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Model

Observations : Y = (Y 1, . . . ,Y n) =


Y 1

1 . . . Y n
1

...
...

...
...

Y 1
K . . . Y n

K


Y 1, . . . ,Y n ∈ RK i.i.d. symmetric, e.g. N (µ,Σ)

Unknown mean µ = (µk)k

Unknown covariance matrix Σ

Known upper bound σ2 ≥ maxk var(Y 1
k )

n << K .

Aims : Find {k s.t. µk 6= 0}. + Confidence region for µ
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Example : (neuro)images

K pixels, each pixel k has an intensity Yk

n repetitions (independent copies)

n � K

⇒ where is there some signal ?

Spatial dependence ⇒ correlations

The true distance may be unknown

Distant correlations are possible (non-markovian noise).

⇒ unknown correlations

n series of images ⇒ spatial and time correlations
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Example : simulation experiment

Yt = µt + Gt t ∈ T2
m = (Z/mZ)2 K = m2

G = N ∗ F

N = white noise on T2
m

F : T2
m → R such that

∑
t F (t)2 = 1.

⇒ G stationary Gaussian process on T2
m, centered, with variance 1.

20 40 60 80 100 120

20

40

60

80

100

120

(b = 20, m = 128)

Fb(t) = Cb exp
(
−dT2

m
(0, t)2/b2

)
b = bandwidth

correlations increase with b.
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(Gt)t∈T2
m

with m = 128 : bandwith ↔ correlations
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Multiple Simultaneous Hypothesis Testing

For every k we test : H0,k : ”µk = 0” against H1,k : ”µk 6= 0”.

A multiple testing procedure rejects :

R(Y) ⊂ {1, . . . ,K} .

Type I errors measured by the Family Wise Error Rate :

FWER(R) = P (∃k ∈ R(Y) s.t.µk = 0) .

⇒ build a procedure R such that FWER(R) ≤ α?

• strong control of the FWER : ∀µ ∈ Rk , not only µ = 0

• |R| as large as possible
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Thresholding

R(Y) = {k s.t.
√

n|Yk | > t},

where

Y = 1
n

∑n
i=1 Y i empirical mean

t = tα(Y) threshold (independent from k ∈ {1, . . . ,K}).

FWER(R) = P(∃k s.t. µk = 0 and
√

n|Yk | > t)

≤ P(∃k s.t.
√

n|Yk − µk | > t)

= P
(
‖Y − µ‖∞ > tn−1/2

)
⇒ confidence region and control of the FWER
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Bonferroni threshold

Union bound :

FWER(R) ≤ K sup
k

P(
√

n|Yk − µk | > t)

≤ 2KΦ(t/σ),

where Φ is the standard Gaussian upper tail function.

Bonferroni’s threshold : tBonf
α = σΦ

−1
(α/(2K )).

• deterministic threshold

• too conservative if there are strong correlations between the
coordinates Yk

(K ↔ 1 if Y1 = · · · = YK )

How to do better ?
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Ideal threshold

FWER(R) ≤ P(∃ k s.t.
√

n|Yk − µk | > t)

≤ P(
√

n sup
k
|Yk − µk | > t)

Ideal threshold : t = q?
α, 1− α quantile of L

(√
n sup |Y − µ|

)
.

q?
α depends on Σ, unknown (and K 2 � Kn)

⇒ q?
α estimated by resampling.
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Goal

Find a threshold tα(Y) such that

(Pα) : P(
√

n||Y − µ||∞ > tα(Y)) ≤ α.

If R = {k s.t.
√

n|Yk | > tα(Y)}, FWER(R) ≤ α.

(Pα) gives a confidence ball for µ.

Non-asymptotic : ∀K , n

tα(Y) should be close to q?
α
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Resampling principle [Efron 1979 ; ...]

Sample Y 1, . . . ,Y n resampling−→ (W1,Y
1), . . . , (Wn,Y

n) weighted sample

Weight vector : (W1, . . . ,Wn), independent from Y

“Y i is kept Wi times in the resample”

Example : Efron’s bootstrap ⇔ n-sample with replacement
⇔ (W1, . . . ,Wn) ∼M(n; n−1, . . . n−1)

Heuristics : (true distribution, sample) ≈ (sample, resample)
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Examples of resampling weights

Efron’s bootstrap : (W1, . . . ,Wn) ∼M(n; n−1, . . . n−1)

Rademacher : Wi iid ∼ 1
2δ−1 + 1

2δ1

Random hold-out : Wi = 21i∈I , I uniform over subsets of
{1, . . . , n} of cardinality n/2

Leave-one-out : Wi = n
n−11i 6=J , J ∼ U({1, . . . , n})

V -fold cross-validation : Wi = V
V−11i /∈BJ

, J ∼ U({1, . . . ,V })
for some partition B1, . . . ,BV of {1, . . . , n}
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Quantile method

Ideal threshold : q?
α, 1− α quantile of L

(√
n‖Y − µ‖∞

)
⇒ Resampling estimate of q?

α :
qquant

α (Y), 1− α quantile of L
(√

n‖YW −W Y‖∞|Y
)

YW :=
1

n

n∑
i=1

WiY
i Resampling empirical mean

W :=
1

n

n∑
i=1

Wi

qquant
α (Y) depends only on Y, so it can be computed with real data
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Concentration method

‖Y − µ‖∞ concentrates around its expectation,
standard-deviation ≤ σn−1/2

Estimate E
[
‖Y − µ‖∞

]
by resampling

⇒ qconc
α (Y) = cst×

√
nE

[
‖YW −W Y‖∞|Y

]
+ remainder(σ, α, n)

Works if expectations (∝
√

log(K )) are larger than fluctuations
(∝ n−1/2)
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Results from empirical process theory

(YW −W Y) =
1

n

n∑
i=1

(Wi −W )Y i = YW−W

⇒ Empirical bootstrap process

• Asymptotically (K fixed, n →∞): many results, e.g. [van der
Vaart and Wellner 1996]
⇒ both methods are asymptotically valid.

• Non-asymptotic results (learning theory, bounded case) :
Rademacher complexities [Koltchinskii 01], [Bartlett,
Boucheron and Lugosi 02]
Bootstrap penalization [Fromont 05].
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Classical procedures and existing results

Parametric statistics : no, because K � n.

Asymptotic results : not valid, because K � n.

Randomization tests : do not work if H0,k = {µk ≤ 0}.
And do not give confidence regions.

Holm’s procedure : unefficient with strong correlations
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Concentration method : three ideas

‖Y − µ‖∞ ' E
[
‖Y − µ‖∞

]

E
[
‖Y − µ‖∞

]
∝ E

[
‖YW −W Y‖∞

]
E

[
‖YW −W Y‖∞|Y

]
' E

[
‖YW −W Y‖∞

]

⇒ qconc
α (Y) ∝

√
nE

[
‖YW −W Y‖∞|Y

]
+ remainders(σ, n, α)
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First result

Theorem

W exchangeable (Efron, Rademacher, Random hold-out,
Leave-one-out). For every α ∈ (0; 1),

qconc,1
α (Y) :=

√
nE

[
‖YW −W Y‖∞|Y

]
BW

+σΦ
−1

(α/2)

[
CW√
nBW

+ 1

]
satisfies

P
(√

n‖Y − µ‖∞ > qconc,1
α (Y)

)
≤ α

with σ2 := maxk var(Y 1
k ), and

BW := E
�

1

n

nX
i=1

(Wi −W )2
�1/2

> 0 et CW :=

�
(n/(n − 1))E(W1 −W )2

�1/2
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Sketch of the proof

Expectations :

E
[
‖Y − µ‖∞

]
= B−1

W E
[
‖YW −W Y‖∞

]
Gaussian concentration theorem for ‖Y − µ‖∞ : standard
deviation ≤ σn−1/2

Gaussian concentration theorem for E
[
‖YW −W Y‖∞

]
:

standard deviation ≤ CW σn−1
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Remarks

BW and CW are independent from K and easy to compute.
In most cases, CW B−1

W = O(1).

‖·‖∞ can be replaced by ‖·‖p, p ≥ 1, or by supk (·)+
⇒ different shapes for the confidence regions.

True for any exchangeable weight vector.
Can be generalized to V -fold cross-validation weights (with
CW B−1

W ≈
√

n/V )

Can be extended (with larger constants) to symmetric
bounded variables.

Almost deterministic threshold.
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Choice of the weights

Accuracy : ratio CW /BW in the deviation term
Complexity when computing E[·|Y] : cardinal of the support of
W = (Wi )i

Weight Accuracy CW /BW Complexity

Efron ≤ 1
2(1− 1

n )−n −−−→
n→∞

e
2 nn

Rademacher ≤ (1− n−1/2)−1 −−−→
n→∞

1 2n

R. h.-o. (n/2) =
√

n
n−1 −−−→n→∞

1
( n
n/2

)
∝ n−1/22n

Leave-one-out =
√

n
n−1 −−−→n→∞

1 n

regular V -fold c.-v. =
√

n
V−1 V

For all exchangable weights, CW /BW ≥
√

n/(n − 1).
⇒ Leave-one-out and regular V -fold c.-v. seem good (V to be
chosen).
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Simulations : n = 1000, K = 16384, σ = 1
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Second concentration threshold

If qconc,1
α (Y) was constant, we would take min

(
qconc,1

α (Y), tBonf
α

)
as threshold.

Theorem

Same assumptions as Thm. 1. Then, ∀α, δ ∈ (0; 1), the threshold

qconc,2
α (Y) equal to

min

0
@tBonf

α(1−δ),
E
h√

n‖YW−W ‖∞
��Yi

BW
+ σΦ

−1
(α(1− δ)/2) +

σCW√
nBW

Φ
−1

(αδ/2)

1
A

satisfies
P

(√
n‖Y − µ‖∞ > qconc,2

α (Y)
)
≤ α

⇒ qconc,2
α (Y) always better than qconc,1

α (Y) and Bonferroni
threshold (up to δ)
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Method

Rademacher weights : Wi i.i.d. ∼ 1
2δ−1 + 1

2δ1

Resampling heuristics suggests that qquant
α (Y), the (1− α)

quantile of
L

(√
n‖YW −W Y‖∞

∣∣Y)
should satisfy P

(
‖Y − µ‖∞ > qquant

α (Y)
)
≤ α.

qquant
α (Y) = inf

{
x
∣∣PW (

√
n||Y − µ||∞ > x) ≤ α

}
= inf

{
x

∣∣∣∣2−n
∑

w∈{−1,1}n

1I

[√
n

∣∣∣∣∣∣∣∣1n
n∑

i=1

wi (Y
i − Y)

∣∣∣∣∣∣∣∣
∞

> x

]
≤ α

}
.
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Theorem

Theorem

Let α, δ, γ ∈ (0, 1) and f a non-negative threshold with FWER
bounded by αγ/2 :

P
(√

n‖Y − µ‖ > f (Y)
)
≤ αγ

2

Then,

qquant+f
α (Y) = qquant

α(1−δ)(1−γ)(Y) +

√
2 log(2/(δα))

n
f (Y)

has a FWER bounded by α :

P
(√

n‖Y − µ‖ > qquant+f
α (Y)

)
≤ α
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Remarks

Uses only the symmetry of Y around its mean

The threshold f only appears in a second-order term.

Gaussian case ⇒ three thresholds :
take f among tBonf

αγ/2, qconc,1
αγ/2 and qconc,2

αγ/2 .

In simulation experiments, f is almost unnecessary.
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Simulations : n = 1000, K = 16384, σ = 1
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Simulations : without the additive term ?
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Step-down procedure [Holm 1979 ; Westfall and Young
1993 ; Romano and Wolf 2005]

sup
1≤k≤K

{
Yk − µk

}
≥ sup

µk=0

{
Yk − µk

}
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Step-down procedure

Reorder the coordinates :∣∣Yσ(1)

∣∣ ≥ · · · ≥ ∣∣Yσ(K)

∣∣
Define the thresholds
tk = t(Yσ(k), . . . ,Yσ(K)) for
k = 1, . . . ,K

Define k̂ =
max

{
k s.t.∀k ′ ≤ k,Yσ(k ′) > tk ′(Y)

}
Reject H0,k for all k ≤ k̂

⇒ this procedure has a FWER controlled by α if each tk has (use
that tK = t((Yk)k∈K) is a non-decreasing function of K).
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Reject H0,k for all k ≤ k̂

⇒ this procedure has a FWER controlled by α if each tk has (use
that tK = t((Yk)k∈K) is a non-decreasing function of K).
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Numerical simulation : 0 ≤ µk ≤ 0.29, b = 24

Empirical means

Quant+Bonf :
t = 0.123

Bonf. : t = 0.148

Uncentered quant. :
t = 0.122 (=S-d Q+B)

Holm : t = 0.146

Quant. : t = 0.106
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Conclusions

Two multiple testing procedures, with resampling techniques :

concentration method (almost deterministic threshold)

quantile method, with symmetrization techniques

FWER controlled by α

non-asymptotic

better than Bonferroni if there are enough correlations

step-down procedures
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Theoretical study of power (with regular µ) ?

Self-contained result for quantiles (without f ) ?

Quantiles with other weights ?

Quantiles without the symmetry assumption ?

Real-data sets ?
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Thank you for your attention !
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