Introduction 000000000 Resampling Con

Concentration method

Quantile method

Step-down proced

Conclusion

Resampling-based confidence regions and multiple tests for a correlated random vector

Sylvain Arlot^{1,2} joint work with Gilles Blanchard³

Gilles Blanchard³ Étienne Roquain⁴

¹Université Paris-Sud XI, Orsay

²Projet Select, Inria-Futurs

³Fraunhofer FIRST.IDA, Berlin

⁴INRA, Jouy-en-Josas

Pascal Workshop and Pascal Challenge Type I and Type II errors for Multiple Simultaneous Hypothesis Testing May 16, 2007

Introduction •000000000	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Model					

Observations :
$$\mathbf{Y} = (Y^1, \dots, Y^n) = \begin{pmatrix} Y_1^1 & \dots & Y_1^n \\ \vdots & & \vdots \\ \vdots & & \vdots \\ Y_K^1 & \dots & Y_K^n \end{pmatrix}$$

 $Y^1, \ldots, Y^n \in \mathbb{R}^K$ i.i.d. symmetric, e.g. $\mathcal{N}(\mu, \Sigma)$

- Unknown mean $\mu = (\mu_k)_k$
- Unknown covariance matrix Σ
- Known upper bound $\sigma^2 \ge \max_k \operatorname{var}(Y_k^1)$
- $n \ll K$.

Introduction •000000000	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Model					

Observations :
$$\mathbf{Y} = (Y^1, \dots, Y^n) = \begin{pmatrix} Y_1^1 & \dots & Y_1^n \\ \vdots & & \vdots \\ \vdots & & \vdots \\ Y_K^1 & \dots & Y_K^n \end{pmatrix}$$

 $Y^1, \ldots, Y^n \in \mathbb{R}^K$ i.i.d. symmetric, e.g. $\mathcal{N}(\mu, \Sigma)$

- Unknown mean $\mu = (\mu_k)_k$
- Unknown covariance matrix Σ
- Known upper bound $\sigma^2 \ge \max_k \operatorname{var}(Y_k^1)$
- $n \ll K$.

Introduction •000000000	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Model					

Observations :
$$\mathbf{Y} = (Y^1, \dots, Y^n) = \begin{pmatrix} Y_1^1 & \dots & Y_1^n \\ \vdots & & \vdots \\ \vdots & & \vdots \\ Y_K^1 & \dots & Y_K^n \end{pmatrix}$$

$$Y^1, \ldots, Y^n \in \mathbb{R}^K$$
 i.i.d. symmetric, e.g. $\mathcal{N}(\mu, \Sigma)$

- Unknown mean $\mu = (\mu_k)_k$
- Unknown covariance matrix Σ
- Known upper bound $\sigma^2 \ge \max_k \operatorname{var}(Y_k^1)$
- *n* << *K*.

Introduction •000000000	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Model					

Observations :
$$\mathbf{Y} = (Y^1, \dots, Y^n) = \begin{pmatrix} Y_1^1 & \dots & Y_1^n \\ \vdots & & \vdots \\ \vdots & & \vdots \\ Y_K^1 & \dots & Y_K^n \end{pmatrix}$$

$$Y^1, \ldots, Y^n \in \mathbb{R}^K$$
 i.i.d. symmetric, e.g. $\mathcal{N}(\mu, \Sigma)$

- Unknown mean $\mu = (\mu_k)_k$
- Unknown covariance matrix Σ
- Known upper bound $\sigma^2 \ge \max_k \operatorname{var}(Y_k^1)$
- *n* << *K*.

Introduction •000000000	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Model					

Observations :
$$\mathbf{Y} = (Y^1, \dots, Y^n) = \begin{pmatrix} Y_1^1 & \dots & Y_1^n \\ \vdots & & \vdots \\ \vdots & & \vdots \\ Y_K^1 & \dots & Y_K^n \end{pmatrix}$$

$$Y^1, \ldots, Y^n \in \mathbb{R}^K$$
 i.i.d. symmetric, e.g. $\mathcal{N}(\mu, \Sigma)$

- Unknown mean $\mu = (\mu_k)_k$
- Unknown covariance matrix Σ
- Known upper bound $\sigma^2 \ge \max_k \operatorname{var}(Y_k^1)$
- *n* << *K*.

Introduction •000000000	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Model					

Observations :
$$\mathbf{Y} = (Y^1, \dots, Y^n) = \begin{pmatrix} Y_1^1 & \dots & Y_1^n \\ \vdots & & \vdots \\ \vdots & & \vdots \\ Y_K^1 & \dots & Y_K^n \end{pmatrix}$$

$$Y^1, \ldots, Y^n \in \mathbb{R}^K$$
 i.i.d. symmetric, e.g. $\mathcal{N}(\mu, \Sigma)$

- Unknown mean $\mu = (\mu_k)_k$
- Unknown covariance matrix Σ
- Known upper bound $\sigma^2 \ge \max_k \operatorname{var}(Y_k^1)$
- *n* << *K*.

Introduction •000000000	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Model					

Observations :
$$\mathbf{Y} = (Y^1, \dots, Y^n) = \begin{pmatrix} Y_1^1 & \dots & Y_1^n \\ \vdots & & \vdots \\ \vdots & & \vdots \\ Y_K^1 & \dots & Y_K^n \end{pmatrix}$$

 $Y^1, \ldots, Y^n \in \mathbb{R}^K$ i.i.d. symmetric, e.g. $\mathcal{N}(\mu, \Sigma)$

- Unknown mean $\mu = (\mu_k)_k$
- Unknown covariance matrix Σ
- Known upper bound $\sigma^2 \ge \max_k \operatorname{var}(Y_k^1)$
- *n* << *K*.

Introduction 000000000	Resampling 000000	Concentration method	Quantile method	Step-down procedure	Conclusion
Example	e : (neur	ro)images			

- K pixels, each pixel k has an intensity Y_k
- *n* repetitions (independent copies)
- *n* ≪ *K*
- \Rightarrow where is there some signal ?
 - Spatial dependence \Rightarrow correlations
 - The true distance may be unknown
 - Distant correlations are possible (non-markovian noise).
- \Rightarrow unknown correlations

Introduction 000000000	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Example	e: (neur	o)images			

- K pixels, each pixel k has an intensity Y_k
- *n* repetitions (independent copies)
- *n* ≪ *K*
- \Rightarrow where is there some signal ?

• Spatial dependence \Rightarrow correlations

- The true distance may be unknown
- Distant correlations are possible (non-markovian noise).
- \Rightarrow unknown correlations

Introduction 000000000	Resampling 000000	Concentration method	Quantile method	Step-down procedure	Conclusion
Example	e : (neur	ro)images			

- K pixels, each pixel k has an intensity Y_k
- *n* repetitions (independent copies)
- *n* ≪ *K*
- \Rightarrow where is there some signal ?
 - Spatial dependence \Rightarrow correlations
 - The true distance may be unknown
 - Distant correlations are possible (non-markovian noise).

 \Rightarrow unknown correlations

Introduction 000000000	Resampling 000000	Concentration method	Quantile method	Step-down procedure	Conclusion
Example	e : (neur	ro)images			

- K pixels, each pixel k has an intensity Y_k
- *n* repetitions (independent copies)
- *n* ≪ *K*
- \Rightarrow where is there some signal ?
 - Spatial dependence \Rightarrow correlations
 - The true distance may be unknown
 - Distant correlations are possible (non-markovian noise).
- \Rightarrow unknown correlations

Introduction 000000000	Resampling 000000	Concentration method	Quantile method	Step-down procedure	Conclusion
Example	e : (neur	ro)images			

- K pixels, each pixel k has an intensity Y_k
- *n* repetitions (independent copies)
- *n* ≪ *K*
- \Rightarrow where is there some signal ?
 - Spatial dependence \Rightarrow correlations
 - The true distance may be unknown
 - Distant correlations are possible (non-markovian noise).
- \Rightarrow unknown correlations

Introduction	Resampling	Concentration method	Quantile method	Step-down procedure	Conclusion
000000000000000000000000000000000000000					
E 1		1			

Example : simulation experiment

$$Y_t = \mu_t + G_t$$
 $t \in \mathbb{T}_m^2 = (\mathbb{Z}/m\mathbb{Z})^2$ $K = m^2$

- G = N * F
- N = white noise on \mathbb{T}_m^2
- $F: \mathbb{T}_m^2 \to \mathbb{R}$ such that $\sum_t F(t)^2 = 1$.

 \Rightarrow G stationary Gaussian process on \mathbb{T}_m^2 , centered, with variance 1.

$$F_b(t) = C_b \exp\left(-d_{\mathbb{T}^2_m}(0,t)^2/b^2\right)$$

b = bandwidth correlations increase with b.

$$(b = 20, m = 128)$$

Introduction	Resampling	Concentration method	Quantile method	Step-down procedure	Conclusion
000000000	000000	0000000	00000	0000	
E 1		1			

Example : simulation experiment

$$Y_t = \mu_t + G_t$$
 $t \in \mathbb{T}_m^2 = (\mathbb{Z}/m\mathbb{Z})^2$ $K = m^2$

- *G* = *N* * *F*
- N = white noise on \mathbb{T}_m^2
- $F: \mathbb{T}_m^2 \to \mathbb{R}$ such that $\sum_t F(t)^2 = 1$.

 \Rightarrow G stationary Gaussian process on \mathbb{T}_m^2 , centered, with variance 1.

$$F_b(t) = C_b \exp\left(-d_{\mathbb{T}^2_m}(0,t)^2/b^2\right)$$

b = bandwidth correlations increase with b.

$$(b = 20, m = 128)$$

Introduction	Resampling	Concentration method	Quantile method	Step-down procedure	Conclusion
000000000	000000	0000000	00000	0000	
E 1		1			

Example : simulation experiment

$$Y_t = \mu_t + G_t$$
 $t \in \mathbb{T}_m^2 = (\mathbb{Z}/m\mathbb{Z})^2$ $K = m^2$

- *G* = *N* * *F*
- N = white noise on \mathbb{T}_m^2
- $F: \mathbb{T}_m^2 \to \mathbb{R}$ such that $\sum_t F(t)^2 = 1$.

 \Rightarrow G stationary Gaussian process on \mathbb{T}_m^2 , centered, with variance 1.

$$F_b(t) = C_b \exp\left(-d_{\mathbb{T}^2_m}(0,t)^2/b^2
ight)$$

b = bandwidth correlations increase with b.

$$(b = 20, m = 128)$$

 $\begin{array}{c|c} \hline \mbox{Introduction} & \mbox{Resampling} & \mbox{Concentration method} & \mbox{Quantile method} & \mbox{Step-down procedure} & \mbox{Concentration} & \mbox{Concentration} & \mbox{Resampling} & \mbox{Resampling} & \mbox{Concentration} & \mbox{Resampling} & \mbox{Concentration} & \mbox{Resampling} & \mbox{Concentration} & \mbox{Resampling} & \mbox{Resamp$

5/37

Introduction Resampling Concentration method Quantile method Step-down procedure Conclusion OOCO OOCOO OOCOO

For every k we test : $H_{0,k}$: " $\mu_k = 0$ " against $H_{1,k}$: " $\mu_k \neq 0$ ". A *multiple testing procedure* rejects :

 $R(\mathbf{Y}) \subset \{1,\ldots,K\}.$

Type I errors measured by the Family Wise Error Rate :

 $\mathsf{FWER}(R) = \mathbb{P}\left(\exists k \in R(\mathbf{Y}) \, \mathsf{s.t.} \, \mu_k = 0\right).$

- strong control of the FWER : $\forall \mu \in \mathbb{R}^k$, not only $\mu = 0$
- |R| as large as possible

Introduction Resampling Concentration method Quantile method Step-down procedure Conclusion 0000 00000 00000 00000 0000 0000 0000 Conclusion Multiple Simultaneous Hypothesis Testing Testing Conclusion Conclusion<

For every k we test : $H_{0,k}$: " $\mu_k = 0$ " against $H_{1,k}$: " $\mu_k \neq 0$ ". A *multiple testing procedure* rejects :

 $R(\mathbf{Y}) \subset \{1,\ldots,K\}.$

Type I errors measured by the Family Wise Error Rate :

 $\mathsf{FWER}(R) = \mathbb{P}\left(\exists k \in R(\mathbf{Y}) \, \mathsf{s.t.} \, \mu_k = 0\right).$

- strong control of the FWER : $\forall \mu \in \mathbb{R}^k$, not only $\mu = 0$
- |R| as large as possible

Introduction Resampling Concentration method Quantile method Step-down procedure Conclusion 0000 00000 00000 00000 000

For every k we test : $H_{0,k}$: " $\mu_k = 0$ " against $H_{1,k}$: " $\mu_k \neq 0$ ". A *multiple testing procedure* rejects :

 $R(\mathbf{Y}) \subset \{1,\ldots,K\}.$

Type I errors measured by the Family Wise Error Rate :

$$\mathsf{FWER}(R) = \mathbb{P}\left(\exists k \in R(\mathbf{Y}) \text{ s.t. } \mu_k = 0\right).$$

- strong control of the FWER : $\forall \mu \in \mathbb{R}^k$, not only $\mu = 0$
- |*R*| as large as possible

Introduction Resampling Concentration method Quantile method Step-down procedure Conclusion 0000 00000 00000 00000 000

For every k we test : $H_{0,k}$: " $\mu_k = 0$ " against $H_{1,k}$: " $\mu_k \neq 0$ ". A *multiple testing procedure* rejects :

 $R(\mathbf{Y}) \subset \{1,\ldots,K\}.$

Type I errors measured by the Family Wise Error Rate :

$$\mathsf{FWER}(R) = \mathbb{P}\left(\exists k \in R(\mathbf{Y}) \text{ s.t. } \mu_k = 0\right).$$

- \Rightarrow build a procedure *R* such that FWER(*R*) $\leq \alpha$?
 - strong control of the FWER : $\forall \mu \in \mathbb{R}^k$, not only $\mu = 0$
 - |*R*| as large as possible

Introduction Resampling Concentration method Quantile method Step-down procedure Conclusion 0000 00000 00000 00000 000

For every k we test : $H_{0,k}$: " $\mu_k = 0$ " against $H_{1,k}$: " $\mu_k \neq 0$ ". A *multiple testing procedure* rejects :

 $R(\mathbf{Y}) \subset \{1,\ldots,K\}.$

Type I errors measured by the Family Wise Error Rate :

$$\mathsf{FWER}(R) = \mathbb{P}\left(\exists k \in R(\mathbf{Y}) \text{ s.t. } \mu_k = 0\right).$$

- strong control of the FWER : $\forall \mu \in \mathbb{R}^k$, not only $\mu = 0$
- |R| as large as possible

Introduction 0000000000	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Thresho	lding				

$$R(\mathbf{Y}) = \{k \text{ s.t. } \sqrt{n} |\overline{\mathbf{Y}}_k| > t\},\$$

where

•
$$\overline{\mathbf{Y}} = \frac{1}{n} \sum_{i=1}^{n} Y^{i}$$
 empirical mean
• $t = t_{\alpha}(\mathbf{Y})$ threshold (independent from $k \in \{1, \dots, K\}$).

$$\begin{aligned} \mathsf{FWER}(R) &= & \mathbb{P}(\exists k \quad \text{s.t.} \quad \mu_k = 0 \text{ and } \sqrt{n} |\overline{\mathbf{Y}}_k| > t) \\ &\leq & \mathbb{P}(\exists k \quad \text{s.t.} \quad \sqrt{n} |\overline{\mathbf{Y}}_k - \mu_k| > t) \\ &= & \mathbb{P}\left(\|\mathbf{Y} - \mu\|_{\infty} > tn^{-1/2} \right) \end{aligned}$$

 \Rightarrow confidence region *and* control of the FWER

Introduction 0000000000	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Thresho	lding				

$$R(\mathbf{Y}) = \{k \text{ s.t. } \sqrt{n} |\overline{\mathbf{Y}}_k| > t\},\$$

where

•
$$\overline{\mathbf{Y}} = \frac{1}{n} \sum_{i=1}^{n} Y^{i}$$
 empirical mean
• $t = t_{\alpha}(\mathbf{Y})$ threshold (independent from $k \in \{1, \dots, K\}$).

$$\begin{aligned} \mathsf{FWER}(R) &= & \mathbb{P}(\exists k \quad \text{s.t.} \quad \mu_k = 0 \text{ and } \sqrt{n} |\overline{\mathbf{Y}}_k| > t) \\ &\leq & \mathbb{P}(\exists k \quad \text{s.t.} \quad \sqrt{n} |\overline{\mathbf{Y}}_k - \mu_k| > t) \\ &= & \mathbb{P}\left(\|\mathbf{Y} - \mu\|_{\infty} > tn^{-1/2} \right) \end{aligned}$$

 \Rightarrow confidence region and control of the FWER

Introduction 0000000000	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Bonferro	oni thresl	nold			

$$\begin{array}{lll} \mathsf{FWER}(R) & \leq & \mathcal{K}\sup_{k}\mathbb{P}(\sqrt{n}|\overline{\mathbf{Y}}_{k}-\mu_{k}|>t) \\ & \leq & 2\mathcal{K}\overline{\Phi}(t/\sigma), \end{array}$$

where $\overline{\Phi}$ is the standard Gaussian upper tail function.

Bonferroni's threshold : $t_{\alpha}^{\text{Bonf}} = \sigma \overline{\Phi}^{-1}(\alpha/(2K)).$

- deterministic threshold
- too conservative if there are strong correlations between the coordinates $Y_{\boldsymbol{k}}$

$$(K \leftrightarrow 1 \text{ if } Y_1 = \cdots = Y_K)$$

Introduction 0000000000	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Bonferro	oni thresl	nold			

$$\begin{aligned} \mathsf{FWER}(R) &\leq \quad \mathsf{K}\sup_{k} \mathbb{P}(\sqrt{n}|\overline{\mathbf{Y}}_{k} - \mu_{k}| > t) \\ &\leq \quad 2\mathcal{K}\overline{\Phi}(t/\sigma), \end{aligned}$$

where $\overline{\Phi}$ is the standard Gaussian upper tail function.

Bonferroni's threshold : $t_{\alpha}^{\text{Bonf}} = \sigma \overline{\Phi}^{-1}(\alpha/(2K))$.

- deterministic threshold
- too conservative if there are strong correlations between the coordinates Y_k

$$(K \leftrightarrow 1 \text{ if } Y_1 = \cdots = Y_K)$$

Introduction 0000000000	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Bonferro	oni thresl	nold			

$$\begin{aligned} \mathsf{FWER}(R) &\leq K \sup_{k} \mathbb{P}(\sqrt{n} |\overline{\mathbf{Y}}_{k} - \mu_{k}| > t) \\ &\leq 2K \overline{\Phi}(t/\sigma), \end{aligned}$$

where $\overline{\Phi}$ is the standard Gaussian upper tail function.

Bonferroni's threshold : $t_{\alpha}^{\text{Bonf}} = \sigma \overline{\Phi}^{-1}(\alpha/(2K))$.

- deterministic threshold
- too conservative if there are strong correlations between the coordinates Y_k

$$(K \leftrightarrow 1 \text{ if } Y_1 = \cdots = Y_K)$$

Introduction 0000000000	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Bonferro	oni thresl	nold			

$$\begin{aligned} \mathsf{FWER}(R) &\leq K \sup_{k} \mathbb{P}(\sqrt{n} |\overline{\mathbf{Y}}_{k} - \mu_{k}| > t) \\ &\leq 2K \overline{\Phi}(t/\sigma), \end{aligned}$$

where $\overline{\Phi}$ is the standard Gaussian upper tail function.

Bonferroni's threshold : $t_{\alpha}^{\text{Bonf}} = \sigma \overline{\Phi}^{-1}(\alpha/(2K))$.

- deterministic threshold
- too conservative if there are strong correlations between the coordinates \boldsymbol{Y}_k

$$(K \leftrightarrow 1 \text{ if } Y_1 = \cdots = Y_K)$$

Introduction	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Ideal th	reshold				

$$\begin{aligned} \mathsf{FWER}(R) &\leq & \mathbb{P}(\exists \ k \, \text{s.t.} \ \sqrt{n} |\overline{\mathbf{Y}}_k - \mu_k| > t) \\ &\leq & \mathbb{P}(\sqrt{n} \sup_k |\overline{\mathbf{Y}}_k - \mu_k| > t) \end{aligned}$$

Ideal threshold : $t = q_{\alpha}^{\star}$, $1 - \alpha$ quantile of $\mathcal{L}(\sqrt{n} \sup |\overline{\mathbf{Y}} - \mu|)$.

 q^{\star}_{α} depends on Σ , unknown (and $K^2 \gg Kn$) $\Rightarrow q^{\star}_{\alpha}$ estimated by **resampling**.

Introduction	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Ideal th	reshold				

$$\begin{aligned} \mathsf{FWER}(R) &\leq & \mathbb{P}(\exists k \text{ s.t. } \sqrt{n} |\overline{\mathbf{Y}}_k - \mu_k| > t) \\ &\leq & \mathbb{P}(\sqrt{n} \sup_k |\overline{\mathbf{Y}}_k - \mu_k| > t) \end{aligned}$$

Ideal threshold : $t = q_{\alpha}^{\star}$, $1 - \alpha$ quantile of $\mathcal{L}(\sqrt{n} \sup |\overline{\mathbf{Y}} - \mu|)$.

 q^{\star}_{α} depends on Σ , unknown (and $K^2 \gg Kn$) $\Rightarrow q^{\star}_{\alpha}$ estimated by **resampling**.

Introduction	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Ideal th	reshold				

$$\begin{aligned} \mathsf{FWER}(R) &\leq & \mathbb{P}(\exists k \text{ s.t. } \sqrt{n} |\overline{\mathbf{Y}}_k - \mu_k| > t) \\ &\leq & \mathbb{P}(\sqrt{n} \sup_k |\overline{\mathbf{Y}}_k - \mu_k| > t) \end{aligned}$$

Ideal threshold : $t = q_{\alpha}^{\star}$, $1 - \alpha$ quantile of $\mathcal{L}(\sqrt{n} \sup |\overline{\mathbf{Y}} - \mu|)$.

 q^{\star}_{α} depends on Σ , unknown (and $K^2 \gg Kn$) $\Rightarrow q^{\star}_{\alpha}$ estimated by **resampling**.

Introduction	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Goal					

$$(\mathcal{P}_{\alpha}): \quad \mathbb{P}(\sqrt{n}||\overline{\mathbf{Y}}-\mu||_{\infty} > t_{\alpha}(\mathbf{Y})) \leq \alpha.$$

If $R = \{k \text{ s.t. } \sqrt{n} | \overline{\mathbf{Y}}_k | > t_{\alpha}(\mathbf{Y}) \}$, FWER $(R) \le \alpha$.

- (\mathcal{P}_{α}) gives a confidence ball for μ .
- Non-asymptotic : $\forall K, n$
- $t_{\alpha}(\mathbf{Y})$ should be close to q_{α}^{\star}

Introduction	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Goal					

$$(\mathcal{P}_{\alpha}): \quad \mathbb{P}(\sqrt{n}||\overline{\mathbf{Y}}-\mu||_{\infty} > t_{\alpha}(\mathbf{Y})) \leq \alpha.$$

If $R = \{k \text{ s.t. } \sqrt{n} | \overline{\mathbf{Y}}_k | > t_{\alpha}(\mathbf{Y}) \}$, $\mathsf{FWER}(R) \leq \alpha$.

- (\mathcal{P}_{α}) gives a confidence ball for μ .
- Non-asymptotic : $\forall K, n$
- $t_{\alpha}(\mathbf{Y})$ should be close to q_{α}^{\star}

Introduction 0000000000	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Goal					

$$(\mathcal{P}_{\alpha}): \quad \mathbb{P}(\sqrt{n}||\overline{\mathbf{Y}}-\mu||_{\infty} > t_{\alpha}(\mathbf{Y})) \leq \alpha.$$

If
$$R = \{k \text{ s.t. } \sqrt{n} | \overline{\mathbf{Y}}_k | > t_{\alpha}(\mathbf{Y}) \}$$
, $\mathsf{FWER}(R) \leq \alpha$.

- (\mathcal{P}_{α}) gives a confidence ball for μ .
- Non-asymptotic : $\forall K, n$
- $t_{\alpha}(\mathbf{Y})$ should be close to q_{α}^{\star}

Introduction 0000000000	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Goal					

$$(\mathcal{P}_{\alpha}): \quad \mathbb{P}(\sqrt{n}||\overline{\mathbf{Y}}-\mu||_{\infty} > t_{\alpha}(\mathbf{Y})) \leq \alpha.$$

If
$$R = \{k \text{ s.t. } \sqrt{n} | \overline{\mathbf{Y}}_k | > t_{\alpha}(\mathbf{Y}) \}$$
, $\mathsf{FWER}(R) \leq \alpha$.

- (\mathcal{P}_{α}) gives a confidence ball for μ .
- Non-asymptotic : $\forall K, n$
- $t_{lpha}(\mathbf{Y})$ should be close to q_{lpha}^{\star}

Introduction ○○○○○○○○○	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Outline					

- 2 Resampling
- 3 Concentration method
- Quantile method
- 5 Step-down procedure

6 Conclusion

- Weight vector : (W_1, \ldots, W_n) , independent from **Y**
- "Yⁱ is kept W_i times in the resample"
- Example : Efron's bootstrap \Leftrightarrow *n*-sample with replacement $\Leftrightarrow (W_1, \ldots, W_n) \sim \mathcal{M}(n; n^{-1}, \ldots n^{-1})$

Heuristics : (true distribution, sample) \approx (sample, resample)

- Weight vector : (W_1, \ldots, W_n) , independent from **Y**
- "Yⁱ is kept W_i times in the resample"
- Example : Efron's bootstrap \Leftrightarrow *n*-sample with replacement $\Leftrightarrow (W_1, \ldots, W_n) \sim \mathcal{M}(n; n^{-1}, \ldots n^{-1})$

Heuristics : (true distribution, sample) \approx (sample, resample)

- Weight vector : (W_1, \ldots, W_n) , independent from **Y**
- "Yⁱ is kept W_i times in the resample"
- Example : Efron's bootstrap \Leftrightarrow *n*-sample with replacement $\Leftrightarrow (W_1, \ldots, W_n) \sim \mathcal{M}(n; n^{-1}, \ldots n^{-1})$

Heuristics : (true distribution, sample) pprox (sample, resample)

- Weight vector : (W_1, \ldots, W_n) , independent from **Y**
- "Yⁱ is kept W_i times in the resample"
- Example : Efron's bootstrap \Leftrightarrow *n*-sample with replacement $\Leftrightarrow (W_1, \ldots, W_n) \sim \mathcal{M}(n; n^{-1}, \ldots n^{-1})$

Heuristics : (true distribution, sample) \approx (sample, resample)

Introduction 0000000000	Resampling 0●0000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
E		e anna llan an scrathal			

- Efron's bootstrap : $(W_1, \ldots, W_n) \sim \mathcal{M}(n; n^{-1}, \ldots, n^{-1})$
- Rademacher : W_i iid $\sim \frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1$
- Random hold-out : $W_i = 2\mathbb{1}_{i \in I}$, I uniform over subsets of $\{1, \ldots, n\}$ of cardinality n/2
- Leave-one-out : $W_i = \frac{n}{n-1} \mathbb{1}_{i \neq J}, \ J \sim \mathcal{U}(\{1, \dots, n\})$
- V-fold cross-validation : $W_i = \frac{V}{V-1} \mathbb{1}_{i \notin B_J}$, $J \sim \mathcal{U}(\{1, \dots, V\})$ for some partition B_1, \dots, B_V of $\{1, \dots, n\}$

- Efron's bootstrap : $(W_1, \ldots, W_n) \sim \mathcal{M}(n; n^{-1}, \ldots, n^{-1})$
- Rademacher : W_i iid $\sim \frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1$
- Random hold-out : $W_i = 2\mathbb{1}_{i \in I}$, I uniform over subsets of $\{1, \ldots, n\}$ of cardinality n/2
- Leave-one-out : $W_i = \frac{n}{n-1} \mathbb{1}_{i \neq J}, J \sim \mathcal{U}(\{1, \dots, n\})$
- V-fold cross-validation : $W_i = \frac{V}{V-1} \mathbb{1}_{i \notin B_J}$, $J \sim \mathcal{U}(\{1, \dots, V\})$ for some partition B_1, \dots, B_V of $\{1, \dots, n\}$

- Efron's bootstrap : $(W_1, \ldots, W_n) \sim \mathcal{M}(n; n^{-1}, \ldots n^{-1})$
- Rademacher : W_i iid $\sim \frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1$
- Random hold-out : $W_i = 2\mathbb{1}_{i \in I}$, I uniform over subsets of $\{1, \ldots, n\}$ of cardinality n/2
- Leave-one-out : $W_i = \frac{n}{n-1} \mathbb{1}_{i \neq J}, J \sim \mathcal{U}(\{1, \dots, n\})$
- V-fold cross-validation : $W_i = \frac{V}{V-1} \mathbb{1}_{i \notin B_J}, J \sim \mathcal{U}(\{1, \dots, V\})$ for some partition B_1, \dots, B_V of $\{1, \dots, n\}$

Introduction 0000000000	Resampling 0●0000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Example	oc of roc	ampling woig	hte		

- Efron's bootstrap : $(W_1, \ldots, W_n) \sim \mathcal{M}(n; n^{-1}, \ldots n^{-1})$
- Rademacher : W_i iid $\sim \frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1$
- Random hold-out : $W_i = 2\mathbb{1}_{i \in I}$, I uniform over subsets of $\{1, \ldots, n\}$ of cardinality n/2
- Leave-one-out : $W_i = \frac{n}{n-1} \mathbb{1}_{i \neq J}, J \sim \mathcal{U}(\{1, \dots, n\})$
- V-fold cross-validation : $W_i = \frac{V}{V-1} \mathbb{1}_{i \notin B_J}$, $J \sim \mathcal{U}(\{1, \dots, V\})$ for some partition B_1, \dots, B_V of $\{1, \dots, n\}$

Introduction	Resampling	Concentration method	Quantile method	Step-down procedure	Conclusion
0000000000	00000	0000000	00000	0000	
Example	oc of roc	ampling woig	hte		

- Efron's bootstrap : $(W_1, \ldots, W_n) \sim \mathcal{M}(n; n^{-1}, \ldots n^{-1})$
- Rademacher : W_i iid $\sim \frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1$
- Random hold-out : $W_i = 2\mathbb{1}_{i \in I}$, I uniform over subsets of $\{1, \ldots, n\}$ of cardinality n/2
- Leave-one-out : $W_i = \frac{n}{n-1} \mathbb{1}_{i \neq J}$, $J \sim \mathcal{U}(\{1, \dots, n\})$
- V-fold cross-validation : $W_i = \frac{V}{V-1} \mathbb{1}_{i \notin B_J}$, $J \sim \mathcal{U}(\{1, \dots, V\})$ for some partition B_1, \dots, B_V of $\{1, \dots, n\}$

Introduction 0000000000	Resampling ○○●000	Concentration method	Quantile method	Step-down procedure	Conclusion
Quantile	e metho	d			

Ideal threshold : q^{\star}_{lpha} , 1 - lpha quantile of $\mathcal{L}\left(\sqrt{n} \| \overline{\mathbf{Y}} - \mu \|_{\infty}\right)$

 $\Rightarrow \text{Resampling estimate of } q_{\alpha}^{\star} : \\ q_{\alpha}^{\text{quant}}(\mathbf{Y}), \ 1 - \alpha \text{ quantile of } \mathcal{L}\left(\sqrt{n} \| \overline{\mathbf{Y}}_{W} - \overline{W} \, \overline{\mathbf{Y}} \|_{\infty} | \mathbf{Y}\right)$

 $\overline{\mathbf{Y}}_W := \frac{1}{n} \sum_{i=1}^n W_i Y^i$ Resampling empirical mean

$$\overline{W} := \frac{1}{n} \sum_{i=1}^{n} W_i$$

 $q^{\text{quant}}_{\alpha}(\mathbf{Y})$ depends only on \mathbf{Y} , so it can be computed with real data

Introduction 0000000000	Resampling ○○●○○○	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Quantile	e methoc				

Ideal threshold :
$$q_{lpha}^{\star}$$
, $1 - lpha$ quantile of $\mathcal{L}\left(\sqrt{n} \| \overline{\mathbf{Y}} - \mu \|_{\infty}\right)$

 $\Rightarrow \text{Resampling estimate of } q_{\alpha}^{\star} : \\ q_{\alpha}^{\text{quant}}(\mathbf{Y}), \ 1 - \alpha \text{ quantile of } \mathcal{L}\left(\sqrt{n} \| \overline{\mathbf{Y}}_{W} - \overline{W} \, \overline{\mathbf{Y}} \|_{\infty} | \mathbf{Y}\right)$

$$\overline{\mathbf{Y}}_{W} := \frac{1}{n} \sum_{i=1}^{n} W_{i} Y^{i}$$
 Resampling empirical mean

$$\overline{W} := \frac{1}{n} \sum_{i=1}^{n} W_i$$

 $q_{\alpha}^{\text{quant}}(\mathbf{Y})$ depends only on **Y**, so it can be computed with real data

Introduction 0000000000	Resampling ○○●○○○	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Quantile	e method				

Ideal threshold :
$$q_{lpha}^{\star}$$
, $1 - lpha$ quantile of $\mathcal{L}\left(\sqrt{n}\|\overline{\mathbf{Y}} - \mu\|_{\infty}\right)$

 $\begin{array}{l} \Rightarrow \text{ Resampling estimate of } q_{\alpha}^{\star} : \\ q_{\alpha}^{\text{quant}}(\mathbf{Y}), \ 1 - \alpha \text{ quantile of } \mathcal{L}\left(\sqrt{n} \| \overline{\mathbf{Y}}_{W} - \overline{W} \, \overline{\mathbf{Y}} \|_{\infty} | \mathbf{Y}\right) \end{array}$

$$\overline{\mathbf{Y}}_{W} := \frac{1}{n} \sum_{i=1}^{n} W_{i} Y^{i}$$
 Resampling empirical mean

$$\overline{W} := \frac{1}{n} \sum_{i=1}^{n} W_i$$

 $q^{\mathsf{quant}}_{lpha}(\mathbf{Y})$ depends only on \mathbf{Y} , so it can be computed with real data

Introduction 0000000000	Resampling ○○○●○○	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Concent	ration m	nethod			

- $\|\overline{\mathbf{Y}} \mu\|_{\infty}$ concentrates around its expectation, standard-deviation $\leq \sigma n^{-1/2}$
- Estimate $\mathbb{E}\left[\|\overline{\mathbf{Y}} \mu\|_{\infty}\right]$ by resampling

$\Rightarrow q_{\alpha}^{\mathsf{conc}}(\mathbf{Y}) = \mathsf{cst} \times \sqrt{n} \mathbb{E}\left[\| \overline{\mathbf{Y}}_{W} - \overline{W} \, \overline{\mathbf{Y}} \|_{\infty} | \mathbf{Y} \right] + \mathsf{remainder}(\sigma, \alpha, n)$

Works if expectations ($\propto \sqrt{\log(K)}$) are larger than fluctuations ($\propto n^{-1/2}$)

Introduction 0000000000	Resampling ○○○●○○	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Concent	ration n	nethod			

- $\|\overline{\mathbf{Y}} \mu\|_{\infty}$ concentrates around its expectation, standard-deviation $\leq \sigma n^{-1/2}$
- Estimate $\mathbb{E}\left[\|\overline{\mathbf{Y}}-\boldsymbol{\mu}\|_{\infty}\right]$ by resampling

$\Rightarrow q_{\alpha}^{\mathsf{conc}}(\mathbf{Y}) = \mathsf{cst} \times \sqrt{n} \mathbb{E}\left[\| \overline{\mathbf{Y}}_{W} - \overline{W} \, \overline{\mathbf{Y}} \|_{\infty} | \mathbf{Y} \right] + \mathsf{remainder}(\sigma, \alpha, n)$

Works if expectations ($\propto \sqrt{\log(K)}$) are larger than fluctuations ($\propto n^{-1/2}$)

Introduction 0000000000	Resampling ○○○●○○	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Concent	ration m	nethod			

- $\|\overline{\mathbf{Y}} \mu\|_{\infty}$ concentrates around its expectation, standard-deviation $\leq \sigma n^{-1/2}$
- Estimate $\mathbb{E}\left[\|\overline{\mathbf{Y}}-\boldsymbol{\mu}\|_{\infty}\right]$ by resampling

$$\Rightarrow q_{\alpha}^{\mathsf{conc}}(\mathbf{Y}) = \mathsf{cst} \times \sqrt{n} \mathbb{E}\left[\|\overline{\mathbf{Y}}_{W} - \overline{W} \,\overline{\mathbf{Y}}\|_{\infty} |\mathbf{Y}] + \mathsf{remainder}(\sigma, \alpha, n) \right]$$

Works if expectations ($\propto \sqrt{\log(K)}$) are larger than fluctuations ($\propto n^{-1/2}$)

Introduction 0000000000	Resampling ○○○●○○	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Concent	ration n	nethod			

- $\|\overline{\mathbf{Y}} \mu\|_{\infty}$ concentrates around its expectation, standard-deviation $\leq \sigma n^{-1/2}$
- Estimate $\mathbb{E}\left[\|\overline{\mathbf{Y}}-\boldsymbol{\mu}\|_{\infty}\right]$ by resampling

$$\Rightarrow q_{\alpha}^{\mathsf{conc}}(\mathbf{Y}) = \mathsf{cst} \times \sqrt{n} \mathbb{E}\left[\|\overline{\mathbf{Y}}_{W} - \overline{W} \,\overline{\mathbf{Y}}\|_{\infty} |\mathbf{Y}] + \mathsf{remainder}(\sigma, \alpha, n) \right]$$

Works if expectations ($\propto \sqrt{\log(K)})$ are larger than fluctuations ($\propto n^{-1/2})$

Introduction Resampling Concentration method Quantile method Step-down procedure Conclusion

Results from empirical process theory

$$(\overline{\mathbf{Y}}_W - \overline{W} \,\overline{\mathbf{Y}}) = \frac{1}{n} \sum_{i=1}^n (W_i - \overline{W}) Y^i = \overline{\mathbf{Y}}_{W - \overline{W}}$$

\Rightarrow Empirical bootstrap process

 Asymptotically (K fixed, n→∞): many results, e.g. [van der Vaart and Wellner 1996]

 \Rightarrow both methods are asymptotically valid.

 Non-asymptotic results (learning theory, bounded case) : Rademacher complexities [Koltchinskii 01], [Bartlett, Boucheron and Lugosi 02]
 Bootstrap penalization [Fromont 05].

Resampling Concentration method Quantile method Conclusion Introduction 000000

<u>Results from empirical process theory</u>

$$(\overline{\mathbf{Y}}_W - \overline{W} \,\overline{\mathbf{Y}}) = \frac{1}{n} \sum_{i=1}^n (W_i - \overline{W}) Y^i = \overline{\mathbf{Y}}_{W - \overline{W}}$$

- \Rightarrow Empirical bootstrap process
 - Asymptotically (K fixed, $n \to \infty$): many results, e.g. [van der Vaart and Wellner 1996]
 - \Rightarrow both methods are asymptotically valid.
 - Non-asymptotic results (learning theory, bounded case) :

Introduction Resampling Concentration method Quantile method Step-down procedure Conclusion

$$(\overline{\mathbf{Y}}_W - \overline{W} \ \overline{\mathbf{Y}}) = rac{1}{n} \sum_{i=1}^n (W_i - \overline{W}) Y^i = \ \overline{\mathbf{Y}}_{W - \overline{W}}$$

- \Rightarrow Empirical bootstrap process
 - Asymptotically (K fixed, $n \to \infty$): many results, e.g. [van der Vaart and Wellner 1996]

 \Rightarrow both methods are asymptotically valid.

 Non-asymptotic results (learning theory, bounded case) : Rademacher complexities [Koltchinskii 01], [Bartlett, Boucheron and Lugosi 02] Bootstrap penalization [Fromont 05].

- Parametric statistics : no, because $K \gg n$.
- Asymptotic results : not valid, because $K \gg n$.
- Randomization tests : do not work if H_{0,k} = {µ_k ≤ 0}.
 And do not give confidence regions.
- Holm's procedure : unefficient with strong correlations

- Parametric statistics : no, because $K \gg n$.
- Asymptotic results : not valid, because $K \gg n$.
- Randomization tests : do not work if H_{0,k} = {μ_k ≤ 0}.
 And do not give confidence regions.

• Holm's procedure : unefficient with strong correlations

- Parametric statistics : no, because $K \gg n$.
- Asymptotic results : not valid, because $K \gg n$.
- Randomization tests : do not work if H_{0,k} = {μ_k ≤ 0}.
 And do not give confidence regions.
- Holm's procedure : unefficient with strong correlations

Concentration method : three ideas

$$\|\overline{\mathbf{Y}} - \boldsymbol{\mu}\|_{\infty} \simeq \mathbb{E}\left[\|\overline{\mathbf{Y}} - \boldsymbol{\mu}\|_{\infty}\right]$$

 $\mathbb{E}\left[\|\overline{\mathbf{Y}} - \boldsymbol{\mu}\|_{\infty}\right] \propto \mathbb{E}\left[\|\overline{\mathbf{Y}}_{W} - \overline{W}\,\overline{\mathbf{Y}}\|_{\infty}\right]$

$$\mathbb{E}\left[\|\overline{\mathbf{Y}}_W - \overline{W}\,\overline{\mathbf{Y}}\|_{\infty}|\mathbf{Y}\right] \simeq \mathbb{E}\left[\|\overline{\mathbf{Y}}_W - \overline{W}\,\overline{\mathbf{Y}}\|_{\infty}\right]$$

 $\Rightarrow q_{\alpha}^{\mathsf{conc}}(\mathbf{Y}) \propto \sqrt{n} \mathbb{E}\left[\| \overline{\mathbf{Y}}_{W} - \overline{W} \, \overline{\mathbf{Y}} \|_{\infty} | \mathbf{Y} \right] + \mathsf{remainders}(\sigma, n, \alpha)$

 $\Rightarrow q_{\alpha}^{\mathsf{conc}}(\mathbf{Y}) \propto \sqrt{n} \mathbb{E}\left[\| \overline{\mathbf{Y}}_{W} - \overline{W} \, \overline{\mathbf{Y}} \|_{\infty} | \mathbf{Y} \right] + \mathsf{remainders}(\sigma, n, \alpha)$

$$\mathbb{E}\left[\|\overline{\mathbf{Y}}_{W} - \overline{W}\,\overline{\mathbf{Y}}\|_{\infty}|\mathbf{Y}\right] \simeq \mathbb{E}\left[\|\overline{\mathbf{Y}}_{W} - \overline{W}\,\overline{\mathbf{Y}}\|_{\infty}\right]$$

$$\mathbb{E}\left[\|\overline{\mathbf{Y}} - \mu\|_{\infty}\right] \propto \mathbb{E}\left[\|\overline{\mathbf{Y}}_{W} - \overline{W}\overline{\mathbf{Y}}\|_{\infty}\right]$$

$$\|\overline{\mathbf{Y}} - \mu\|_{\infty} \simeq \mathbb{E}\left[\|\overline{\mathbf{Y}} - \mu\|_{\infty}\right]$$

troduction Resampling

Concentration method

Quantile method

•

Step-down procedure

Conclusion

Concentration method : three ideas

$$\|\overline{\mathbf{Y}} - \mu\|_{\infty} \simeq \mathbb{E}\left[\|\overline{\mathbf{Y}} - \mu\|_{\infty}\right]$$

$$\mathbb{E}\left[\|\overline{\mathbf{Y}} - \mu\|_{\infty}\right] \propto \mathbb{E}\left[\|\overline{\mathbf{Y}}_{W} - \overline{W}\,\overline{\mathbf{Y}}\|_{\infty}\right]$$

$$\mathbb{E}\left[\|\overline{\mathbf{Y}}_{W} - \overline{W}\,\overline{\mathbf{Y}}\|_{\infty}|\mathbf{Y}\right] \simeq \mathbb{E}\left[\|\overline{\mathbf{Y}}_{W} - \overline{W}\,\overline{\mathbf{Y}}\|_{\infty}\right]$$

$$\Rightarrow q_{\alpha}^{\mathsf{conc}}(\mathbf{Y}) \propto \sqrt{n} \mathbb{E}\left[\| \overline{\mathbf{Y}}_{W} - \overline{W} \, \overline{\mathbf{Y}} \|_{\infty} | \mathbf{Y} \right] + \mathsf{remainders}(\sigma, n, \alpha)$$

Introduction 0000000000	Resampling 000000	Concentration method ○●○○○○○○	Quantile method 00000	Step-down procedure	Conclusion
First res	sult				

Theorem

W exchangeable (Efron, Rademacher, Random hold-out, Leave-one-out). For every $\alpha \in (0; 1)$,

$$q_{\alpha}^{conc,1}(\mathbf{Y}) := \frac{\sqrt{n}\mathbb{E}\left[\|\overline{\mathbf{Y}}_{W} - \overline{W}\,\overline{\mathbf{Y}}\|_{\infty}|\mathbf{Y}\right]}{B_{W}} + \sigma\overline{\Phi}^{-1}(\alpha/2)\left[\frac{C_{W}}{\sqrt{n}B_{W}} + 1\right]$$

satisfies

$$\mathbb{P}\left(\sqrt{n}\|\overline{\mathbf{Y}}-\mu\|_{\infty}> \pmb{q}^{\textit{conc},1}_{lpha}(\mathbf{Y})
ight)\leq lpha$$

with $\sigma^2 := \max_k \operatorname{var}(Y_k^1)$, and

$$B_W := \mathbb{E}\bigg(\frac{1}{n}\sum_{i=1}^n (W_i - \overline{W})^2\bigg)^{1/2} > 0 \quad \text{et} \quad C_W := \bigg[(n/(n-1))\mathbb{E}(W_1 - \overline{W})^2\bigg]^{1/2}$$

19/37

Introduction 0000000000	Resampling 000000	Concentration method 00●00000	Quantile method 00000	Step-down procedure	Conclusion
Sketch	of the p	roof			

• Expectations :

$\mathbb{E}\left[\|\overline{\mathbf{Y}} - \boldsymbol{\mu}\|_{\infty}\right] = B_W^{-1} \mathbb{E}\left[\|\overline{\mathbf{Y}}_W - \overline{W}\,\overline{\mathbf{Y}}\|_{\infty}\right]$

- Gaussian concentration theorem for $\|\overline{\mathbf{Y}} \mu\|_{\infty}$: standard deviation $\leq \sigma n^{-1/2}$
- Gaussian concentration theorem for $\mathbb{E}\left[\|\overline{\mathbf{Y}}_W \overline{W}\,\overline{\mathbf{Y}}\|_{\infty}\right]$: standard deviation $\leq C_W \sigma n^{-1}$

Introduction 0000000000	Resampling 000000	Concentration method 00●00000	Quantile method 00000	Step-down procedure	Conclusion
Sketch o	of the p	roof			

• Expectations :

$$\mathbb{E}\left[\|\overline{\mathbf{Y}} - \mu\|_{\infty}\right] = B_{W}^{-1}\mathbb{E}\left[\|\overline{\mathbf{Y}}_{W} - \overline{W}\,\overline{\mathbf{Y}}\|_{\infty}\right]$$

- Gaussian concentration theorem for $\|\overline{\mathbf{Y}} \mu\|_{\infty}$: standard deviation $\leq \sigma n^{-1/2}$
- Gaussian concentration theorem for $\mathbb{E}\left[\|\overline{\mathbf{Y}}_W \overline{W}\,\overline{\mathbf{Y}}\|_{\infty}\right]$: standard deviation $\leq C_W \sigma n^{-1}$

Introduction 0000000000	Resampling 000000	Concentration method 00●00000	Quantile method 00000	Step-down procedure	Conclusion
Sketch o	of the p	roof			

• Expectations :

$$\mathbb{E}\left[\|\overline{\mathbf{Y}} - \mu\|_{\infty}\right] = B_W^{-1} \mathbb{E}\left[\|\overline{\mathbf{Y}}_W - \overline{W}\,\overline{\mathbf{Y}}\|_{\infty}\right]$$

- Gaussian concentration theorem for $\|\overline{\mathbf{Y}} \mu\|_{\infty}$: standard deviation $\leq \sigma n^{-1/2}$
- Gaussian concentration theorem for $\mathbb{E}\left[\|\overline{\mathbf{Y}}_W \overline{W}\,\overline{\mathbf{Y}}\|_{\infty}\right]$: standard deviation $\leq C_W \sigma n^{-1}$

Introduction 0000000000	Resampling 000000	Concentration method 000●0000	Quantile method 00000	Step-down procedure	Conclusion
Remarks	5				

- B_W and C_W are independent from K and easy to compute. In most cases, $C_W B_W^{-1} = \mathcal{O}(1)$.
- ||·||∞ can be replaced by ||·||_p, p ≥ 1, or by sup_k (·)₊
 ⇒ different shapes for the confidence regions.
- True for any exchangeable weight vector. Can be generalized to V-fold cross-validation weights (with $C_W B_W^{-1} \approx \sqrt{n/V}$)
- Can be extended (with larger constants) to symmetric bounded variables.
- Almost deterministic threshold.

Introduction 0000000000	Resampling 000000	Concentration method 000●0000	Quantile method 00000	Step-down procedure	Conclusion
Remarks	5				

- B_W and C_W are independent from K and easy to compute. In most cases, $C_W B_W^{-1} = \mathcal{O}(1)$.
- $\|\cdot\|_{\infty}$ can be replaced by $\|\cdot\|_p$, $p \ge 1$, or by $\sup_k (\cdot)_+$ \Rightarrow different shapes for the confidence regions.
- True for any exchangeable weight vector. Can be generalized to V-fold cross-validation weights (with $C_W B_W^{-1} \approx \sqrt{n/V}$)
- Can be extended (with larger constants) to symmetric bounded variables.
- Almost deterministic threshold.

Introduction 0000000000	Resampling 000000	Concentration method 000●0000	Quantile method 00000	Step-down procedure	Conclusion
Remarks	5				

- B_W and C_W are independent from K and easy to compute. In most cases, $C_W B_W^{-1} = \mathcal{O}(1)$.
- $\|\cdot\|_{\infty}$ can be replaced by $\|\cdot\|_p$, $p \ge 1$, or by $\sup_k (\cdot)_+$ \Rightarrow different shapes for the confidence regions.
- True for any exchangeable weight vector. Can be generalized to V-fold cross-validation weights (with $C_W B_W^{-1} \approx \sqrt{n/V}$)
- Can be extended (with larger constants) to symmetric bounded variables.
- Almost deterministic threshold.

Introduction 0000000000	Resampling 000000	Concentration method 000●0000	Quantile method 00000	Step-down procedure	Conclusion
Remarks	5				

- B_W and C_W are independent from K and easy to compute. In most cases, $C_W B_W^{-1} = \mathcal{O}(1)$.
- $\|\cdot\|_{\infty}$ can be replaced by $\|\cdot\|_p$, $p \ge 1$, or by $\sup_k (\cdot)_+$ \Rightarrow different shapes for the confidence regions.
- True for any exchangeable weight vector. Can be generalized to V-fold cross-validation weights (with $C_W B_W^{-1} \approx \sqrt{n/V}$)
- Can be extended (with larger constants) to symmetric bounded variables.
- Almost deterministic threshold.

Introduction 0000000000	Resampling 000000	Concentration method 000●0000	Quantile method 00000	Step-down procedure	Conclusion
Remarks	5				

- B_W and C_W are independent from K and easy to compute. In most cases, $C_W B_W^{-1} = \mathcal{O}(1)$.
- $\|\cdot\|_{\infty}$ can be replaced by $\|\cdot\|_p$, $p \ge 1$, or by $\sup_k (\cdot)_+$ \Rightarrow different shapes for the confidence regions.
- True for any exchangeable weight vector. Can be generalized to V-fold cross-validation weights (with $C_W B_W^{-1} \approx \sqrt{n/V}$)
- Can be extended (with larger constants) to symmetric bounded variables.
- Almost deterministic threshold.

Choico	of the w	wights			
0000000000	000000	00000000	00000	0000	
Introduction	Resampling	Concentration method	Quantile method	Step-down procedure	Conclusion

Choice of the weights

Accuracy : ratio C_W/B_W in the deviation term

Complexity when computing $\mathbb{E}[\cdot|\overline{\mathbf{Y}}]$: cardinal of the support of $W = (W_i)_i$

Weight	Accuracy C_W/B_W	Complexity
Efron	$\leq \frac{1}{2}(1-\frac{1}{n})^{-n} \xrightarrow[n \to \infty]{} \frac{e}{2}$	n ⁿ
Rademacher	$\leq (1-n^{-1/2})^{-1} \xrightarrow[n \to \infty]{} 1$	2 ⁿ
R. ho. (<i>n</i> /2)	$=\sqrt{rac{n}{n-1}} \xrightarrow[n \to \infty]{} 1$	$\binom{n}{n/2} \propto n^{-1/2} 2^n$
Leave-one-out	$=\sqrt{rac{n}{n-1}} \xrightarrow[n \to \infty]{} 1$	п
regular V-fold cv.	$=\sqrt{rac{n}{V-1}}$	V

For all exchangable weights, $C_W/B_W \ge \sqrt{n/(n-1)}$. \Rightarrow Leave-one-out and regular V-fold c.-v. seem good (V to be chosen). 22/37

Chaica	oooooo		00000	0000		
Choice of the weights						

Accuracy: ratio C_W/B_W in the deviation term **Complexity** when computing $\mathbb{E}[\cdot|\overline{\mathbf{Y}}]$: cardinal of the support of $W = (W_i)_i$

Weight	Accuracy C_W/B_W	Complexity
Efron	$\leq \frac{1}{2}(1-\frac{1}{n})^{-n} \xrightarrow[n \to \infty]{} \frac{e}{2}$	n ⁿ
Rademacher	$\leq (1-n^{-1/2})^{-1} \xrightarrow[n \to \infty]{} 1$	2 ⁿ
R. ho. (<i>n</i> /2)	$=\sqrt{rac{n}{n-1}} \xrightarrow[n \to \infty]{} 1$	$\binom{n}{n/2} \propto n^{-1/2} 2^n$
Leave-one-out	$=\sqrt{rac{n}{n-1}} \xrightarrow[n \to \infty]{} 1$	п
regular V-fold cv.	$=\sqrt{rac{n}{V-1}}$	V

For all exchangable weights, $C_W/B_W \ge \sqrt{n/(n-1)}$. \Rightarrow **Leave-one-out** and **regular** *V*-fold c.-v. seem good (*V* to be chosen). 22/37
Chaica	ب مطلع کم	مخطعة م			
Introduction 0000000000	Resampling 000000	Concentration method 00000000	Quantile method 00000	Step-down procedure	Conclusion

Accuracy: ratio C_W/B_W in the deviation term **Complexity** when computing $\mathbb{E}[\cdot|\overline{\mathbf{Y}}]$: cardinal of the support of $W = (W_i)_i$

Weight	Accuracy C_W/B_W	Complexity
Efron	$\leq \frac{1}{2}(1-\frac{1}{n})^{-n} \xrightarrow[n \to \infty]{} \frac{e}{2}$	n ⁿ
Rademacher	$\leq (1-n^{-1/2})^{-1} \xrightarrow[n \to \infty]{} 1$	2 ⁿ
R. ho. (<i>n</i> /2)	$= \sqrt{\frac{n}{n-1}} \xrightarrow[n \to \infty]{} 1$	$\binom{n}{n/2} \propto n^{-1/2} 2^n$
Leave-one-out	$= \sqrt{\frac{n}{n-1}} \xrightarrow[n \to \infty]{} 1$	п
regular V-fold cv.	$=\sqrt{rac{n}{V-1}}$	V

For all exchangable weights, $C_W/B_W \ge \sqrt{n/(n-1)}$.

 \Rightarrow **Leave-one-out**and**regular**V-fold c.-v. seem good (V to be chosen). 22

Choice	of the w	voighte			
Introduction 0000000000	Resampling 000000	Concentration method	Quantile method	Step-down procedure	Conclusion

Accuracy: ratio C_W/B_W in the deviation term **Complexity** when computing $\mathbb{E}[\cdot|\overline{\mathbf{Y}}]$: cardinal of the support of $W = (W_i)_i$

Weight	Accuracy C_W/B_W	Complexity
Efron	$\leq \frac{1}{2}(1-\frac{1}{n})^{-n} \xrightarrow[n \to \infty]{} \frac{e}{2}$	n ⁿ
Rademacher	$\leq (1-n^{-1/2})^{-1} \xrightarrow[n \to \infty]{} 1$	2 ⁿ
R. ho. (<i>n</i> /2)	$=\sqrt{\frac{n}{n-1}} \xrightarrow[n \to \infty]{} 1$	$\binom{n}{n/2} \propto n^{-1/2} 2^n$
Leave-one-out	$= \sqrt{\frac{n}{n-1}} \xrightarrow[n \to \infty]{} 1$	п
regular V-fold cv.	$=\sqrt{\frac{n}{V-1}}$	V

For all exchangable weights, $C_W/B_W \ge \sqrt{n/(n-1)}$. \Rightarrow Leave-one-out and regular *V*-fold c.-v. seem good (*V* to be chosen).

If $q_{\alpha}^{\text{conc},1}(\mathbf{Y})$ was constant, we would take min $\left(q_{\alpha}^{\text{conc},1}(\mathbf{Y}), t_{\alpha}^{\text{Bonf}}\right)$ as threshold.

Theorem

Same assumptions as Thm. 1. Then, $\forall \alpha, \delta \in (0; 1)$, the threshold $q_{\alpha}^{conc,2}(\mathbf{Y})$ equal to

$$\min\left(t_{\alpha(1-\delta)}^{Bonf}, \frac{\mathbb{E}\left[\sqrt{n}\|\overline{\mathbf{Y}}_{W-\overline{W}}\|_{\infty}|\mathbf{Y}\right]}{B_{W}} + \sigma\overline{\Phi}^{-1}(\alpha(1-\delta)/2) + \frac{\sigma C_{W}}{\sqrt{n}B_{W}}\overline{\Phi}^{-1}(\alpha\delta/2)\right)$$

satisfies

$$\mathbb{P}\left(\sqrt{n}\|\overline{\mathbf{Y}}-\mu\|_{\infty} > q_{\alpha}^{conc,2}(\mathbf{Y})\right) \leq \alpha$$

 $\Rightarrow q_{\alpha}^{\text{conc},2}(\mathbf{Y})$ always better than $q_{\alpha}^{\text{conc},1}(\mathbf{Y})$ and Bonferroni threshold (up to δ)

If $q_{\alpha}^{\text{conc},1}(\mathbf{Y})$ was constant, we would take min $\left(q_{\alpha}^{\text{conc},1}(\mathbf{Y}), t_{\alpha}^{\text{Bonf}}\right)$ as threshold.

Theorem

Same assumptions as Thm. 1. Then, $\forall \alpha, \delta \in (0; 1)$, the threshold $q_{\alpha}^{conc,2}(\mathbf{Y})$ equal to

$$\min\left(t_{\alpha(1-\delta)}^{Bonf}, \frac{\mathbb{E}\left[\sqrt{n}\|\overline{\mathbf{Y}}_{W-\overline{W}}\|_{\infty}|\mathbf{Y}\right]}{B_{W}} + \sigma\overline{\Phi}^{-1}(\alpha(1-\delta)/2) + \frac{\sigma C_{W}}{\sqrt{n}B_{W}}\overline{\Phi}^{-1}(\alpha\delta/2)\right)$$

satisfies

$$\mathbb{P}\left(\sqrt{n}\|\overline{\mathbf{Y}} - \mu\|_{\infty} > q_{\alpha}^{\textit{conc},2}(\mathbf{Y})\right) \leq \alpha$$

 $\Rightarrow q_{\alpha}^{\text{conc},2}(\mathbf{Y})$ always better than $q_{\alpha}^{\text{conc},1}(\mathbf{Y})$ and Bonferroni threshold (up to δ)

Introduction 0000000000	Resampling 000000	Concentration method	Quantile method ●0000	Step-down procedure	Conclusion
Method					

- Rademacher weights : W_i i.i.d. $\sim \frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1$
- Resampling heuristics suggests that $q_{\alpha}^{\text{quant}}(\mathbf{Y})$, the (1α) quantile of

$$\mathcal{L}\left(\sqrt{n}\|\overline{\mathbf{Y}}_W - \overline{W}\,\overline{\mathbf{Y}}\|_{\infty}\right|\mathbf{Y}\right)$$

should satisfy $\mathbb{P}\left(\|\overline{\mathbf{Y}} - \mu\|_{\infty} > q_{\alpha}^{\mathsf{quant}}(\mathbf{Y})\right) \leq \alpha$.

$$\begin{aligned} q_{\alpha}^{\text{quant}}(\mathbf{Y}) &= \inf \left\{ x \Big| \mathbb{P}_{W}(\sqrt{n} || \overline{\mathbf{Y}} - \mu ||_{\infty} > x) \leq \alpha \right\} \\ &= \inf \left\{ x \Big| 2^{-n} \sum_{w \in \{-1,1\}^{n}} \mathbf{1} \Big[\sqrt{n} \Big| \Big| \frac{1}{n} \sum_{i=1}^{n} w_{i}(Y^{i} - \overline{\mathbf{Y}}) \Big| \Big|_{\infty} > x \Big] \leq \alpha \right] \end{aligned}$$

Introduction 0000000000	Resampling 000000	Concentration method	Quantile method 0●000	Step-down procedure	Conclusion
Theoren	n				

Theorem

Let $\alpha,\delta,\gamma\in(0,1)$ and f a non-negative threshold with FWER bounded by $\alpha\gamma/2$:

$$\mathbb{P}\left(\sqrt{n}\|\overline{\mathbf{Y}}-\mu\| > f(\mathbf{Y})\right) \leq \frac{\alpha\gamma}{2}$$

Then,

$$q^{quant+f}_{lpha}(\mathbf{Y}) = q^{quant}_{lpha(1-\delta)(1-\gamma)}(\mathbf{Y}) + \sqrt{rac{2\log(2/(\delta lpha))}{n}}f(\mathbf{Y})$$

has a FWER bounded by α :

$$\mathbb{P}\left(\sqrt{n}\|\overline{\mathbf{Y}}-\boldsymbol{\mu}\| > \boldsymbol{q}_{\alpha}^{quant+f}(\mathbf{Y})\right) \leq \alpha$$

Introduction 0000000000	Resampling 000000	Concentration method	Quantile method	Step-down procedure	Conclusion
Remarks	5				

- Uses only the symmetry of Y around its mean
- The threshold f only appears in a second-order term.
- Gaussian case \Rightarrow three thresholds : take f among $t_{\alpha\gamma/2}^{\text{Bonf}}$, $q_{\alpha\gamma/2}^{\text{conc},1}$ and $q_{\alpha\gamma/2}^{\text{conc},2}$.
- In simulation experiments, f is almost unnecessary.

Introduction 0000000000	Resampling 000000	Concentration method	Quantile method 00●00	Step-down procedure	Conclusion
Remark	S				

- Uses only the symmetry of Y around its mean
- The threshold f only appears in a second-order term.
- Gaussian case \Rightarrow three thresholds : take f among $t_{\alpha\gamma/2}^{\text{Bonf}}$, $q_{\alpha\gamma/2}^{\text{conc},1}$ and $q_{\alpha\gamma/2}^{\text{conc},2}$.
- In simulation experiments, *f* is almost unnecessary.

Introduction 0000000000	Resampling 000000	Concentration method	Quantile method 00●00	Step-down procedure	Conclusion
Remark	S				

- Uses only the symmetry of Y around its mean
- The threshold f only appears in a second-order term.
- Gaussian case \Rightarrow three thresholds : take f among $t_{\alpha\gamma/2}^{\text{Bonf}}$, $q_{\alpha\gamma/2}^{\text{conc},1}$ and $q_{\alpha\gamma/2}^{\text{conc},2}$.
- In simulation experiments, *f* is almost unnecessary.

Introduction 0000000000	Resampling 000000	Concentration method	Quantile method 00●00	Step-down procedure	Conclusion
Remark	S				

- Uses only the symmetry of Y around its mean
- The threshold f only appears in a second-order term.
- Gaussian case \Rightarrow three thresholds : take f among $t_{\alpha\gamma/2}^{\text{Bonf}}$, $q_{\alpha\gamma/2}^{\text{conc},1}$ and $q_{\alpha\gamma/2}^{\text{conc},2}$.
- In simulation experiments, f is almost unnecessary.

Introduction Resampling Concentration method Quantile method $\sigma = 1$ Conclusion Conclusion $K = 16384, \sigma = 1$

$$\sup_{1 \le k \le K} \left\{ \overline{\mathbf{Y}}_k - \mu_k \right\} \ge \sup_{\mu_k = 0} \left\{ \overline{\mathbf{Y}}_k - \mu_k \right\}$$

31/37

Introduction 0000000000	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure ○●○○	Conclusion
Step-dov	wn proce	edure			

Introduction 0000000000	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure ○●○○	Conclusion
Step-dov	wn proce	edure			

Empirical means

Bonf. : t = 0.148

Quant+Bonf : t = 0.123

Uncentered quant. : t = 0.122 (=S-d Q+B)

Holm : t = 0.146

Quant. : t = 0.10634/3

Introduction 0000000000	Resampling 000000	Concentration method	Quantile method	Step-down procedure	Conclusion
Conclus	ions				

- concentration method (almost deterministic threshold)
- quantile method, with symmetrization techniques
- FWER controlled by α
- non-asymptotic
- better than Bonferroni if there are enough correlations
- step-down procedures

Introduction 0000000000	Resampling 000000	Concentration method	Quantile method	Step-down procedure	Conclusion
Conclus	ions				

- concentration method (almost deterministic threshold)
- quantile method, with symmetrization techniques

$\bullet~{\rm FWER}$ controlled by α

- on non-asymptotic
- better than Bonferroni if there are enough correlations
- step-down procedures

Introduction 0000000000	Resampling 000000	Concentration method	Quantile method	Step-down procedure	Conclusion
Conclus	ions				

- concentration method (almost deterministic threshold)
- quantile method, with symmetrization techniques
- $\bullet~{\rm FWER}$ controlled by α
- non-asymptotic
- better than Bonferroni if there are enough correlations
- step-down procedures

Introduction 0000000000	Resampling 000000	Concentration method	Quantile method	Step-down procedure	Conclusion
Conclus	ions				

- concentration method (almost deterministic threshold)
- quantile method, with symmetrization techniques
- $\bullet\,$ FWER controlled by α
- on non-asymptotic
- better than Bonferroni if there are enough correlations
- step-down procedures

Introduction 0000000000	Resampling 000000	Concentration method	Quantile method	Step-down procedure	Conclusion
Conclus	ions				

- concentration method (almost deterministic threshold)
- quantile method, with symmetrization techniques
- $\bullet\,$ FWER controlled by α
- on non-asymptotic
- better than Bonferroni if there are enough correlations
- step-down procedures

Introduction 0000000000	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Future v	works				

- FDR instead of FWER ?
- Theoretical study of power (with regular μ) ?
- Self-contained result for quantiles (without f) ?
- Quantiles with other weights ?
- Quantiles without the symmetry assumption ?
- Real-data sets ?

Introduction 0000000000	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Future v	vorks				

- FDR instead of FWER ?
- Theoretical study of power (with regular μ) ?
- Self-contained result for quantiles (without f) ?
- Quantiles with other weights ?
- Quantiles without the symmetry assumption ?
- Real-data sets ?

Introduction 0000000000	Resampling 000000	Concentration method	Quantile method 00000	Step-down procedure	Conclusion
Future v	vorks				

- FDR instead of FWER ?
- Theoretical study of power (with regular μ) ?
- Self-contained result for quantiles (without f) ?
- Quantiles with other weights ?
- Quantiles without the symmetry assumption ?
- Real-data sets ?

Introduction	Resampling	Concentration method	Quantile method	Step-down procedure	Conclusion

Thank you for your attention !