagrangian and 
rearranging terms in its first derivative ...

We see that the best line for describing the data is 
the strongest eigenvector of the covariance matrix

Introduction Linear PCA Linear Kernel PCA Non-Linear Kernel PCA Summary

Maximizing variance in a data set

L = w>XX>w + �(1�w>w)

Setting the derivative w.r.t. w to zero yields

@L
@w

= 2XX>w � 2�w = 0

) XX>w = �w (4)

This is a standard eigenvalue problem.

w is the eigenvector of XX> corresponding to the largest eigenvalue

11 / 38
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Introduction Linear PCA Linear Kernel PCA Non-Linear Kernel PCA Summary

Principal Component Analysis

X W>X

PCA aligns maximum variance directions with standard basis
! Variance along each dimension is uncorrelated
! Now we can remove each dimension separately

20 / 38

PCA aligns maximum variance directions with standard basis
Now we can remove each dimension separately
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Introduction Linear PCA Linear Kernel PCA Non-Linear Kernel PCA Summary

Finding k Principal Components

Xw1 = w1w
>
1 X

Data projected on w1 and back through w1

14 / 38
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Introduction Linear PCA Linear Kernel PCA Non-Linear Kernel PCA Summary

Finding k Principal Components

X�w1w
>
1 X = (I�w1w

>
1 )X

Data projected on w1 and back through w1 subtracted from X
15 / 38
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Introduction Linear PCA Linear Kernel PCA Non-Linear Kernel PCA Summary

PCA For High-Dimensional Data

We get a data set X = [x1, x2, . . . , x
N

] 2 RD⇥N where N ⌧ D

! Covariance matrix XX> will be very large (D-by-D)

! Too few samples for a robust covariance matrix estimate

We know that w must lie in the span of the data

w = Xa (8)

where a is a weighting of each data point

23 / 38

Introduction Linear PCA Linear Kernel PCA Non-Linear Kernel PCA Summary

PCA For High-Dimensional Data

We can plug w = Xa in the PCA objective and obtain

X X>X| {z }
Kernel K

X

a = �Xa

which is equivalent to [Schölkopf et al., 1998]

K
X

a = �a. (9)

Solving PCA via X>X instead of XX> is called linear kernel PCA

24 / 38

What if there are (many) more dimensions than samples?

We can use the kernel trick (here’s just the linear one)

Schoelkopf et al, Neural Computation, 1998
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Introduction Linear PCA Linear Kernel PCA Non-Linear Kernel PCA Summary

PCA For High-Dimensional Data
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What if there are (many) more dimensions than samples?
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Using nonlinear kernels we can fit arbitrary manifolds

Schoelkopf et al, Neural Computation, 1998

Introduction Linear PCA Linear Kernel PCA Non-Linear Kernel PCA Summary

Non-linear Kernel PCA: Toy Data Example

Kernel PCA with gaussian kernel (� = 1)

36 / 38
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For fMRI data linear Kernel PCA 

can be thought of as Spatial PCA

X

Temporal PCA

Samples

Vo
xe
ls
 /
 S
en

so
rs

X

Spatial PCA

Sa
m
pl
es

Voxels / Sensors
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Many unsupervised analyses learn mapping         

from neural sources         

to unimodal measurements

Problems
Correspondence of unimodal components

One component is only present in one modality

One component corresponds to multiple components in other modality

xm(t)

xm(t) = Ams(t) + ✏

Am

sm(t)



Multimodal Unsupervised Analyses
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Electrophysiology

fMRI

2

1

2

1

‣ Unimodal preprocessing might discard relevant information

Unimodal Analysis

Integration of 
unimodal results
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Electrophysiology

fMRI

2

1

2

1

PCA

PCA

CCA

‣ Unimodal preprocessing might discard relevant information

‣ CCA recovers the common underlying variable
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Hidden Variable

X

Z

Y

Measured Variables
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argmax

w

x

,w

y

0

@ w>
x

XY >w
yq

w>
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XX>w
x

w>
y

Y Y >w
y

1

A

such that the correlation between X and Y is maximized:

Electrophysiology

X

fMRI

Y

Jordan 1875, Hotelling 1936

CCA finds 
canonical 
directions

w>
x

X w>
y Y

w
x

2 RF⇥1

w
y

2 RS⇥1

Given Data X 2 RF⇥T

Y 2 RS⇥T

Brain Activity
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PCA

PLS

CCA

MLR

Table 1: The matrices and for PCA, PLS, CCA and MLR.

5.4 Relation to SNR

Correlation is strongly related to signal to noise ratio (SNR), which is a more com-
monly used measure in signal processing. Consider a signal and two noise signals
and all having zero mean1 and all being uncorrelated with each other. Let

and be the energy of the signal and the noise signals
respectively. Then the correlation between and is

(13)

Note that the amplification factors and do not affect the correlation or the SNR.

5.4.1 Equal noise energies

In the special case where the noise energies are equal, i.e.
, equation 13 can be written as

(14)

This means that the SNR can be written as

(15)
1The assumption of zero mean is for convenience. A non-zero mean does not affect the SNR or

the correlation.

5

Borga, PhD Thesis, 1998

Aw = Bw�

Maximizes Variance

Maximizes Covariance

Maximizes Correlation
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Figure 1: Two-dimensional example of a binary classification setting. The class-conditional
distributions are multivariate Gaussians with equal covariance matrix. The class means
differ in channel x1(n), but not in channel x2(n). Thus, channel x2(n) does not contain any
class-related information. Nevertheless, Bayes-optimal classification according to linear
discriminant analysis (LDA) projects the data onto the weight vector (extraction filter)
wLDA / [1, 2]>, i. e., assigns twice the weight of channel x1(n) to channel x2(n). This
large weight on x2(n) is needed for compensating the skewed correlation structure of the
data, and must not be interpreted in the sense that the activity at x2(n) is class-specific.
By transforming the LDA projection vector into a corresponding activation pattern aLDA
using Eq. (7), we obtain aLDA / [1, 0]>, which correctly indicates that x1(n) is class-
specific, while x2(n) is not.

x1(n) with w

x1 = [1, 0]

> yields a reasonable separation of the two classes
(see the bottom left panel of Figure 1), with the correlation of the class la-
bel y(n) 2 {�1,+1} and channel data x1(n) being r = Corr(y, x1) = 0.83,
where Corr(x1, x2) = Cov(x1, x2)/(Std(x1) · Std(x2)). In contrast, projecting
the data onto channel x2 using w

x2 = [0, 1]

> provides no separation at all
(see bottom center panel). Here, r = 0.04. Multivariate classification accord-
ing to linear discriminant analysis (LDA) – which is Bayes-optimal in this
specific scenario – achieves the best possible separation of r = 0.92 using the
projection vector wLDA / [1, 2]

> (see Section 5.6 and Appendix AppendixC).
Thus, in order to maximize class separation, the weight on x2(n) must be
twice as large as the weight on x1(n), although x2(n) does not contain class-
specific information at all.

Example 3. Finally, the interpretability issues outlined above do not only
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different means and equal covariance matrices. Here, we choose the class
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>, and the common covari-
ance matrix to be ⌃ = [
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�0.30 0.15 ] (these values were determined in order to

obtain a particular weight vector wLDA, see below).
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5. Discussion

5.1. Backward models can be made interpretable
We have demonstrated that extraction filters of backward models may

exhibit large weights at channels not at all picking up the signals-of-interest,
as well as small weights at channels containing the signal. Such “mislead-
ing” weights are by no means indications of suboptimal model estimation.
Rather, they are needed to “filter away” noise and thereby to extract the
signal with high SNR. In our simulation, we obtained one additional patch
of spurious activity in most extraction filters as a results of the particular
choice of a specific noise (distractor) component with specific spatial mixing
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‣ Almost all neuroimaging analyses use 2nd order statistics

‣ If data is described by mean/variance
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For more than two variables we can extend
 the generalized eigenvalue problem

2.7. fMRI data analysis

In order to find brain networks of activation that are common to all
subjects, we used the canonical intersubject correlation coe�cient (CISC),
a multivariate extension of the voxel-wise intersubject correlation measures
previously used for analysis of brain activation evoked by complex movie
stimuli (Hasson et al., 2004). CISCs are based on canonical correlation anal-
ysis (CCA) (Hotelling, 1936). The underlying assumption is that a network
of brain activation for each subject s 2 {1, 2, . . . , S} can be captured as
a linear combination wsi 2 RV (V denotes the number of voxels) of the
multivariate voxel time series Xs 2 RV⇥T (T denotes the number of fMRI
volumes). The linear combinations wsi are called canonical directions; the
subscript s refers to a specific subject and the subscript i refers to a specific
brain network. We can obtain the time course, also called canonical compo-

nent, of brain network i for subject s by computing w

>
siXs. The goal of CISC

analysis is to find those canonical directions wsi such that the sum over all
pairwise correlations (for all pairs of subjects) between the canonical compo-
nents is maximized, with the constraint that the time courses of two di↵erent
networks wsi and wsj be uncorrelated. When concatenating all K canonical
directions ws1, ws2, . . . , wsK in a matrix Ws = [ws1, ws2, . . . , wsK ] 2 RV⇥K ,
the objective function of CCA can be formulated as

argmax
Wi,Wj

X

i

X

j

Tr
�
W

>
i XiX

>
j Wj

�
, 8i, j (1)

subject to W

>
i XiX

>
i Wi = I, 8i,

where I is the identity matrix.
This extension of classical CCA to sets of variables larger than two was

treated in Kettenring (1971). The dimensionality of the data was reduced
using PCA to keep only as many principal components as are needed to cover
99.9 percent of the variance in all voxels. This resulted in 20 to 30 principal
components. In order to obtain authentic (and not overfitted) estimates of
CISCs, we computed them in a leave-one-movie-out cross-validation. For
each movie, we estimated the PCA subspace as well as the canonical direc-
tions on all but this movie (the training data set). The canonical components
for the fMRI data recorded during the movie that was held out of the train-
ing data set were computed by projecting them onto the PCA space and the
canonical directions computed on the training data set. The cross-validated
CISCs reported here are then computed on these canonical components.

7
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‣ CCA requires computation of covariance matrices

! Computationally infeasible for fMRI

‣ CCA captures only linear dependencies

➡ Solution: Kernel CCA

Y Y >
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Project data into a kernel feature space

 

Optimize

kCCA can be solved efficiently in 
high (potentially infinite) dimensional spaces because:
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‣ (K)CCA assumes instantaneous dependencies

‣ Neurovascular coupling is non-instantaneous

‣ HRF needs to be modeled as convolution



Standard Model of Neurovascular Coupling
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Most analyses model temporal dynamics of neurovascular coupling
using a canonical Hemodynamic Response Function (HRF)

5 10 15 20
Temporal Delay τ [s]

Neural Impulse Hemodynamic Response Function 

Peak

Undershoot

Implications
‣ Temporal dynamics are the same for all voxels
‣ Temporal dynamics are separable from spatial dynamics
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We extend standard kCCA to optimize

where     is a temporal convolution in kernel feature space 

Bießmann et al, Machine Learning Journal, 2010
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‣ For non-instantaneous coupling standard CCA fails
‣ tkCCA recovers the coupling between high dimensional modalities
➡Now we can learn fMRI spatiotemporal dynamics from small data sets
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fMRI reflects neural bandpower
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‣ Computing neural bandpower is a nonlinear function

‣ Knowing this nonlinearity, we can model it explicitly 
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[8]. The hemodynamic signal reflects the energy demand in-
duced by neural activity. Neurons consume most energy for
restoration of the resting membrane potential after neural sig-
nals from other cells depolarized a cell [9]. Let us denote the
neuronal signal at some brain region with and the local
vasomotor feed forward signal (that gives rise to the hemody-
namic signal) at that brain region with . Usually, is
modeled by the instantaneous variance of the neural dynamics,
the band power in a certain frequency band or a more general
nonlinear function of . Since the hemodynamic response
is not instantaneous, the hemodynamic signal is modeled by a
convolution of the past of (alternatively called causally
filtered ):

(2)

where denotes convolution and the nonlinear convolution op-
erator combines the energy consumption nonlinearity with a
linear convolution , also known as hemodynamic response
function (HRF). In a final step, these signals are linearly trans-
formed into the sensor space of the measurement device (NIRS
or fMRI):

(3)

where , is modality-specific noise, and
.

The electric fields produced by cortical sources indeed su-
perimpose linearly and instantaneously at the EEG electrodes,
which means that the mixing model for the EEG electrodes
(eq.(1)) is exact. Note, however, that the model for the vascular
signal (cf. Equation (3) and Fig. 1) contains an approximation.
We assume that this model can be separated into two steps: the
first step is a nonlinear mapping (here consisting of a band
power transformation followed by a canonical HRF) that is ap-
plied to each of the cortical sources independently. This non-
linearity also contains all the dependencies between different
time instances. The second step mixes the intermediate signals

instantaneously to obtain the measured vascular
signals. In other words: nonlinearity and mixing in time is sep-
arable from the spatial mixing. This is not necessarily the case;
different brain regions might have different HRF profiles. How-
ever, this separability assumption is usually true to a very good
approximation and widely used in the neuroscience literature
[10].1

We further assume that we know the nonlinearity/temporal
mixing . The goal of the multimodal data integration problem
is then to estimate the unknown spatial mixing matrices and

to establish the relationship between surface EEG and mea-
sured vascular signals (i.e., through NIRS or fMRI).

1Note, that our model does not rely on a strict separability assumption; dif-
ferent neural sources are indeed allowed to have different HRFs, only the map-
ping (mixing) of each source into different voxels or optode signals is fixed.
Effectively this assumes local space-time separability within a brain region that
constitutes a dipole, yet allows global space-time non-separability across the
brain.

Fig. 1. Generative model of multimodal EEG and hemodynamic signal corre-
sponding to (1) and (3) (noise terms omitted).

III. STATE OF THE ART IN MULTIMODAL NEUROIMAGING

Many methods have been proposed to solve the data inte-
gration problem underlying (1) and (3), for a review see e.g.,
[1]. Most data integration approaches can be categorized into
model-driven approaches, supervised methods or unsupervised
techniques.
Model driven approaches are based on biophysically inspired

forward models. A good model is the more important the further
away from the neural generators a measurement is. Hence espe-
cially non-invasive multimodal studies using EEG and hemody-
namic signals use model based analyses [11]–[13]. Sometimes,
however, model based approaches can be difficult to validate; in
particular is not clear which level of detail is optimal for mod-
eling the biophysical processes underlying (1) and (3). Many
models use a neural mass model for the net metabolic cost of
neural activity to hemodynamic signals [14]; this quantity is
very similar to band power signals.
Multimodal supervised analyses use brain activity mea-

surements to predict a stimulus variable. As multimodal
measurements often yield complementary views on brain
activity they can often predict stimulus information better
than unimodal measurements alone [15]. But not in all exper-
imental paradigms a stimulus variable is available; examples
are resting state analyses or detection of epileptic activity, for
a review see [16]. A solution is to use one modality to predict
the other modality as e.g., in [17], [18]. Similarly one can use
information from one modality to constrain the solution found
by another modality [19]–[22]. In these asymmetric supervised
analyses one has to decide which modality will serve as re-
gressor or more generally how much weight the features from
one modality should obtain as opposed to another modality in
the analysis.
When neither forward model nor stimulus information is

available unsupervised methods can be used to analyze data in
an explorative way. Popular examples are principal component
analysis (PCA) [23], [24], independent component analysis
(ICA) [25]–[27] and canonical correlation analysis (CCA) [28].
In multimodal settings, unsupervised methods have become
indispensable for artifact removal [29] as well as for analysis.
Both PCA and ICA based analyses are inherently unimodal
methods and are typically computed on data from one modality
only, before they are combined in a second step. A number
of solutions to these problems have been proposed, see e.g.,

Daehne et al., IEEE Trans. Multimedia, 2013
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‣ Computing neural bandpower is a nonlinear function

‣ EEG model is linear

‣ Computing bandpower in sensor space is problematic

‣ Superposition of multiple sources

‣ Superposition of neural signals and noise
‣ Linear De-mixing cannot undo the nonlinearity

Daehne et al., IEEE Trans. Multimedia, 2013

xm(t) = Ams(t) + ✏
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‣ Problematic: EEG sensor bandpower
‣ As regressor for SPM GLM
‣ As variable in CCA / Partial Least Squares 
‣ As data in multivariate regression / classification

‣ Less problematic: Neural source bandpower
‣ in Blind Source Separation space
‣ of fitted dipole source space

‣ OR: Explicitly model biophysics of coupling

Daehne et al., IEEE Trans. Multimedia, 2013
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Fig. 3. Illustration for the limitations of channel-wise band power representations. Left: Scatter plot of data from two sources that have been linearly mixed. The
original source directions are indicated with a red and black line. The band power of the source corresponding to the red direction (target source) is coupled to a
variable (not shown). Middle: The same data after applying a channel-wise nonlinearity (here variance as a proxy for band power). Note that information about
polarity (sign) is lost. Right: Covariance between and the band power of a projection of the data in the left scatter plot (blue line), and covariance between and
the projection of the data in the middle scatter plot (green line), both as a function of projection angle with respect to the axis. The vertical red line corresponds
to the direction of the target source. In this simple example the maximum covariance obtained by unmixing the nonlinearly transformed data does not lead to the
true source direction. Unmixing the data before applying the nonlinearity, however, allows to find the true source direction. See text for further explanation.

only very little within each individual epoch.2 The epoch-wise

power of is estimated by squaring and averaging over the

epoch, i.e.,

(8)

In accordance with (2), we model the coupling function a as

temporal filter on the power of . Thus we have

(9)

where denotes the th element of the vector and

the number of past epochs to be taken into account.

With the definitions given above, we can formulate the ob-
jective function that we want to maximize:

(10)

with respect to the following norm constraints

where and denote the with-signal covariance matrices

and denotes the auto-correlation matrix of computed over

all time lags that are considered. Together these constraints en-

sure that the objective function is bound between and 1.

2In most practical scenarios this setting is very natural, especially if and
are acquired with different sampling rates. A typical example would be con-

current EEG and NIRS, where half a second represents an appropriate epoch
length.

Without loss of generality, we assume to have zero mean.

We can then express in a concise way using tensor notation:

(11)

where denotes average over epochs, is the contraction

of the th dimension of an n-dimensional tensor via multiplica-

tion with a vector. For more information on andmore tensor

notation see [46].

Thus the optimization problem of maximizing the covari-

ance between and can be expressed as maximizing

the n-mode vector product between the four-dimensional co-

variance tensor and the vectors , , and . For

convenience, we include the constraints directly in the objec-

tive function and thus arrive at

(12)

Our modeling approach (i.e., our objective function) allows

for a meaningful interpretation of the results. Since we are

seeking linear spatial filters and , we are able to derive

corresponding spatial patterns for each of the measurement

modalities. By spatial patterns we refer to the columns of the

mixing matrices and (see (1) and (3)). For a given

Nonlinearity:
Bandpower Computation
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original source directions are indicated with a red and black line. The band power of the source corresponding to the red direction (target source) is coupled to a
variable (not shown). Middle: The same data after applying a channel-wise nonlinearity (here variance as a proxy for band power). Note that information about
polarity (sign) is lost. Right: Covariance between and the band power of a projection of the data in the left scatter plot (blue line), and covariance between and
the projection of the data in the middle scatter plot (green line), both as a function of projection angle with respect to the axis. The vertical red line corresponds
to the direction of the target source. In this simple example the maximum covariance obtained by unmixing the nonlinearly transformed data does not lead to the
true source direction. Unmixing the data before applying the nonlinearity, however, allows to find the true source direction. See text for further explanation.

only very little within each individual epoch.2 The epoch-wise

power of is estimated by squaring and averaging over the

epoch, i.e.,

(8)

In accordance with (2), we model the coupling function a as

temporal filter on the power of . Thus we have

(9)

where denotes the th element of the vector and

the number of past epochs to be taken into account.

With the definitions given above, we can formulate the ob-
jective function that we want to maximize:

(10)

with respect to the following norm constraints

where and denote the with-signal covariance matrices

and denotes the auto-correlation matrix of computed over

all time lags that are considered. Together these constraints en-

sure that the objective function is bound between and 1.

2In most practical scenarios this setting is very natural, especially if and
are acquired with different sampling rates. A typical example would be con-

current EEG and NIRS, where half a second represents an appropriate epoch
length.

Without loss of generality, we assume to have zero mean.

We can then express in a concise way using tensor notation:

(11)

where denotes average over epochs, is the contraction

of the th dimension of an n-dimensional tensor via multiplica-

tion with a vector. For more information on andmore tensor

notation see [46].

Thus the optimization problem of maximizing the covari-

ance between and can be expressed as maximizing

the n-mode vector product between the four-dimensional co-

variance tensor and the vectors , , and . For

convenience, we include the constraints directly in the objec-

tive function and thus arrive at

(12)

Our modeling approach (i.e., our objective function) allows

for a meaningful interpretation of the results. Since we are

seeking linear spatial filters and , we are able to derive

corresponding spatial patterns for each of the measurement

modalities. By spatial patterns we refer to the columns of the

mixing matrices and (see (1) and (3)). For a given

Temporal Convolution of Bandpower in Source Space
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thereafter a linear unmixing is carried out. The following para-
graph illustrates why this course of action is not in line with the
generative model.
First of all, we express the channel-wise EEG band power

as a function of the assumed underlying sources and their
corresponding spatial patterns, i.e., the vector and the
matrix . Let us denote the multivariate and complex-valued
time-frequency representation of the EEG time series by

and its spectral power by . From here
on we will omit the time and frequency index for simplicity
of notation. Since is a vector-valued quantity, we have

and , with the spectra being
computed in each dimension of separately. Furthermore, we
have , where denotes the
transposed complex conjugate of and denotes
the diagonal of the square matrix . Then we have

(4)

where is the cross-spectrum matrix that depends on time and
frequency (parameters omitted). From the considerations above,
it follows that the spectral power at sensor is given by

(5)

where denotes the element at row and column in the
matrix and denotes the real part of its complex number
argument. The last equation shows that the spectral power com-
puted at channel is not just a linear superposition of the spec-
tral powers of all neural sources whose activity reaches that
channel. Instead, it is also biased by the cross-spectra between
the sources. Thus, we would like to point out that a linear combi-
nation of channel-wise computed band power (i.e., )
will in general not be able to recover what we are really inter-
ested in, namely the time course of the source band power (i.e.,

).
We further illustrate this point with a simple toy data example

given in Fig. 3. In this example we focus only the EEG part
of the multimodal problem. We assume that we have only two
recording channels (denoted by and ), that the data from
the other modality has been projected to a univariate time se-
ries (denoted by ), and that the coupling between the power of
the EEG and the time course of the other modality is not time
delayed. We simulated two sources ( and ), such that the
power time course of is correlated with . Thereafter we lin-
early mixed the time courses of and by means of a rotation
matrix, i.e., we mapped the coordinate system (source
space) to the coordinate system (sensor space) simply
by rotating the former. The scatter plot on the left side in the

figure shows the mixed raw data in sensor space, with the red
line corresponding to the direction of . This direction repre-
sents the target source, because only the power time course of
is coupled to . The black line in the scatter plot corresponds

to and can be regarded as a distractor. The scatter plot in the
middle depicts the data after channel-wise band power compu-
tation (here approximated by the variance within consecutive
time windows). The search space of the optimal weight vector
is only one dimensional in this example, because can be

parameterized by its angle with respect to one of the coordinate
axis (here the angle with respect to the axis). In the plot on the
right side, we show the covariance between the linear combina-
tion of channel-wise power (i.e., ) and as well as the
covariance between the power time course of a linear combina-
tion of channels (i.e., ) and . Both covariances are
shown as a function of the direction of . The direction corre-
sponding to is indicated by a red vertical line in this graph.
It can be seen that in this particular scenario the direction of
maximal covariance between and does not coincide
with the direction of the true source. In fact, the direction that
is found when optimizing is actually orthogonal to
the true source direction. The reason that optimizing
is suboptimal here is that computing the nonlinearity before the
spatial filtering step looses sign information. This in turn leads
astray the search for the true source.

V. MULTIMODAL SOURCE POWER CORRELATION

In this section we propose a novel method that is inherently
multimodal and specifically designed to invert the generative
model given in (1), (2), and (3). Our method assumes a set of
underlying sources whose activity is visible in both imaging
modalities. The coupling between these sources is maximized
and therefore we refer to our method as multimodal source
power correlation (mSPoC). The objective function we will de-
fine represents our novel approach to the problem. The way we
actually optimize the objective, however, is rather generic and
can in principle replaced by a different optimization procedure.
Thus, we will introduce our method in two separate sections,
of which the first is dedicated to the objective function and the
second to the way we chose to optimize it.

A. Objective Function
Specifically, our method seeks spatial filters , , and

a temporal filter that invert the generative model. The
non-linear step of band power computation is included in our
method but it is applied to the estimated EEG sources directly
and thereby avoids the pitfalls outlined in Section IV. In par-
ticular the filters shall maximize the covariance between the
projected y-signal and the convolved power of the projected
-signal. We denote the projected signals by

(6)

(7)

Since varies on a slower time scale than , we will assume
that the data can be chunked up into epochs with index . The in-
dividual epochs should be long enough to allow for a reasonable
estimate of spectral power of , yet short enough that changes

SourcesLinear Map
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Fig. 3. Illustration for the limitations of channel-wise band power representations. Left: Scatter plot of data from two sources that have been linearly mixed. The
original source directions are indicated with a red and black line. The band power of the source corresponding to the red direction (target source) is coupled to a
variable (not shown). Middle: The same data after applying a channel-wise nonlinearity (here variance as a proxy for band power). Note that information about
polarity (sign) is lost. Right: Covariance between and the band power of a projection of the data in the left scatter plot (blue line), and covariance between and
the projection of the data in the middle scatter plot (green line), both as a function of projection angle with respect to the axis. The vertical red line corresponds
to the direction of the target source. In this simple example the maximum covariance obtained by unmixing the nonlinearly transformed data does not lead to the
true source direction. Unmixing the data before applying the nonlinearity, however, allows to find the true source direction. See text for further explanation.

only very little within each individual epoch.2 The epoch-wise

power of is estimated by squaring and averaging over the

epoch, i.e.,

(8)

In accordance with (2), we model the coupling function a as

temporal filter on the power of . Thus we have

(9)

where denotes the th element of the vector and

the number of past epochs to be taken into account.

With the definitions given above, we can formulate the ob-
jective function that we want to maximize:

(10)

with respect to the following norm constraints

where and denote the with-signal covariance matrices

and denotes the auto-correlation matrix of computed over

all time lags that are considered. Together these constraints en-

sure that the objective function is bound between and 1.

2In most practical scenarios this setting is very natural, especially if and
are acquired with different sampling rates. A typical example would be con-

current EEG and NIRS, where half a second represents an appropriate epoch
length.

Without loss of generality, we assume to have zero mean.

We can then express in a concise way using tensor notation:

(11)

where denotes average over epochs, is the contraction

of the th dimension of an n-dimensional tensor via multiplica-

tion with a vector. For more information on andmore tensor

notation see [46].

Thus the optimization problem of maximizing the covari-

ance between and can be expressed as maximizing

the n-mode vector product between the four-dimensional co-

variance tensor and the vectors , , and . For

convenience, we include the constraints directly in the objec-

tive function and thus arrive at

(12)

Our modeling approach (i.e., our objective function) allows

for a meaningful interpretation of the results. Since we are

seeking linear spatial filters and , we are able to derive

corresponding spatial patterns for each of the measurement

modalities. By spatial patterns we refer to the columns of the

mixing matrices and (see (1) and (3)). For a given
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only very little within each individual epoch.2 The epoch-wise

power of is estimated by squaring and averaging over the

epoch, i.e.,

(8)

In accordance with (2), we model the coupling function a as

temporal filter on the power of . Thus we have

(9)

where denotes the th element of the vector and

the number of past epochs to be taken into account.

With the definitions given above, we can formulate the ob-
jective function that we want to maximize:

(10)

with respect to the following norm constraints

where and denote the with-signal covariance matrices

and denotes the auto-correlation matrix of computed over

all time lags that are considered. Together these constraints en-

sure that the objective function is bound between and 1.

2In most practical scenarios this setting is very natural, especially if and
are acquired with different sampling rates. A typical example would be con-

current EEG and NIRS, where half a second represents an appropriate epoch
length.

Without loss of generality, we assume to have zero mean.

We can then express in a concise way using tensor notation:

(11)

where denotes average over epochs, is the contraction

of the th dimension of an n-dimensional tensor via multiplica-

tion with a vector. For more information on andmore tensor

notation see [46].

Thus the optimization problem of maximizing the covari-

ance between and can be expressed as maximizing

the n-mode vector product between the four-dimensional co-

variance tensor and the vectors , , and . For

convenience, we include the constraints directly in the objec-

tive function and thus arrive at

(12)

Our modeling approach (i.e., our objective function) allows

for a meaningful interpretation of the results. Since we are

seeking linear spatial filters and , we are able to derive

corresponding spatial patterns for each of the measurement

modalities. By spatial patterns we refer to the columns of the

mixing matrices and (see (1) and (3)). For a given

subject to the constraints

Objective of mSPoC
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Fig. 2. Schematic comparison of two popular unsupervised analysis approaches to multimodal neuroimaging data, as well as our own novel approach. The three
processing streams are to be red from to top to bottom, i.e., multivariate measures of neural oscillations (EEG/MEG) and of hemodynamic responses (fMRI/NIRS)
come in at the top and are then subjected to several processing steps, such as a unmixing, the estimation of spectral features, and convolution with an HRF-like
function. Left: PCA/ICA based approaches usually perform a separate unmixing before bandpower estimation and convolution. The unmixing stage is uninformed
of the respective other modality. Middle: In approaches based on PLS/CCA there is bandpower extraction and convolution as preprocessing steps before the
unmixing state. Here the unmixing stage acknowledges the inherent multimodality of the data, yet the nonlinear preprocessing may hinder the linear unmixing. See
Sections III and IV for more details. Right: In this paper we propose an (iterative) approach to the ummixing that is multimodal and takes the nonlinear features of
the resulting components into account. See Section V for more details.

[30]–[34]. CCA (or equivalently partial least squares (PLS)

[35]) does not suffer from this limitation. It is inherently mul-

timodal and has become a successful tool for data integration.

Some examples of CCA based approaches are [36]–[38]. A

limitation of these integration approaches is that they are often

based on band power signals. When working with invasively

recorded signals as in e.g., [38] this is not a problem. However

computing the band power on EEG surface electrode time series

might loose important information, as explained in Section IV.

Multimodal neuroimaging of NIRS and EEG has witnessed

an increased interest in recent years with studies appearing

in various neuroscientific domains [15], [39]–[41], however
the development of necessary multivariate tools for multiple

sources has not caught up with this development to this date.

Taken together the state-of-the-art in multimodal data fusion

of non-invasive brain signals are based on either detailed

biophysical models, inherently unimodal approaches or band

power signals computed in sensor space. Each of these strate-

gies has limitations. Validation of biophysical models needs

technically challenging physiological studies such as [42]–[44].

Inherently unimodal methods require trading of one modality

against the other [21], [22] and different preprocessing parame-

ters might lead to very different fusion results [45]. And finally
the popular approach of analyzing band power time series

computed from single electrodes is suboptimal, as explained in
Section IV. Fig. 2 schematically compares two of the reviewed

popular approaches to the analysis of multimodal neuroimaging

data in the context of electrophysiological signals and hemo-

dynamical recordings, namely PCA/ICA and PLS/CCA based

approaches.

IV. LIMITATIONS OF BAND POWER REPRESENTATION

Inverting the generative model given in (1), (2), and (3) re-

quires the inversion the mixing matrices and (i.e., un-

mixing) and the estimation of EEG band power. The computa-

tion of band power is a nonlinear operation. Thus, we would like

to emphasize, the two processing steps (i) linear (un-)mixing

and (ii) band power computation do not commute. In many ap-

proaches reviewed in the previous sections, however, the EEG

band power is computed for each recording channel first and
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Additionally we add Gaussian distributed noise (zero mean and
unit variance), which is spatially as well as temporally uncor-
related. The noise vector is denoted by . These three con-
stituents (source signal, background activity and sensor noise)
are individually normalized such that the corresponding full
data matrices (e.g., and as well
as defined accordingly) have unit ‘global’ power, i.e., el-
ement-wise squaring of all the entries in and averaging the
result across time and channels yields 1. Thus, the signal and the
two noise types have equal power before they are linearly com-
bined to constitute the simulated EEG. Finally, the normalized
matrices are combined according to parameterized equation

(17)

The parameters and control the relative weightings: gov-
erns the ratio between the signals of the background sources and
the sensor noise, while the signal-to-noise ratio is given by .
The value of is fixed to 0.1 for all simulations and the value
of is varied. The number of channels of the simulated EEG is
set to 64.
The simulated NIRS consists of 50 slow oscillatory back-

ground source signals and one target source signal that were
created a follows. For the background sources, we filter white
noise with a 1 Hz low-pass filter. Thereafter, we convolve the
slowly varying noise with a hemodynamic response function
(HRF) which was generated using the SPM package with
default parameters. The target NIRS source signal is created
by convolving the power time course of the target EEG source
with the same HRF that was used for the background NIRS
sources. NIRS source patterns are modeled as 2D Gaussian
activity profiles. After patterns and time courses of the target
and background NIRS are created, the artificial NIRS data
is then projected to measurement space via the same SNR
parameterized linear model that was used for the artificial
EEG (see (17)).
We illustrate the performance and robustness of ourmethod in

comparison to CCA. We chose CCA as a the best representative
for a class of methods that yield linear projections and acts
on channel-wise band power estimates. We consider CCA
to be most appropriate contestant to mSPoC because it also
acknowledges the multimodality of the data analysis problem,
i.e., it assumes an underlying process that is reflected in
both imaging modalities. Here we employ a version of CCA
that is also able to account for a temporal filtering of the
projection of the EEG power, namely convolutive CCA [33],
[34].
In our simulations we vary the SNR of the artificial data.

For a given value of we generate 20 minutes of data. mSPoC
and CCA are trained on the first half of the data (i.e., the training
data) and the resulting components ( , , and ) are then
applied to the second half of the data (i.e., the test data).Wemea-
sure the performance of the two methods as the correlation be-
tween the convolved power of the estimated EEG source and the
time course of the estimated NIRS source, i.e.,
(see (8) and (7)), on the test data. Thus, the reported correla-
tions are obtained exclusively from the test data. This value
indicates the ability of the methods to extract the coupled dy-

Fig. 4. Obtained correlations (medians over 250 repetitions) as a function of
signal-to-noise ratio for simulated EEG and NIRS data. Black stars indicate sig-
nificant differences in performance .

namics in the data and generalize beyond the training data. The
procedure is repeated 250 times at each SNR level, each time
with newly generated data, leading to a distribution of correla-
tion values for each value of . We compare the distributions
using the Mann-Whitney U test statistic.

B. Experiments

The experimental data we apply mSPoC and CCA to stems
from an experiment that featured simultaneous EEG and NIRS
recordings. The study is described in detail in Fazli et al. [15].
In this section we briefly summarize the experimental design,
data acquisition and preprocessing steps.
1) Subjects and Experimental Design: 14 healthy,

right-handed volunteers participated in an experiment which
consisted of 2 blocks of motor execution by means of hand
gripping. Subjects were asked to close and open their hands
with a frequency of 1 Hz for 4 seconds per trial followed by a
break of . An arrow on a display indicated whether
to use their left or right hand. They performed 24 trials per
condition and block in randomized order resulting in 48 trials
per condition.
2) Data Acquisition: During the task EEG and NIRS was si-

multaneous recorded. With the NIRS-System (NIRScout 8–16,
NIRx Medizintechnik GmbH, Germany) we measured 24 chan-
nels located mostly around the motor areas as well as frontal
and parietal areas at sampling frequency.
EEGmeasurement (BrainAmp by Brain Products,Munich, Ger-
many) was performed using 37 Ag/AgCl electrodes with a sam-
pling rate of and downsampled to 100 Hz by
means of a Chebyshev type II digital filter. The optical probes
are constructed such that they fit into the ring of standard elec-
trodes allowing measurements at the same location for both in-
strumentations. Sensors of both systems were integrated into a
standard EEG cap, resulting in distances between light source
and light detectors between 2–3 centimeters.
3) Data Analysis: Raw NIRS data was transformed to con-

centration changes of HbO and HbR with the modified Beer-
Lambert law [48], [49] and band-pass filtered leaving frequen-
cies between 0.025 and 0.25 Hz where the hemodynamic re-
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Fig. 5. Cross-validated correlations between EEG and NIRS (left HbR, right HbO) in the motor execution task for each subject. Results of mSPoC and CCA are

compared. Each point corresponds to the correlations obtained for the first set of , , and from a single subject by CCA ( -axis) and mSPoC ( -axis).

sponse is expected. EEG data was restricted to a subject spe-

cific frequency band that were used by Fazli et al. [15]. For
the vast majority of subjects it was a narrow sub-band of the

alpha or beta band range, which is known to reveal responses

for motor execution [50]. Artifactual NIRS channels were ex-

cluded manually via visual inspection of the raw signals and

the power spectrum. The band-pass filtered NIRS signals were
sub-sampled such that their new sampling rate was 1 Hz.

Noisy EEG channels we identified and removed using a vari-
ance criterion. The EEG data was divided up into non-over-

lapping epochs of 1 second length. The chosen epoch length

was not the result of an optimization procedure. Rather it was

determined on the basis of a compromise between being long

enough to contain a sufficient amount of data for within-epoch
power/covariance estimation and being short enough to cap-

ture the dynamics of spectral modulations across epochs. For

the mSPoC analysis we computed EEG covariance matrices

within each epoch, while for the CCA analysis a channel- and

epoch-wise Fourier transformation was conducted in order to

extract the band power of interest. This yielded a time series of

EEG covariance matrices for mSPoC and a multivariate power

time series for CCA. After this procedure the temporal resolu-

tion of both input data sequences was reduced to 1 sample per

second.

In order to avoid over-fitting and to test the generalization
ability of the obtained mSPoC and CCA components we em-

ploy a chronological 5-fold cross-validation [51]. The input data

is chronologically split up into 5 parts, which are called folds.
The algorithms are then trained on 4 folds and the resulting com-

ponents are applied to the remaining 5th fold. This procedure is

repeated five times, each time with a different test fold. Finally,
we report correlation values that are averaged across folds.

VII. RESULTS

A. Simulations

Fig. 4 shows the results obtained from the simulations in

which we test the robustness of our approach with respect to

noise in the data. As can be expected, the obtained correlations

of the extracted components falls off with a decrease in SNR

(lower values of ), meaning that mSPoC and CCA both fail to

extract the underlying process that of course still present. How-

ever, we can see that mSPoC is en par with CCA in high SNR

regimes and significantly outperforms CCA in medium to lower
SNR regimes, suggesting that SPoC is much more robust with

respect to noise.

We would like to point out, that the reported correlations are

obtained on (unseen) test data. Therefor the correlations are

likely to be smaller when compared to those on the training

data. However, these values represent the generalization ability

beyond training data. By definition, CCA obtains maximal cor-
relations between two multivariate data sets, which is not guar-

antied for mSPoC. However, the two algorithms work on dif-

ferent representations of the data and therefore mSPoC still has

the possibility to outperform CCA.

The results of these simulations are promising with respect to

real data, because the SNR in actual recordings is likely to be

small.

B. Experiment
Fig. 5 shows the results of applying mSPoC and CCA to the

simultaneously measured EEG and NIRS data of 14 subjects.

We plot the cross-validated correlation values of the first set of
components for each subject in a scatter plot. This way one can

easily compare the performance of mSPoC ( -axis) and CCA

( -axis) for each subject (single point in the scatter plot). Each

point above the diagonal indicates that higher correlations were

found with mSPoC as compared to CCA.

The scatter plots in Fig. 5 indicate that mSPoC achieves

higher correlations in both analysis settings, i.e., when the

convolved band power of EEG components is correlated with

NIRS components (HbR and HbO). In Fig. 6 we show the spa-

tial patterns of the extracted components of mSPoC and CCA

for a representative subset of subjects. The way we obtained the

spatial patterns for the filters and is similar. The patterns

for mSPoC were obtained as explained in Section V-A, (13) for

EEG and NIRS. For CCA, NIRS patterns were also obtained
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‣ Hybrid BCIs: Combining EEG and NIRS

‣ Do multimodal setups increase information transfer rates? 

‣ Cleaning artifacts in multimodal recordings

‣ PCA: simple but efficient 

‣ Decoding neural bandpower from fMRI

‣ Complex spatiotemporal filters for optimal decoding 

‣Multisubject Analyses

‣ Applications of multimodal methods to hyperscanning
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EEG and NIRS carry complementary information 

Do multimodal BCIs improve information transfer?
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Linear Discriminant Analysis (LDA) trained on each modality

Meta-LDA classifier trained on outputs of single modalities
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





Figure 2: Flowchart of the first step of the cross-validation procedure: The EEG and
NIRS data is split into 7/8 training data and 1/8 test data. First an individual LDA
classifier is computed for EEG, [HbO] and [HbR]. Then a meta-classifier is estimated for
optimally combining the three LDA outputs. All LDA classifiers are then applied to the
test set (dotted green line) and a test loss computed. The procedure is repeated for 8
chronological splits.

terms of conditional entropies of random variables X and Y :

I(X;Y ) = H(X)�H(X|Y ) = H(Y )�H(Y |X) (3)

The conditional entropy H(X|Y ) quantifies the remaining entropy of X,
after the value of Y is known. If H(X|Y ) = H(X), then I(X;Y ) = 0: the
variables are independent. On the other hand, if X and Y are identical, then
H(X|Y ) = 0 and hence I(X;Y ) = H(X). I(X;Y ) is symmetric and its
values are in the range of 0 and 1: I(X;Y ) = I(Y ;X) 2 [0; 1] (MacKay,
2002). To examine the degree of independence between the NIRS and EEG-
based classifier outputs, we restrict their outputs to values 0 and 1 and
estimate their mutual information.

To further investigate, whether mostly the same trials are classified wrongly
by EEG and by NIRS, we form two groups of trials: one group consists only
of trials, where EEG classification was correct, while in the other group only
misclassified trials are included. By comparing the NIRS classification of
each of these groups to the mean classification of both groups, we can ex-
amine to which extent the NIRS classification results resemble those of the
EEG.

8

Crossvalidated Analysis Workflow
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Figure 7: Scatter plot comparing classification accuracies and significance values of various
combinations of NIRS and EEG for real and motor imagery. The x-axis depicts the EEG
classification accuracy. The y-axes depict the classification accuracy of the combinations:
EEG + [HbO], EEG + [HbR] and EEG + [HbO] + [HbR] (from left to right).

an average 5% classification accuracy increase across all subjects. This in-
crease is highly significant (p < 0.01) and the combination scores higher or
equal classification rates for 13 out of 14 subjects. Interestingly, two subjects
(VPeaa and VPeam) with very bad performance in EEG-BCI were much bet-
ter classifyable when EEG/NIRS was used (with rates of 81% and 80.5%, re-
spectively). The two other subjects with very low EEG performance, namely
VPeac and VPeal, did not show further improvements.

Figure 8 shows the relation of the classification performance of the indi-
vidual measurement methods (EEG, [HbO] and [HbR]) in relation to their
mutual information content (I(EEG; [HbO]) and I(EEG; [HbR]). The left
column shows these results for executed movements, while the left column
shows the results for the motor imagery. Generally speaking the mutual in-
formation content rises with higher classification accuracy for all considered
methods. If for a given subject method X scores a low classification accuracy,

14

Fazli et al., Neuroimage, 2011
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‣EEG and NIRS carry complementary information

‣Combining these two modalities leads to improved BCI 
performances in over 90% of the subjects tested
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Figure 1  Example of combined fMRI experiments with neurophysiological recording 

A: Upper column shows anatomical images and the multi‐channel electrode used in this study.  Blue 

arrow represents positions of recording sites on the electrode, 7 out of 10 channels are seen. Lower 

column is the BOLD responses (P<0.001) tested by full‐field visual stimulation before collecting 

spontaneous activity. Note that the electrode is MRI compatible and almost no distortion to activation 

map.  B: Example of spontaneous fluctuation of the neural signal in different frequency bands. δ/θ, α, β, 

γL, γ, γH, γVH, MUA (Multi‐Unit Activity) correspond respectively to 1‐8, 8‐12, 12‐24, 24‐40, 40‐60, 60‐

100, 120‐250, 1000‐3000Hz.  Spikes were extracted by thresholding high‐passed signal with amplitude.  

Arrows represent synchronous activation in gamma and spiking range. C: Example of spontaneous 

fluctuation of BOLD.  Upper trace shows the average of BOLD fluctuations from all voxels seen below. 
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Figure 1: Schematic workflow of online data acquisition and preprocessing: electrophys-
iological data is cleaned by custom-made hardware, then digitized and transferred via
network connection to the analysis computer, where additional software cleaning is per-
formed; the gradient signal used for cleaning acts as the common reference timeline for
all signals; fMRI data is reconstructed online and transferred to the analysis computer,
timeseries of voxels in ROI are extracted and synchronized with the electrophysiological
signal; every 4 seconds, one fmri volume and one batch of electrophysiological data be ac-
quired; chemical analysis has been done o✏ine; the temporal resolution however is much
lower, every 6 minutes a sample is aqcuired;

2.1. Visual Stimulation

Visual stimuli were presented binocularly using a gamma-corrected SVGA
fiber-optic system (AVOTEC, Silent Vision, USA) with a resolution of 640
x 480 voxels and a frame rate of 60 Hz. Hard contact lenses were inserted
to bring the plane of stimulus into focus (hard PMMA lenses, Wöhlk, Kiel,
Germany). Our stimulation protocol consisted of 32s blocks of visual stimu-
lation using a rotating polar checkerboard stimulus 10�x10� in size followed
by a 32s blank period of isoluminant gray. Checkerboard rotation direction
was reversed every 8s to minimize adaptation. The drugs were applied after
the fourth repetition of an on-o↵ sequence; the injection lasted between 2 - 3
minutes, and the duration of the entire scan was 39.5 minutes corresponding
to 37 blocks of visual stimulation.

2.2. fMRI Data

Images were acquired using a vertical 4.7 Tesla Bruker BioSpec scan-
ner with 40 cm diameter bore (Bruker Medical, Ettlingen, Germany). For
functional imaging custom-made radio frequency surface coils with an in-
ner diameter of 30mm were used as transceivers and were positioned around
the recording chamber. We used an 8-shot Gradient Echo (GE) echo-planar
imaging (EPI) sequence with a field of view (FOV) of 76.8 to 48.0mm, a
slice thickness of 1mm and in-plane resolution of 0.3⇥ 0.375mm2, matrix of

4

Integrated recording and artifact removal system

Scanner gradients can be used for signal synchronization



Scanner Gradient Artifact Removal 
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Empirical Criteria for Artifact Removal

86

200 210 220 230 240 250
1010

1011

1012

1013

1014 Eigenvalues

0 1000 2000 3000 4000
106

108

1010

Po
w

er
0 1000 2000 3000 4000

106

108

1010

Po
w

er
Frequency [Hz]

A B

200 210 220 230 240 250
1010

1011

1012

1013

1014 Eigenvalues

0 1000 2000 3000 4000
106

108

1010

Po
w

er
0 1000 2000 3000 4000

106

108

1010

Po
w

er
Frequency [Hz]

A B



Summary
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‣Multimodal recordings suffer from artifacts

‣Modeling the artifact is difficult

‣Reasonable Assumption: artifact has large variance

‣Use PCA to remove large variance components



Decoding Neural Information from fMRI Signals



Standard Model of Neurovascular Coupling
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Most analyses model temporal dynamics of neurovascular coupling
using a canonical Hemodynamic Response Function (HRF)

5 10 15 20
Temporal Delay τ [s]

Neural Impulse Hemodynamic Response Function 

Peak

Undershoot

Implications
‣ Temporal dynamics are the same for all voxels
‣ Temporal dynamics are separable from spatial dynamics



When Canonical HRF Models Fail
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3x3mm

Blood Vessels in Macaque Visual Cortex
(with kind permission of A.-L. Keller, MPI Tübingen)

Neural Impulse

Hemodynamic
Response



Is Spatiotemporal HRF Variability Neural Information?
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If tkCCA predicts neural signals better 

than canonical HRF (i.e. separable) models

➡ then deviations from the canonical HRF model 

carry neural information



Non-separable and separable HRFs
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Example transient dynamics
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Simulations
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Simulations: Non-separable and separable HRFs
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Figure 1 

 

 

Figure 1  Example of combined fMRI experiments with neurophysiological recording 

A: Upper column shows anatomical images and the multi‐channel electrode used in this study.  Blue 

arrow represents positions of recording sites on the electrode, 7 out of 10 channels are seen. Lower 

column is the BOLD responses (P<0.001) tested by full‐field visual stimulation before collecting 

spontaneous activity. Note that the electrode is MRI compatible and almost no distortion to activation 

map.  B: Example of spontaneous fluctuation of the neural signal in different frequency bands. δ/θ, α, β, 

γL, γ, γH, γVH, MUA (Multi‐Unit Activity) correspond respectively to 1‐8, 8‐12, 12‐24, 24‐40, 40‐60, 60‐

100, 120‐250, 1000‐3000Hz.  Spikes were extracted by thresholding high‐passed signal with amplitude.  

Arrows represent synchronous activation in gamma and spiking range. C: Example of spontaneous 

fluctuation of BOLD.  Upper trace shows the average of BOLD fluctuations from all voxels seen below. 
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1. Data Extraction

Decoding Neural Information: Workflow
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Predicting Neural Amplitude from fMRI
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Non-Separable Spatiotemporal deconvolution



Temporal Dynamics Extracted 
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TkCCA vs Canonical HRF Models
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TkCCA vs Canonical HRF Models
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Optimal Preprocessing for fMRI Decoding 
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‣ Temporal smoothing

‣ Can we decode neural signals faster than HRF lowpass?

‣ Spatial smoothing 

‣ Does it help for decoding neural information?

‣ Searchlight decoding
‣ What is the best searchlight radius?



Effects of Spatial and Temporal Smoothing
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Effect of Searchlight Radius 
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Searchlight radii < 5mm might loose information 
Searchlight radii > 8mm add redundant information



How Much Neural Information is in fMRI signals? 



Mutual Information Estimates 
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Gaussian approximation (cheap and robust)
fits the (bias-corrected) plugin MI estimate well
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Mutual Information Estimates: EEG-fMRI  
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1. Optimal parameters are the same as for intracranial data
2. Mutual Information around 0.5 bits
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Summary
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‣There is more information in fMRI than HRF models assume

‣Optimal parameters for extracting this information:
‣ 4 - 8 mm searchlight radius

‣ More includes redundant information
‣ Less misses information

‣ Temporal smoothing kernel > 15s
‣ No spatial smoothing

‣An fMRI volume of 5mm radius and 20s duration                                  
contains 0.5-0.8 bits of neural information



Multimodal Analyses for Hyperscanning



Multimodal Analyses for Hyperscanning

109

‣ For many paradigms we do not have stimulus regressors
‣Complex Movie stimuli
‣Resting state data

‣We can treat subjects as modalities 

‣ If multiple subjects are exposed to the same stimulus ...

‣ ... neural activation shared across subjects reflects stimulus 
(see also [Hasson et al. 2009])



Hyperscanning
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Common Activation Patterns
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Common activation pattern of 25 
subjects while watching the same movie

Gaebler et al, submitted



Common Activation Patterns

112Gaebler et al, submitted

0 0.05 0.1 0.15 0.2

gestures
object
actions
gaze
body
biological
videos
visual
perception
motion

Correlation
0 0.02 0.04 0.06

self
language
nonverbal
autobiographical
semantic
story
syntactic
words
comprehension
sentence

Correlation

0 0.05 0.1 0.15 0.2

gestures
object
actions
gaze
body
biological
videos
visual
perception
motion

Correlation
0 0.02 0.04 0.06

self
language
nonverbal
autobiographical
semantic
story
syntactic
words
comprehension
sentence

Correlation

Correlations with psychological concepts stored in 
http://neurosynth.org (Yarkoni et al. Nat. Methods, 2011)

http://neurosynth.org
http://neurosynth.org


Summary

113

‣Each subject is treated as a separate modality

‣We can use multimodal analyses for hyperscanning
‣ Multivariate extension of intersubject synchronization studies
‣ Multivariate has higher SNR than mass-univariate
‣ Allows to study networks rather than single voxels

‣Multiple subjects experiencing the same stimulus
‣ shared brain activity is likely to be due to the stimulus
‣ this allows to analyze complex stimuli without regressors



Applications
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‣ Hybrid BCIs: Combining EEG and NIRS

‣ Multimodal setups increase BCI information transfer rates

‣ Cleaning artifacts in multimodal recordings

‣ PCA: simple but efficient 

‣ Decoding neural bandpower from fMRI

‣ Canonical HRF models might miss information

‣Multisubject Analyses

‣ More sensitive than mass-univariate intersubject correlations
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