Predicting parking occupancy in a sensor-enabled smart city

Dr. Vassileios Tsetsos CTO, Mobics Ltd

About Mobics

- Founded in 2006 as a University of Athens Spin-off (Dept. of Informatics and Telecommunications)
- Mobics is a research-intensive SME with a goal to develop and commercialize science-based innovations in the ICT domain
 - E.g., machine vision for crisis management and sports, sensor information fusion for smart infrastructures
- Quite active in national and EU R&D projects

SmartSantander: a large smart city testbed

- A FIRE project that ended with "excellent progress" (as assessed by the EC) in 2013
- IoT testbeds in 4 sites, with Santander (Spain) being the largest
 - ~20.000 connected sensors of various types
 - ~350 on-street parking sensors
- Main development: a middleware layer that enables experimentation and further development of end-user services
- Mobics joined that project through an Open Call for experiments
 - Deployed mobile and Web ITS applications for the citizens with an emphasis on parking occupancy prediction

Predicting parking occupancy

Wireless parking sensors were installed in some city blocks

Mobics team (including NTUA transportation researchers):

- performed segmentation of the monitored parking areas
- collected a massive amount of real-world data through SmartSantander middleware
 - Readings every 1 minute during the 6 months of the experiment
- used part of them as a training dataset to train a neural network
- evaluated the prediction accuracy of the model with the collected data
- visualized the results through Web and mobile applications

What the user sees

"High variability in average parking occupancy for Region I <i>in the morning and afternoon"

"High variability in average parking occupancy for Region I <i>in the morning and afternoon"

"High variability in average parking occupancy for Region I <i>in the morning and afternoon"

"High variability in average parking occupancy for Region I <i>in the morning and afternoon"

mobics

"High variability in average parking occupancy for Region I <i>in the morning and afternoon"

mobics

"High variability in average parking 6.0 occupancy for Region I in the 5.0 morning and afternoon" Weekday ---- Weekend 1.2 1.6 Survival Probability .4 .6 Sunday Saturday 1.1 14 30 60 90 150 180 210 1 6 6 8 8 8 6 8 8 over Rate High Occupancy Period 0.6 Low Occupancy Period ø ival Probability 0.4 0.6 -Region I: Occupancy 0.5 0.2 ---- Region I: Turnover 0.4 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 150 180 210 240 "All regions: differences in the mean occupancy and turnover rate between 120 360 Duration

weekdays and weekends"

mobics

Region II

480

600

720

Region 2 Region 2

Our overall experience

- Easily accessible data through the developed middleware
- Verification of faults in sensor values was hard
- Several performance problems were identified in our system, due to the big amount of data
- We could not afford the cost for such experimentation by ourselves
 - We would probably abandon the idea, given the research nature of the application and its unknown market potential

The added business value

- We were able to validate new algorithms and applications with real data
- We came up with a new service offering
 - Integration of parking prediction to multi-modal route planning (car + public means)
 - "Locate the best available parking area in the city center perimeter, from which you can easily reach your destination by public transport"
- In contact with sensor technology vendors to investigate joint exploitation

Final remarks

- We have two more algorithms that we cannot test adequately due to lack of open data
 - Fault diagnosis for smart infrastructures (ships)
 - Proactive re-routing of public transport commuters based on bus locations and delays
- Open data can help SMEs to:
 - rapidly prototype and decide on the potential of new ventures
 - validate novel algorithms & services (quality check)
 - stress test their systems (performance check)
 - get a first "client" reference and marketing material
- The ideas are out there... let the data join them!

Thank you for your attention!

Users not interested in our system... they will park anyway!

Vassileios Tsetsos <u>btsetsos@mobics.gr</u>

