Cluster-based

False Discovery Rate (FDR).

.ocal FDR Covar

Covariate Modulated FDR

・ロット (雪) (日) (日)

Applications

Advances in False Discovery Rate control applied in Neuroimaging

Glenn Lawyer*, Egil Ferkingstad

Psykiatrisk institutt, Vinderen University of Oslo

May 16, 2007

Cluster-based

False Discovery Rate (FDR).

Local FDR 00000000 00000000 Covariate Modulated FD

(日)

Applications

Outline

Neuroimaging

Cluster-based

False Discovery Rate (FDR).

Local FDR

The model Calculating the local FDR

Covariate Modulated FDR

The model Calculating cmFDR

Applications

Cluster-based

False Discovery Rate (FDR)

Local FDR 00000000 00000000 Covariate Modulated FD

(日)

Applications

Outline

Neuroimaging

Cluster-based

False Discovery Rate (FDR).

Local FDR The model Calculating the local FDR

Covariate Modulated FDR The model Calculating cmFDR

Applications

Cluster-based

False Discovery Rate (FDR)

.ocal FDR 0

Covariate Modulated FDF

(日)

Applications

Voxel-based morphometry

1995: running a statistical test at every voxel in an fMRI image.

Voxel-Based Morphometry (VBM).

A typical fMRI image has a resolution of 2-7 *mm*², i.e a 64x64x7 image. 30000+ simultaneous tests.

Cluster-based

False Discovery Rate (FDR)

.ocal FDR 0

Covariate Modulated FDI

(日)

Applications

Voxel-based morphometry

1995: running a statistical test at every voxel in an fMRI image.

Voxel-Based Morphometry (VBM).

A typical fMRI image has a resolution of 2-7 *mm*², i.e a 64x64x7 image. 30000+ simultaneous tests.

Cluster-based

False Discovery Rate (FDR)

.ocal FDR C

Covariate Modulated FDF

Applications

Vertex-based morphometry

Cognition takes place, to a great extent, in the cortex.

Convoluted sheet of grey matter - the outer layer of the brain.

approx yr. 2000: Measure the thickness of the cortex.

Cluster-based

False Discovery Rate (FDR).

.ocal FDR

Covariate Modulated FE

Applications

Pial (outside) surface

Cluster-based

False Discovery Rate (FDR).

ocal FDR C

Covariate Modulated FD 000000 00000000 Applications

White matter surface

▲白 > ▲圖 > ▲ 国 > ▲ 国 > 「 国 」 例

Cluster-based

False Discovery Rate (FDR).

Local FDR 000000000 000000000 Covariate Modulated FE

ヘロト ヘ回ト ヘヨト ヘヨト

Applications

Wireframe

Cluster-based

False Discovery Rate (FDR)

-ocal FDR

Covariate Modulated FD

(日)

Applications

Multiple comparisons

Test hypothesis at each vertex in the mesh.

Vertex-Based Morphology (VBM).

test over 300,000 hypothesis.

Cluster-based

False Discovery Rate (FDR)

.ocal FDR

Covariate Modulated FD

(日)

Applications

Multiple comparisons

Test hypothesis at each vertex in the mesh.

Vertex-Based Morphology (VBM).

test over 300,000 hypothesis.

Cluster-based

False Discovery Rate (FDR).

Local FDR 00000000 00000000 Covariate Modulated FDI

Applications

Searching for interesting results

Cluster-based

False Discovery Rate (FDR).

Local FDR 00000000 00000000 Covariate Modulated FD

(日)

Applications

Outline

Neuroimaging

Cluster-based

False Discovery Rate (FDR).

Local FDR The model Calculating the local FDR

Covariate Modulated FDR The model Calculating cmFDR

Applications

Definition

A cluster is a large, connected set of extreme p-values.

If the null hypothesis is true everywhere, then we expect 5% of the values to be in the range that is 5% likely, but these should be evenly distributed over the image.

It is rather unlikely that we would see a large cluster of vertices all of which were significant unless the null hypothesis were false in that region.

(日)

Cluster-based

False Discovery Rate (FDR).

-ocal FDR

Covariate Modulated FD

(日)

Applications

Markov Random Fields

Treat statistical output as a random field. Use characteristics of field to estimate probability of cluster size.

Prof. Keith Worsley, McGill University, Quebec.

Cluster-based

False Discovery Rate (FDR).

Local FDR Cor 00000000 00 00000000 00

Covariate Modulated FDR

・ ロ ト ・ 雪 ト ・ 目 ト ・

Applications

While some of the early assumptions were perhaps questionable, the idea is under active development.

- Taylor, J.E. & Worsley, K.J. (2007). Random fields of multivariate test statistics, with applications to shape analysis and fMRI.*Annals of Statistics*, accepted.
- Taylor, J.E. & Worsley, K.J. (2007). Detecting sparse signal in random fields, with an application to brain mapping. *Journal of the American Statistical Association*, accepted.
- Taylor, J.E. & Worsley, K.J. (2007). Maxima of discretely sampled random fields, with an application to 'bubbles'. *Biometrika*, 94:1:18.

Cluster-based

False Discovery Rate (FDR).

.ocal FDR

Covariate Modulated FDI

(日)

Applications

Permutation tests.

presented yesterday by S. Baillet.

Re-label the subjects in the experiment, compute the parameter maps, and measure the size of the largest cluster of significant results. Repeat 10,000 times.

Gives a non-parametric estimate of the distribution of cluster sizes under the null hypothesis.

Cluster-based

False Discovery Rate (FDR).

.ocal FDR C

Covariate Modulated FD

(日)

Applications

Strengths and weaknesses

Strength: Nonparametric estimate can provide better fit to the actual distribution when it doesn't fit model assumptions.

Weaknesses:

- Only measures largest cluster at each permutation.
- Assumption of interchangeability (generally holds for neuroimaging).
- Time consuming.

Cluster-based

False Discovery Rate (FDR)

Local FDR 00000000 00000000 Covariate Modulated FDR

・ロット (雪) (日) (日)

Applications

Weakness with blob-based methods

No localization

You know the cluster contains significant findings,

but not where in the cluster.

Cluster-based

False Discovery Rate (FDR)

Local FDR 00000000 00000000 Covariate Modulated FDR

・ロット (雪) (日) (日)

Applications

Weakness with blob-based methods

No localization

You know the cluster contains significant findings,

but not where in the cluster.

Cluster-based

False Discovery Rate (FDR).

Local FDR 00000000 00000000 Covariate Modulated FD 000000 00000000

(日)

Applications

Outline

Neuroimaging

Cluster-based

False Discovery Rate (FDR).

Local FDR The model Calculating the local FDR

Covariate Modulated FDR The model Calculating cmFDR

Applications

Cluster-based

False Discovery Rate (FDR).

.ocal FDR 0

Covariate Modulated FDR

(日)

Applications

False Discovery Rate control

Control the expected proportion of false positives – weak error control.

Applies when goal is to sift through a mountain of significance tests and report those which might be worth following up on.

examples: microarray, geological data (oil prospecting), neuroimaging.

Cluster-based

False Discovery Rate (FDR).

.ocal FDR C

Covariate Modulated FD

(日)

Applications

The original concept

False Discovery Rate (FDR) control, 1995 Benjamini and Hochberg [1].

Find a threshold for the p-values at which the expected proportion of false discoveries is below a user-specified fraction.

Cluster-based

False Discovery Rate (FDR).

Local FDR 00000000 00000000 Covariate Modulated FDF

(日)

Applications

The model

A number of hypothesis, H_1, H_2, \ldots, H_N

with associated p-values P_1, P_2, \ldots, P_N

Desired FDR threshold is q, say 5%, i.e. of the results reported as significant, the expected proportion of false reports will be 5%.

Cluster-based

False Discovery Rate (FDR).

Local FDR 00000000 00000000 Covariate Modulated FDF

Applications

The method

Order the p-values so that $P_{(1)} \leq P_{(2)} \leq \ldots \leq P_{(N)}$.

Let *k* be the largest *i* for which

$$P_{(i)} \le \frac{i}{k}q \tag{1}$$

A D > A P > A D > A D >

Reject every null hypothesis for which $P \leq P_{(k)}$.

< ≣ > < ≣ >

Cluster-based

False Discovery Rate (FDR).

.ocal FDR

Covariate Modulated FD

(日)

Applications

Relies on tail values

Null hypothesis true everywhere \Rightarrow short tails.

Alternate hypothesis frequently true \Rightarrow long (or fat) tails.

Cluster-based

False Discovery Rate (FDR).

Local FDR 000000000 000000000 Covariate Modulated FDF

(日)

Applications

```
FDR in practice
```

Become widely popular.

No agreed on level for q.

Default in neuroimaging seems to be 0.05 (habit?)

Cluster-based

False Discovery Rate (FDR).

Local FDR

Covariate Modulated FD

(日)

Applications

Outline

Neuroimaging

Cluster-based

False Discovery Rate (FDR).

Local FDR The model Calculating the local FDR

Covariate Modulated FDR The model Calculating cmFDR

Applications

Cluster-based

False Discovery Rate (FDR).

Local FDR •0000000 00000000 Covariate Modulated FI

(日)

Applications

Local FDR

Place Benjamini's FDR in an empirical Bayesian context.

Makes fewer assumptions – more statistical power.

Developed by Brad Efron Stanford University, USA. 2001 [2]

Cluster-based

False Discovery Rate (FDR).

Local FDR

Covariate Modulated FD

・ロット (雪) (日) (日)

Applications

The model

N hypothesis H_1, H_2, \ldots, H_N with Z-values Z_1, Z_2, \ldots, Z_N

Assume the *N* tests are null or non-null: $p_0 = Pr\{null\}$ $f_0(z)$ density if null $p_1 = Pr\{non-null\}$ $f_1(z)$ density if not null

Cluster-based

False Discovery Rate (FDR).

Local FDR

Covariate Modulated FDF

(日)

Applications

The model, cont.

The z_i have the following mixture distribution:

$$f(z) = \rho_0 f_0(z) + \rho_1 f_1(z)$$
(2)

Cluster-based

False Discovery Rate (FDR).

Local FDR

Covariate Modulated FD

(日)

Applications

Definition

Define the local FDR as

$loc_{-}fdr \equiv Pr\{Null \mid z\} = p_0 f_0(z) / f(z)$ (3)

the Bayes posterior probability that a case is null given z.

Cluster-based

False Discovery Rate (FDR).

Local FDR

Covariate Modulated FDI

(日)

Applications

Definition

Define the local FDR as

$$loc_{-}fdr \equiv Pr\{Null \mid z\} = p_0 f_0(z)/f(z)$$
(3)

the Bayes posterior probability that a case is null given z.

Cluster-based

False Discovery Rate (FDR).

Local FDR

Covariate Modulated FD

(日)

Applications

Why local?

The probability $Pr\{Null \mid z\}$ will vary over the range of *z*-values.

local in terms of *z* values.

Specifically, each test statistic is examined individually.

Cluster-based

False Discovery Rate (FDR)

Local FDR

Covariate Modulated FDF 000000 00000000

(日)

Applications

Compared to Benjamini's FDR

By contrast, Benjamini's FDR relies strictly on tail areas, and treats extremely high *z*-scores the same as extremely low *z*-scores (after converting to *p*-values).

luster-based

False Discovery Rate (FDR).

Local FDR

Covariate Modulated Fl 000000 00000000

• • • • • • • • • • • •

Applications

Histogram of Z-scores

Cluster-based

False Discovery Rate (FDR).

Local FDR

Covariate Modulated FDF

(日)

Applications

Requirements

Independence of the Z_i is not required,

only a reasonable estimate of their marginal distribution.

Cluster-based

False Discovery Rate (FDR).

Local FDR

Covariate Modulated FD 000000 00000000

(日)

Applications

Calculating the local FDR

The goal:

$$loc_{f}dr \equiv Pr\{Null \mid z\} = p_0 f_0(z)/f(z)$$

need $p_0 f_0(z)$ and f(z).

Cluster-based

False Discovery Rate (FDR).

Local FDR

Covariate Modulated FD

(日)

Applications

```
The mixture f(z)
```

A number of ways to estimate f(z).

As a Poisson regression (Lindsey's method).

Cluster-based

False Discovery Rate (FDR).

Local FDR

Covariate Modulated FDF

(a)

Applications

The mixture f(z)

Place the *N z*-values in κ bins, with counts $y_1, y_2, \ldots, y_{\kappa}$.

Assume the counts y_{κ} are independent Poisson counts, i.e.

$$y_\kappa \stackrel{\mathit{ind}}{\sim} \mathit{Po}(
u_\kappa), \;\; \kappa \in [1,K]$$

with ν_{κ} proportional to f(z) at the midpoint of bin κ ,

Cluster-based

False Discovery Rate (FDR).

Local FDR

Covariate Modulated FDR

(日)

Applications

The mixture
$$f(z)$$

Model log(ν_{κ}) as a p^{th} degree polynomial

Estimate f(z) empirically by maximum likelihood

$$f(z) = \exp\left\{\sum_{j=0}^{p} \beta_j z^j\right\}$$
(4)

(Alternately, a natural spline function with *p* degrees freedom could be fit to the data.)

luster-based

alse Discovery Rate (FDR).

Local FDR

Covariate Modulated FDI

(日)

Applications

The numerator $p_0 f_0(z)$

It is assumed that $p_0 f_0(z)$ is a scaled normal density.

$$p_0 \varphi_{\mu,\sigma}(z)$$
 (5)

where

$$\varphi_{\mu,\sigma}(z) = f_0(z) = \exp\left\{\frac{-1}{2}\left(\frac{z-\mu}{\sigma}\right)^2\right\} / \sqrt{2\pi\sigma^2}$$
 (6)


```
roimaging Cluster-based
```

False Discovery Rate (FDR).

Local FDR

Covariate Modulated FDF 000000 00000000

(日)

Applications

```
The numerator p_0 f_0(z)
```

Fit a quadratic curve to $log(\hat{f}(z))$ around z = 0.

The central peak of the histogram of *z*-values consists mainly of null cases.

luster-based

alse Discovery Rate (FDR).

Local FDR

Covariate Modulated FD 000000 00000000

(日)

Applications

```
The numerator p_0 f_0(z)
```

Alternative:

constrain the fitting such that $f_0(z)$ is the theoretical null, $f_0(z) \sim N(0, 1)$.

Does not always fit the data well (especially if there is dependence between the z_i).

Cluster-based

False Discovery Rate (FDR)

Local FDR

Covariate Modulated FDF

(日)

Applications

Local FDR in practice

Available as an R package called "locfdr" (CRAN).

Running time is seconds.

Works with Z values, not P values.

Cluster-based

False Discovery Rate (FDR)

Local FDR 000000000 000000000 Covariate Modulated FDR

(日)

Applications

Outline

Neuroimaging

Cluster-based

False Discovery Rate (FDR).

Local FDR The model Calculating the local FDR

Covariate Modulated FDR The model Calculating cmFDR

Applications

luster-based

False Discovery Rate (FDR)

.ocal FDR

Covariate Modulated FDR

(日)

Applications

Covariate Modulated FDR

Incorporate prior information into the FDR estimation.

A covariate, measured at each point at which we have a hypothesis, relates to the probability that the null hypothesis is true.

2007: Developed by Egil Ferkingstad, Arnoldo Frigessi, Gudmar Thorleifsson and Augustine Kong [3]

luster-based

alse Discovery Rate (FDR)

ocal FDR

Covariate Modulated FDR

(日)

Applications

Microarray example

Which genetic variants affect expression levels in the immediate area of the gene (cis-variants from an eQTL study)?

Data:

- p-values (from linkage analysis of the microarray).
- estimate of heritability for each location tested

The heritability of the gene can reasonably be expected to affect the probability of the null hypothesis being true.

Cluster-based

False Discovery Rate (FDR).

Local FDR 00000000 00000000 Covariate Modulated FDR

・ロット (雪) (日) (日)

Applications

The model

N hypothesis H_{0i} vs H_{1i} , $i \in [1, N]$ with p-values P_1, P_2, \ldots, P_N . and non-random covariate x_i for each hypothesis H_i .

It is believed that x_i affects the prior probability that null hypothesis *i* is true.

Cluster-based

False Discovery Rate (FDR)

Local FDR 00000000 00000000 Covariate Modulated FDR

・ロット (雪) (日) (日)

Applications

The model

N hypothesis H_{0i} vs H_{1i} , $i \in [1, N]$ with p-values P_1, P_2, \ldots, P_N . and non-random covariate x_i for each hypothesis H_i .

It is believed that x_i affects the prior probability that null hypothesis *i* is true.

Cluster-based

False Discovery Rate (FDR).

Local FDR 000000000 000000000 Covariate Modulated FDR

(a)

Applications

Definition

The covariate-modulated FDR is defined as

$$cmFDR(H_{0i}|p_i, x_i) \equiv P(H_{0i}|p_i, x_i)$$
(7)

the posterior probability that the the null hypothesis is true given the p-value and x.

Cluster-based

False Discovery Rate (FDR)

Local FDR 000000000 000000000 Covariate Modulated FDR

(日)

Applications

(8)

Definition

Use Baye's law

$$P(H_{0i}|p_i, x_i) = rac{f(p_i, H_{0i}|x_i)}{f(p_i|x_i)}$$

(recall x is not random.)

Cluster-based

False Discovery Rate (FDR).

Local FDR 000000000 000000000 Covariate Modulated FDR

ヘロト ヘ回ト ヘヨト ヘヨト

Applications

Definition

$$=\frac{f(\rho_i,H_{0i}|x_i)}{f(\rho_i|x_i)}$$
(9)

$$= \frac{f(p_i|H_{0i}, x_i)f(H_{0i}|x_i)}{f(p_i|x_i)}$$
(10)
$$= \frac{f(p_i|H_{0i})f(H_{0i}|x_i)}{f(p_i|x_i)}$$
(11)

Cluster-based

False Discovery Rate (FDR).

ocal FDR C

Covariate Modulated FDR

・ロット (雪) (日) (日)

Applications

Compare to Local FDR

Similar to local FDR (with dependence on x_i).

 $f(H_{0i}|x_i) \equiv \pi_0(x_i) \approx p_0$

 $f(p_i|x_i) \approx f(p)$

The model, II

Factor $f(p_i|x_i)$ as

$$f(p_i|x_i) = \pi_0(x_i) + (1 - \pi_0(x_i))f(p_i|H_{1i}, x_i)$$
(12)

compare to local FDR:

$$f(z) = p_0 f_0(z) + p_1 f_1(z)$$
(13)

ヘロト ヘ回ト ヘヨト ヘヨト

Cluster-based

False Discovery Rate (FDR).

.ocal FDR

Covariate Modulated FDR

(日)

Applications

Calculating cmFDR

The goal:

Estimate $\pi_0(x_i)$ and $f(p_i|H_{1i}, x_i)$ from data (p_i, x_i) .

Cluster-based

alse Discovery Rate (FDR).

Local FDR

Covariate Modulated FDR

(日)

Applications

Observation

Any distribution on [0, 1] can be well approximated by a mixture of beta distributions. [Diaconis and Ylvisaker, 1985.]

A mixture: uniform distribution U[0, 1] – true null hypotheses beta distribution $\beta(\xi, \theta)$ – true alternative hypothesis

well approximates the density *f* underlying a set of p-values [Allison et al., 2002]

Cluster-based

False Discovery Rate (FDR).

.ocal FDR

Covariate Modulated FDR

(日)

Applications

Bin the covariates

The dependence on x is dealt with by dividing the (p_i, x_i) into j = 1, ..., B bins increasing in x.

Within each bin the mixture is

$$f_{j}(p_{i}) = \pi_{0j} + (1 - \pi_{0j}) \frac{\Gamma(\xi_{j} + \theta_{j})}{\Gamma(\xi_{j})\Gamma(\theta_{j})} p_{i}^{\xi_{j} - 1} (1 - p_{i})^{\theta_{j} - 1}$$
(14)

Hyperpriors

Since the bins are small, the parameters π_{0j} , ξ_j , and θ_j should be smooth between bins.

$$p(\pi) \propto \exp\left(-\lambda_{\pi} \sum_{j=2}^{B} (\pi_{0j} - \pi_{0(j-i)})^2\right)$$
(15)

with similar priors for λ_{ξ} and λ_{θ} .

(日)

Cluster-based

False Discovery Rate (FDR)

.ocal FDR

Covariate Modulated FDR

・ロット (雪) (日) (日)

Applications

posterior density for π_{0j} , ξ_j , and θ_j

Bin *j* contains m_j p-values, $p_{j_1}, p_{j_2}, \ldots, p_{j_{m_i}}$.

The simultaneous posterior density for π_{0j} , ξ_j , and θ_j is (\propto) the mixture model times the smoothing parameters.

$$\prod_{h=1}^{m_j} \left(\pi_{0j} + (1 - \pi_{0j}) \frac{\Gamma(\xi_j + \theta_j)}{\Gamma(\xi_j) \Gamma(\theta_j)} p_{j_h}^{\xi_j - 1} (1 - p_{j_h})^{\theta_j - 1} \right) \times \boldsymbol{S}$$
(16)

where S is the smoothing priors

luster-based

False Discovery Rate (FDR).

.ocal FDR

Covariate Modulated FDR

(日)

Applications

posterior density, cont.

$$\boldsymbol{s} = \exp \begin{pmatrix} -\lambda_{\pi} \sum_{\substack{i=j \ i=j}}^{j+1} (\pi_{0i} - \pi_{0(i-1)})^2 & + \\ -\lambda_{\xi} \sum_{\substack{i=j \ i=j}}^{j+1} (\xi_i - \xi_{i-1})^2 & + \\ -\lambda_{\theta} \sum_{\substack{i=j \ i=j}}^{j+1} (\theta_i - \theta_{i-1})^2 & + \end{pmatrix}$$
(17)

FDR Covaria

Covariate Modulated FDR

(日)

Applications

Approximate

 π_{0j}, ξ_j , and θ_j can be approximated using Markov Chain Monte Carlo.

takes time, ...

Approximate in minutes using Laplace – Håvard Rue. submitted

Local FDR 000000000 000000000 Covariate Modulated FDR

・ロット (雪) (日) (日)

Applications

Approximate

 π_{0j}, ξ_j , and θ_j can be approximated using Markov Chain Monte Carlo.

takes time, ...

Approximate in minutes using Laplace - Håvard Rue. submitted

Cluster-based

False Discovery Rate (FDR).

.ocal FDR

Covariate Modulated FDR

(日)

Applications

cmFDR with one bin

Running cmFDR with one bin effectively discards all information in the covariate. It is thus a variant of the local FDR.

cmFDR assumes parametric model for the p-value density.

Efron estimates density by parametric smoothing of the p-value histogram.

Cluster-based

False Discovery Rate (FDR).

Local FDR 00000000 00000000 Covariate Modulated FD 000000 00000000

(日)

Applications

Outline

Neuroimaging

Cluster-based

False Discovery Rate (FDR).

Local FDR The model Calculating the local FDR

Covariate Modulated FDR The model Calculating cmFDR

Applications

Cluster-based

False Discovery Rate (FDR)

Local FDR 00000000 00000000 Covariate Modulated FDR

Applications

Genetic variation and cortical thickness

Preliminary indications of 12% increase in findings using local FDR compared to FDR.

Cluster-based

False Discovery Rate (FDR).

Local FDR 000000000 000000000 Covariate Modulated Fl 000000 00000000

<ロ> <同> <同> <同> <同> <同>

Applications

BDNF -663

AA polymorphism thinner than TT

luster-based

False Discovery Rate (FDR).

.ocal FDR

Covariate Modulated FD

(日)

Applications

cmFDR reasoning

- phenotype suspected to be associated with an increased risk for schizophrenia
- having phenotype *might* be part of the biological cause underlying the thinning in schizophrenia

cortical thickness differences in A/A-subjects compared to T/T-subjects are more believable in regions where patients are thinner than controls.

Cluster-based

False Discovery Rate (FDR).

Local FDR 00000000 00000000 Covariate Modulated FD

ヘロト ヘ回ト ヘヨト ヘヨト

Applications

Comparison

Restricted to ROI (7% of total surface).

Cluster-based

False Discovery Rate (FDR)

Local FDR 000000000 000000000 Covariate Modulated FD

ヘロト ヘ戸ト ヘヨト

Applications

Comparison

Num tests p < 0.001 FDR cmFDR* cmFDR 22199 504 834 2282 6682

*2.75 increase with one-bin cmFDR.8-fold increase when covariate information included.

cmFDR with no bins $\Rightarrow \alpha \approx$ 0.012 cmFDR with 10 bins $\Rightarrow \alpha \approx$ 0.080

Cluster-based

False Discovery Rate (FDR)

Local FDR 000000000 000000000 Covariate Modulated FD

(日)

Applications

Bibliography

- Benjamini Y., Hochberg Y.. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing *J. of the Royal Stat. Soc. B.* 1995;57:289-300.
- Efron Bradley. Local False Discovery rates *authors web* page. 2003.
- Ferkingstad Egil, Frigessi Arnoldo, Thorleifsson Gudmar, Kong Augustine. Covariate-modulated false discovery rates *Annals of applied Statistics.* 2007;submitted.

