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MEG/EEG imaging
Chronography of brain activations
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revision

Properties

Synoptic detection of brain activations

Reasonable spatial resolution at the regional scale (∼ 1cm)

Excellent time resolution (∼ 1ms)
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A pipeline of processes

adapted from Will Penny, University College London
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Inference for images

adapted from Will Penny, University College London



Context Controlling the family-wise error rate Resampling approaches Results

Uncorrected p-value, α = 0.1

Percentage of null pixels that are false positives

Consequences

False conclusion: on average, 10% of unactive voxels are declared as
active

Need to define a null hypothesis for images of statistics

adapted from Will Penny, University College London
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Controlling the error rate

Family-wise null hypothesis
Activation is zero everywhere

If we reject a voxel null hypothesis at any voxel, we reject the
family-wise null hypothesis

Any false positive (FP) in the image yields a Family Wise Error (FWE)

Family-Wise Error Rate (FWER) = corrected p-value

α = 0.1, uncorrected

α = 0.1, corrected
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Bonferroni correction

Control the FWER α of N independent voxels
v : voxel-wise error rate
α = Nv
hence for a target FWER, set v = α

N

However voxels are not independent
Bonferroni is too conservative
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The General(ized) Linear Model
Random-field theory

adapted from S. Kiebel & A. Holmes, SPM short course, 2002

Consider a statistic image as
a discretization of a
continuous underlying random
field

Use results from continuous
random field theory (RFT)

Some considerable literature
1995–

K. Worsley, K. Friston, etc.
Statistical Parametric Mapping
(SPM)
Software solutions: SPM, FSL, etc.

The General(ized) Linear
Model

Includes multiple instances of
parametric inference
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When the image support is a surface
Back to MEG/EEG imaging

Statistic image is supported by a 3D surface
manifold

RFT-based smoothing techniques need to be
adapted to detections on a surface

Pantazis et al., NeuroImage, 2005

Investigate resampling techniques
Bootstrap (Darvas et al., 2005)
Permutations
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Take advantage of repeated measurements (trials) in M/EEG

non-parametric bootstrap generates surrogate data sets
computer-intensive data resampling
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Bootstrapping current density maps

from [Meunier et al. 2001] & [Darvas et al. 2005]

Bootstrap sample average amplitudes

Bootstrap sample standard deviations

Bootstrap samples of source amplitudes are not independent
Control the FWER using permutation techniques
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Controlling the FWER using permutations

Design thresholds with control on the FWER by estimating the
maximum (summarizing) statistic under H0

Solution 1: use random field theory

Approximate analytical solutions (assume same parametric
distribution at each spatial location, smooth PSF, smooth patterns,
etc.)

Solution 2: use data resampling

Empirical distributions (assume no parametric distributions &
adaptive to underlying correlation patterns)

P(FWER) = P(∪iTi > u | H0) = P(max
i

Ti > u | H0)

= 1 − Fmax T |H0(u) = 1 − (1 − α) = α

from [Pantazis et al. 2005]
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Controlling the FWER using permutations

Tit =
µ̂it

σ̂i/
√

J
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Controlling the FWER using permutations

Design thresholds with control on the FWER by estimating the maximum
(summarizing) statistic under H0

3 summarizing approaches are available:

space-time summary: epochwise thresholds

space-time summary with intermediate conversion to P-values:
uniform-specificity epochwise thresholds

space summary: space-uniform time-varying thresholds
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Controlling the FWER using permutations
Heterogeneous voxel null distribution (α = 0.05)

1 Using sample average, instead of T statistics
2 Non-Gaussian, variance-normalized voxel null distribution
3 Homogeneous voxel null distribution

from [Pantazis et al. 2005]
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Results
Monte-Carlo simulations

Permutation is an exact approach.
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Imaging stationary brain processes
Visuomotor coordination

p<0.01

Imaging in the Fourier domain

Group study: 14 subjects
→ inference at the group level, anatomical
co-registration

Oscillatory neural activity

Identify interactions between time series

(s)
0

0

1

1 2 3
K. Jerbi, et al., PNAS, May 2007
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