Intrinsic bounds on the Benjamini Hochberg procedure

Pierre Neuvial^{1,2}

¹Laboratoire de Probabilités et Modèles Aléatoires — Paris VII University ²Bioinformatics group — Institut Curie, Paris

MSHT Workshop — May 15, 2007

Goal : investigate two different MSHT problems

D.L. Donoho and J. Jin. Higher criticism for detecting sparse heterogeneous mixtures.

The Annals of Statistics, 32(3) :962–994, 2004.

Z. Chi. On the performance of FDR control : constraints and a partial solution.

The Annals of Statistics, to appear.

Why study these MSHT problems?

- highlight the limitations of the BH procedure for these problems
- connect these limitations to the behaviour of the *p*-value distribution near 0
- quantify these limitations in practical applications

Outline

Introduction

- Context
- FDR control
- Intrinsic bounds
- 2 Criticality
 - Tails and criticality
 - Studentised statistics
 - Detection boundaries
 - Tails and detection boundary
 - Detection boundaries and criticality

Outline

Introduction

- Context
- FDR control
- Intrinsic bounds
- Criticality
 - Tails and criticality
 - Studentised statistics
 - Detection boundaries
 - Tails and detection boundary
 - Detection boundaries and criticality

Motivation : DNA microarray analysis

Example : molecular analysis of cancer

DNA microarrays

High-throughput measurement of genes activity :

- m genes
- *n* samples (microarrays)
- *n* << *m*

Typical question : differential analysis of normal vs tumour samples

detection Do some genes behave differently between normal and tumour samples ?

multiple comparison Which of them?

Such genes will be called differentially expressed (DE) genes

Mixture model

Settings

 $(X_i, Y_i)_{1 \le i \le m}$ are identically independently distributed, with $Y_i \sim \mathcal{B}(\varepsilon)$ and

$$egin{aligned} X_i | Y_i = 1 \sim F^1 \ X_i | Y_i = 0 \sim F^0 \end{aligned}$$

- We observe a realisation of $(X_i)_{1 \leq i \leq m}$
- $(Y_i)_{1 \leq i \leq m}$ is hidden

Illustration from differential analysis of microarrays

- ε : proportion of DE genes
- $Y_i = \mathbf{1}_{\text{gene } i \text{ is DE}}$
- X_i : test statistic for gene i (built up from n samples)

6/24

Multiple comparison (MC) and detection (D) problems

Detection problem

Is ε equal to 0?

$$\begin{cases} \mathcal{H}_0^D: \quad (X_i)_i \stackrel{\text{iid}}{\sim} \mathcal{F}^0\\ \mathcal{H}_1^D: \quad (X_i)_i \stackrel{\text{iid}}{\sim} (1-\varepsilon)\mathcal{F}^0 + \varepsilon \mathcal{F}^1 \end{cases}$$

a binary testing problem

Multiple comparison problem

Which X_i come from F^1 ?

$$egin{cases} \mathcal{H}_0^{MC}: & X_i\sim F^0 \ \mathcal{H}_1^{MC}: & X_i\sim F^1 \end{cases}$$

a simultaneous test of m hypotheses

P. Neuvial (Inst. Curie & Univ. Paris VII)

Intrinsic bounds on the BH procedure

MSHT Workshop — 07/05/15 7 / 24

FDR for the multiple comparison problem

Possible outputs of a multiple comparison procedure

	accepted	rejected	
null	U	V	$m(1-\varepsilon)$
non null	S	Т	mε
	m-R	R	m

False Discovery Proportion

$$FDP = V/R$$

False Discovery Rate

$$FDR = E(FDP)$$

expected fraction of false discoveries

P. Neuvial (Inst. Curie & Univ. Paris VII)

Intrinsic bounds on the BH procedure

FDR for the multiple comparison problem

Possible outputs of a multiple comparison procedure

	accepted	rejected	
null	U	V	$m(1-\varepsilon)$
non null	S	Т	mε
	<i>m</i> – <i>R</i>	R	m

False Discovery Proportion

$$FDP = V/R$$

False Discovery Rate

$$FDR = E(FDP)$$

expected fraction of false discoveries

P. Neuvial (Inst. Curie & Univ. Paris VII)

Intrinsic bounds on the BH procedure

MSHT Workshop — 07/05/15 8 / 24

BH procedure for the multiple comparison problem

A step-up method providing strong control of the FDR (Benjamini & Hochberg, 1995)

 $P_i = 1 - F^0(X_i)$

The BH procedure at level α

2

Sort the *m p*-values : $P_{(1)} \leq \ldots \leq P_{(m)}$

Calculate
$$\widehat{I} = Max \{k | P_{(k)} \leq \alpha \frac{k}{m}\}$$

Reject all *p*-values smaller than $= \alpha \hat{l}/m$

Criticality of the multiple comparison problem Chi (2007), Chi and Tan (2007)

P. Neuvial (Inst. Curie & Univ. Paris VII)

Intrinsic bounds on the BH procedure

MSHT Workshop — 07/05/15

Intrinsic bounds

Gaussian detection boundaries

BH detection boundary for sparse Gaussian mixtures

Donoho and Jin (2004)

BH^D : BH as a detection procedure

- Reject \mathcal{H}_0^D iff BH (α) rejects at least one hypothesis
- This procedure has level at most α for the detection problem

Criticality

Outline

- Context
- FDR control
- Intrinsic bounds

- Criticality
- Tails and criticality
- Studentised statistics
- Detection boundaries
 - Tails and detection boundary
 - Detection boundaries and criticality

Tails and criticality

Criticality of the multiple comparison problem

Definition and interpretation

P. Neuvial (Inst. Curie & Univ. Paris VII)

Intrinsic bounds on the BH procedure

MSHT Workshop — 07/05/15 13 / 24

Criticality of the multiple comparison problem

Properties and relationship to the likelihood ratio

Properties (Chi, 2007 and Chi and Tan, 2007)

For $\alpha < \alpha^{\star}$:

- the number of correct rejections made by BH (α) is asymptotically bounded as $m \to +\infty$
- BH (α) has asymptotically null power as $m \to +\infty$

Relationship to g^1 and $\frac{f^1}{f^0}$

•
$$\alpha^* = \frac{1}{g(0)} = \frac{1}{\varepsilon g^1(0) + 1 - \varepsilon}$$

• $g^1(u) = \frac{f^1}{f^0} (q^0(u))$, where $q^0(u) = (F^0)^{-1} (1 - u)$

• criticality occurs iff $\frac{f^1}{f^0}$ has a finite limit at $+\infty$

Criticality of the multiple comparison problem

Properties and relationship to the likelihood ratio

Properties (Chi, 2007 and Chi and Tan, 2007)

For $\alpha < \alpha^{\star}$:

- the number of correct rejections made by BH (α) is asymptotically bounded as $m \to +\infty$
- BH (α) has asymptotically null power as $m \to +\infty$

Relationship to g^1 and $\frac{f^1}{f^0}$

•
$$\alpha^{\star} = \frac{1}{g(0)} = \frac{1}{\varepsilon g^1(0) + 1 - \varepsilon}$$

•
$$g^{1}(u) = \frac{f^{1}}{f^{0}} (q^{0}(u))$$
, where $q^{0}(u) = (F^{0})^{-1} (1-u)$

• criticality occurs iff $\frac{f^1}{f^0}$ has a finite limit at $+\infty$

Criticality

Tails and criticality

Gaussian multiple comparison problem

A simple example with no criticality phenomenon

Laplace multiple comparison problem

A simple example with a criticality phenomenon

Laplace (double exponential) test statistics

$$\begin{cases} \mathcal{H}_0^{MC} : X_i \sim \mathcal{E}^0 & f^0(t) = \frac{1}{2} e^{-|t|} \\ \mathcal{H}_1^{MC} : X_i \sim \mathcal{E}^\mu & f^1(t) = \frac{1}{2} e^{-|t-\mu|} \end{cases}$$

Student multiple comparison problem

A problem of practical interest

Likelihood Ratio

$$\frac{t^{1}}{t_{0}}(t) = \exp\left[-\frac{\delta^{2}}{2} \frac{1}{1+\frac{t^{2}}{k}}\right] \frac{Hh_{k}\left(-\frac{\delta t}{\sqrt{k+t^{2}}}\right)}{Hh_{k}(0)}$$

with

$$Hh_{k}(z) = \int_{0}^{+\infty} \frac{x^{k}}{k!} e^{-\frac{1}{2}(x+z)^{2}} dx$$

Parameters of the model

- δ : non-centrality parameter
- k : number of degrees of freedom

P. Neuvial (Inst. Curie & Univ. Paris VII)

Intrinsic bounds on the BH procedure

MSHT Workshop — 07/05/15 17 / 24

Critical value of the Student MC problem

Criticality

•
$$\alpha^{\star} = \frac{1}{\epsilon \frac{Hh_{k}(-\delta)}{Hh_{k}(0)} + (1-\epsilon)}$$

• BH (α) has asymptotically null power for $\alpha < \alpha^{\star}$

Whan can we do then?

- k is an increasing function of sample size
- for fixed $\delta > 0$, $\lim_{k \to +\infty} \frac{Hh_k(-\delta)}{Hh_k(0)} = +\infty$

Theorem (Criticality vanishes as sample size increases)

$$\begin{cases} \mathcal{H}_0^{MC} : & X_i \sim t_0(k) \\ \mathcal{H}_1^{MC} : & X_i \sim t_\delta(k) \end{cases}$$

Let $k = k_m \to +\infty$ as $m \to +\infty$, then $\lim_{m \to +\infty} \alpha_m^{\star} = 0$

Outline

- Context
- FDR control
- Intrinsic bounds
- 2 Criticality
 - Tails and criticality
 - Studentised statistics
 - Detection boundaries
 - Tails and detection boundary
 - Detection boundaries and criticality

Detecting sparse heterogeneous mixtures

Detection problem

$$\begin{cases} \mathcal{H}_0^D: \quad (X_i)_i \stackrel{\text{iid}}{\sim} F_m^0 \\ \mathcal{H}_1^D: \quad (X_i)_i \stackrel{\text{iid}}{\sim} (1 - \varepsilon_m) F_m^0 + \varepsilon_m F_m^1 \end{cases}$$

• *p*-values :
$$P_i = 1 - F_m^0(X_i)$$

• g_m : density of the *p*-values under \mathcal{H}_1^D

Example : location problems

•
$$F_m^1(t) = F_m^0(t - \mu_m)$$

•
$$\mu_m \rightarrow +\infty, \epsilon_m \rightarrow 0$$

For which $(\mu_m, \epsilon_m) \mathcal{H}^D_0$ is asymptotically correctly rejected by a given detection procedure ?

Detection boundary of the BH^D procedure

Connection with the *p*-value distribution

 $BH_{\alpha_m}^D$: the BH procedure for detection, with target *FDR* level α_m .

Theorem (Detection boundary of the BH^D procedure)

• Let $\alpha_m \to 0$. For each *m*, BH^D_{α_m} has level at most α_m , and

$$\lim_{m \to +\infty} \mathbb{P}_{\mathcal{H}_0^D} \left(\mathsf{BH}_{\alpha_m}^D \text{ rejects } \mathcal{H}_0^D \right) = \mathbf{0}$$

2 Let $\alpha_m \to 0$ slowly enough, if $\lim_{m \to +\infty} g_m(\frac{1}{m}) = +\infty$, then $BH^D_{\alpha_m}$ has asymptotically full power for separating \mathcal{H}^D_1 from \mathcal{H}^D_0 :

$$\lim_{n \to +\infty} \mathbb{P}_{\mathcal{H}_1^D} \left(\mathsf{BH}_{\alpha_m}^D \text{ rejects } \mathcal{H}_0^D \right) = 1$$

Application to the Gaussian detection problem

Gaussian detection boundaries (Donoho and Jin, 2004)

$$\rho^{\star}(\beta) = \begin{cases} \beta - \frac{1}{2} & \text{if } 1/2 < \beta \leqslant 3/4 \\ (1 - \sqrt{1 - \beta})^2 & \text{if } 3/4 < \beta < 1 \end{cases} \text{ (optimal)}$$
$$\rho^{\mathsf{BH}}(\beta) = (1 - \sqrt{1 - \beta})^2 \text{ for } 1/2 < \beta < 1 \qquad (\mathsf{BH})$$

Application to the Laplace detection problem

Laplace Detection boundaries (Donoho and Jin, 2004)

$$\rho^{\star}(\beta) = 2\left(\beta - \frac{1}{2}\right) \quad \text{(optimal)}$$
$$\rho^{\mathsf{BH}}(\beta) = \beta \qquad (\mathsf{BH})$$

Take-home message

- a detection problem :
 - a multiple comparison problem :

New connexions between these problems

- existence of intrinsic bounds to the BH procedure
- Itight connexion between these bounds and the p-value distribution

Result of practical interest : sample size and criticality

For Studentised test statistics, criticality is asymptotically cancelled when sample size grows to $+\infty$.

Which X_i come from F^1 ?

Is ε null?