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Goal : investigate two different MSHT problems

D.L. Donoho and J. Jin. Higher criticism for detecting sparse
heterogeneous mixtures.
The Annals of Statistics, 32(3) :962–994, 2004.

Z. Chi. On the performance of FDR control : constraints and a partial
solution.
The Annals of Statistics, to appear.

Why study these MSHT problems ?
highlight the limitations of the BH procedure for these problems
connect these limitations to the behaviour of the p-value
distribution near 0
quantify these limitations in practical applications
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Introduction Context

Motivation : DNA microarray analysis
Example : molecular analysis of cancer

DNA microarrays
High-throughput measurement of
genes activity :

m genes
n samples (microarrays)
n << m

Typical question : differential analysis of normal vs tumour samples
detection Do some genes behave differently between normal and

tumour samples ?
multiple comparison Which of them ?

Such genes will be called differentially expressed (DE) genes
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Introduction Context

Mixture model

Settings

(Xi , Yi)16i6m are identically independently distributed, with Yi ∼ B(ε)

and {
Xi |Yi = 1 ∼ F 1

Xi |Yi = 0 ∼ F 0

We observe a realisation of (Xi)16i6m

(Yi)16i6m is hidden

Illustration from differential analysis of microarrays
ε : proportion of DE genes
Yi = 1gene i is DE

Xi : test statistic for gene i (built up from n samples)
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Introduction Context

Multiple comparison (MC) and detection (D) problems

Detection problem
Is ε equal to 0 ? HD

0 : (Xi)i
iid
∼ F 0

HD
1 : (Xi)i

iid
∼ (1 − ε)F 0 + εF 1

a binary testing problem

Multiple comparison problem

Which Xi come from F 1 ? {
HMC

0 : Xi ∼ F 0

HMC
1 : Xi ∼ F 1

a simultaneous test of m hypotheses
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Introduction FDR control

FDR for the multiple comparison problem

Possible outputs of a multiple comparison procedure

accepted rejected
null U V m(1 − ε)

non null S T mε

m − R R m

False Discovery Proportion

FDP = V/R

False Discovery Rate

FDR = E(FDP)

expected fraction of false discoveries

P. Neuvial (Inst. Curie & Univ. Paris VII) Intrinsic bounds on the BH procedure MSHT Workshop — 07/05/15 8 / 24



Introduction FDR control

FDR for the multiple comparison problem

Possible outputs of a multiple comparison procedure

accepted rejected
null U V m(1 − ε)

non null S T mε

m − R R m

False Discovery Proportion

FDP = V/R

False Discovery Rate

FDR = E(FDP)

expected fraction of false discoveries

P. Neuvial (Inst. Curie & Univ. Paris VII) Intrinsic bounds on the BH procedure MSHT Workshop — 07/05/15 8 / 24



Introduction FDR control

BH procedure for the multiple comparison problem
A step-up method providing strong control of the FDR (Benjamini & Hochberg, 1995)

The BH procedure at level α

1 Sort the m p-values : P(1) 6 . . . 6 P(m) Pi = 1 − F 0(Xi)

2 Calculate Î = Max
{

k |P(k) 6 α k
m

}
3 Reject all p-values smaller than = α̂I/m
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Introduction Intrinsic bounds

Criticality of the multiple comparison problem
Chi (2007), Chi and Tan (2007)
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Introduction Intrinsic bounds

Gaussian detection boundaries
BH detection boundary for sparse Gaussian mixtures Donoho and Jin (2004)

BHD : BH as a detection procedure

Reject HD
0 iff BH (α) rejects at least one hypothesis

This procedure has level at most α for the detection problem

Gaussian mixtures

HD
0 : (Xi)i

iid
∼ N(0, 1)

HD
1 : (Xi)i

iid
∼ (1 − εm)N(0, 1) + εmN(µm, 1)

sparsity : εm = m−β, 1
2 < β < 1

magnitude : µm =
√

2r log m, 0 < r < 1
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Criticality Tails and criticality

Criticality of the multiple comparison problem
Definition and interpretation

Multiple comparison problem{
HMC

0 : Xi ∼ F 0

HMC
1 : Xi ∼ F 1

p-values Pi = 1 − F 0(Xi)
cdf G(u) = εG1(u) + (1 − ε)(u)
density g(u) = εg1(u) + (1 − ε)
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Critical value (Chi, 2007)

α? = inf
u∈[0,1]

u
G(u)

Interpretation of α?

α? = lim
u→0

u
G(u)

=
1

g(0)
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Criticality Tails and criticality

Criticality of the multiple comparison problem
Properties and relationship to the likelihood ratio

Properties (Chi, 2007 and Chi and Tan, 2007)
For α < α? :

the number of correct rejections made by BH (α) is asymptotically
bounded as m→ +∞
BH (α) has asymptotically null power as m→ +∞

Relationship to g1 and f 1

f 0

α? = 1
g(0) = 1

εg1(0)+1−ε

g1(u) = f 1

f 0

(
q0(u)

)
, where q0(u) =

(
F 0

)−1
(1 − u)

criticality occurs iff f 1

f 0 has a finite limit at +∞
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Criticality Tails and criticality

Gaussian multiple comparison problem
A simple example with no criticality phenomenon

Gaussian tails

f 1

f 0 (t) = exp
[
−

1
2

(t − µ)2 +
1
2

t2
]

= exp
[
−

µ2

2
+ µt

]

No criticality

limt→+∞ f 1

f 0 (t) = +∞
limu→0 g(u) = +∞
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Criticality Tails and criticality

Laplace multiple comparison problem
A simple example with a criticality phenomenon

Laplace (double exponential) test statistics{
HMC

0 : Xi ∼ E0 f 0(t) = 1
2e−|t|

HMC
1 : Xi ∼ Eµ f 1(t) = 1

2e−|t−µ|

Heavier tails

f 1

f 0 (t) =

{
e2t−µ if t 6 µ

eµ if t > µ

Criticality

α? = 1
εeµ+(1−ε)

BH (α) has asymptotically null
power for α < α?
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Criticality Studentised statistics

Student multiple comparison problem
A problem of practical interest

Likelihood Ratio

f 1

f 0 (t) = exp

[
−

δ2

2
1

1 + t2

k

]
Hhk

(
− δt√

k+t2

)
Hhk (0)

with

Hhk (z) =

∫+∞
0

xk

k !
e− 1

2 (x+z)2
dx

Parameters of the model
δ : non-centrality parameter
k : number of degrees of freedom

P. Neuvial (Inst. Curie & Univ. Paris VII) Intrinsic bounds on the BH procedure MSHT Workshop — 07/05/15 17 / 24



Criticality Studentised statistics

Critical value of the Student MC problem

Criticality

α? = 1
ε

Hhk (−δ)

Hhk (0) +(1−ε)

BH (α) has asymptotically null power for α < α?

Whan can we do then ?
k is an increasing function of sample size

for fixed δ > 0, limk→+∞ Hhk (−δ)
Hhk (0) = +∞

Theorem (Criticality vanishes as sample size increases){
HMC

0 : Xi ∼ t0(k)

HMC
1 : Xi ∼ tδ(k)

Let k = km → +∞ as m→ +∞, then limm→+∞ α?
m = 0
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Detection boundaries Tails and detection boundary

Detecting sparse heterogeneous mixtures

Detection problemHD
0 : (Xi)i

iid
∼ F 0

m

HD
1 : (Xi)i

iid
∼ (1 − εm)F 0

m + εmF 1
m

p-values : Pi = 1 − F 0
m(Xi)

gm : density of the p-values under HD
1

Example : location problems

F 1
m(t) = F 0

m(t − µm)

µm → +∞, εm → 0

For which (µm, εm) HD
0 is asymptotically correctly rejected by a given

detection procedure ?
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Detection boundaries Tails and detection boundary

Detection boundary of the BHDprocedure
Connection with the p-value distribution

BHD
αm

: the BH procedure for detection, with target FDR level αm.

Theorem (Detection boundary of the BHDprocedure)

1 Let αm → 0. For each m, BHD
αm

has level at most αm, and

lim
m→+∞PHD

0

(
BHD

αm
rejects HD

0

)
= 0

2 Let αm → 0 slowly enough, if limm→+∞ gm
( 1

m

)
= +∞, then BHD

αm

has asymptotically full power for separating HD
1 from HD

0 :

lim
m→+∞PHD

1

(
BHD

αm
rejects HD

0

)
= 1
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Detection boundaries Tails and detection boundary

Application to the Gaussian detection problem

Sparse Gaussian mixtures

Fm = (1 − εm)N(0, 1) + εmN(µm, 1)

εm = m−β 1
2 < β < 1

µm =
√

2r log m 0 < r < 1
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Gaussian detection boundaries (Donoho and Jin, 2004)

ρ?(β) =

{
β − 1

2 if 1/2 < β 6 3/4
(1 −

√
1 − β)2 if 3/4 < β < 1

(optimal)

ρBH (β) = (1 −
√

1 − β)2 for 1/2 < β < 1 (BH)
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Detection boundaries Tails and detection boundary

Application to the Laplace detection problem

Sparse Laplace mixtures

Fm = (1 − εm)E(0) + εmE(µm)

εm = m−β 1
2 < β < 1

µm = r log m 0 < r < 1
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ρ?(β) = 2
(
β − 1

2

)
(optimal)

ρBH (β) = β (BH)
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Detection boundaries Detection boundaries and criticality

Take-home message

Two problems related to multiple hypothesis testing
1 a detection problem : Is ε null ?
2 a multiple comparison problem : Which Xi come from F 1 ?

New connexions between these problems
1 existence of intrinsic bounds to the BH procedure
2 tight connexion between these bounds and the p-value distribution

Result of practical interest : sample size and criticality
For Studentised test statistics, criticality is asymptotically cancelled
when sample size grows to +∞.
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