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Example : (neuro)images

o K pixels, each pixel k has an intensity Y
@ n repetitions (independent copies)
o Nk« K

=- where is there some signal ?

@ Spatial dependence = correlations
@ The true distance may be unknown

e Distant correlations are possible (non-markovian noise).

= unknown correlations

n series of images = spatial and time correlations
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Example : simulation experiment

Yi=p:+ G  teT2 =(Z/mz)> K=m’

e G=NxF
o N = white noise on T2,
o F:T2 — Rsuchthat 3, F(t)? = 1.

= G stationary Gaussian process on T2, centered, with variance 1.

Fu(t) = Cpexp (—dy2 (0, t)%/b%)

b = bandwidth
correlations increase with b.

(b =120, m=128)
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Multiple Simultaneous Hypothesis Testing

For every k we test : Ho : " = 0" against Hy o : "y # 07

A multiple testing procedure rejects :
R(Y)cCA{1,...,K}.
Type | errors measured by the Family Wise Error Rate :
FWER(R) =P (3k € R(Y)s.t. ux = 0).

= build a procedure R such that FWER(R) < a?
e strong control of the FWER : Vu € R, not only jt =0

e |R] as large as possible
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R(Y) = {kst.\/n|Y| > t},
where
o Y =1%" Y empirical mean
o t = t,(Y) threshold (independent from k € {1,...,K}).

FWER(R) = P(3k st. ux=0and vn|Yi| >1t)
< P(Ek st V/n|Yg— gl > t)
= P(IY = pllow > tn Y2

= confidence region and control of the FWER



Introduction
[e]eY Yolole}

Bonferroni threshold

Union bound :
FWER(R) < KsupP(v/n|Yx — ux| > t)
k
< 2K®(t/o),

where ® is the standard Gaussian upper tail function.



Introduction
[e]eY Yolole}

Bonferroni threshold

Union bound :
FWER(R) < KsupP(v/n|Yx — ux| > t)
k
< 2K®(t/o),

where ® is the standard Gaussian upper tail function.

Bonferroni's threshold : t2onf = (7671(@/(2K)).



Introduction
[e]eY Yolole}

Bonferroni threshold

Union bound :
FWER(R) < KsupP(v/n|Yx — ux| > t)
k

< 2K®(t/o),

where ® is the standard Gaussian upper tail function.

Bonferroni's threshold : t2onf = (7671(@/(2K)).
e deterministic threshold

e too conservative if there are strong correlations between the
coordinates Y
(K—1lifYi= = Yg)



Introduction
[e]eY Yolole}

Bonferroni threshold

Union bound :
FWER(R) < KsupP(v/n|Yx — ux| > t)
k

< 2K®(t/o),

where ® is the standard Gaussian upper tail function.

Bonferroni's threshold : t2onf = (7671(@/(2K)).
e deterministic threshold

e too conservative if there are strong correlations between the
coordinates Y
(K—1lifYi= = Yg)

How to do better ?
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Ideal threshold

FWER(R) P(3 kst 0¥ — ] > 1t)

<
< ]P’(ﬁstlip Yk — pu| > t)

Ideal threshold : t = g%, 1 — a quantile of £ (y/nsup|Y — p).

q depends on ¥, unknown (and K2 > Kn)

= g estimated by resampling.
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Goal

Find a threshold t,(Y) such that

(Pa): P(VnllY = pllos > ta(Y)) < a.

If R={kst. /a[Yi > ta(Y)}, FWER(R) < a.

e (P,) gives a confidence ball for p.
@ Non-asymptotic : VK, n
e t,(Y) should be close to g},
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Resampling principle [Efron 1979 ; ..]

Sample Y!, ...,Y" resampling (Wi, YY), ..., (W,, Y")  weighted sample

e Weight vector : (W4, ..., W,), independent from Y

o “Y'is kept W; times in the resample”

@ Example : Efron’s bootstrap < n-sample with replacement
e (Wh,...,W,) ~ M(n;nt,...n7 1)

Heuristics : (true distribution, sample) ~ (sample, resample)
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Examples of resampling weights

e Efron’s bootstrap : (W4, ..., W,) ~ M(n;nt,...n7 1)

o Rademacher : W; iid ~ 36_1 + 361

@ Random hold-out : W; = 21 ¢, I uniform over subsets of
{1,...,n} of cardinality n/2

o Leave-one-out : W; = L51;2y, J~U{1,...,n})

e V-fold cross-validation : W; = ¥51,¢5,, J ~U({1,...,V})
for some partition Bi,...,By of {1,...,n}
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Quantile method

Ideal threshold : g, 1 — o quantile of £ (v/n||Y — o)

= Resampling estimate of g}, : B -
ga"*™(Y), 1 — a quantile of £ (v/n||Yw — WY||x|Y)

_ 1 )
Yy :=— Z w;Y' Resampling empirical mean
nia
1 n
W= 2 W,
=

qd"*™(Y) depends only on Y, so it can be computed with real data
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Concentration method

o ||Y — 11]ls concentrates around its expectation,
standard-deviation < on~%/2

o Estimate E [||Y — p]ls] by resampling

- qgonc(Y) = cst X ﬁE [HVW — WVHOO‘Y] + remainder(o, Q, n)

Works if expectations (o< 1/log(K)) are larger than fluctuations
(o n™4/2)
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Results from empirical process theory

Y -WY) = -3 (W— W)Y = ¥y

n-

= Empirical bootstrap process

e Asymptotically (K fixed, n — o0): many results, e.g. [van der
Vaart and Wellner 1996]

= both methods are asymptotically valid.

e Non-asymptotic results (learning theory, bounded case) :
Rademacher complexities [Koltchinskii 01], [Bartlett,
Boucheron and Lugosi 02]

Bootstrap penalization [Fromont 05].



Resampling
oooe

Classical procedures and existing results

@ Parametric statistics : no, because K > n.

@ Asymptotic results : not valid, because K > n.



Resampling
oooe

Classical procedures and existing results

@ Parametric statistics : no, because K > n.

@ Asymptotic results : not valid, because K > n.

e Randomization tests : do not work if Hy x = {px < 0}.
And do not give confidence regions.



Resampling
oooe

Classical procedures and existing results

@ Parametric statistics : no, because K > n.

@ Asymptotic results : not valid, because K > n.

e Randomization tests : do not work if Hy x = {px < 0}.
And do not give confidence regions.

@ Holm's procedure : unefficient with strong correlations
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Concentration method : three ideas

1Y — pilloe ~ E[IIY — tf|oo]

E[IY = plloc] < E [[[Yw — W ¥l|oc]

E[IYw = WYlloo|Y] > E[[[¥w - WY|l]

= g="(Y) oc VR [|[¥Yw — WY||oo|Y] + remainders(a, n, )
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First result

Theorem

W exchangeable (Efron, Rademacher, Random hold-out,
Leave-one-out). For every a € (0;1),

conc, o \/EE [HVW o WV||OO|Y]
genel(y) = By +od ( /2) |:\/>BW —i—l}

satisfies

P (VallY = pllee > g5"H(Y)) < @

with 02 := max var(Y}), and

By = IE(% i(w,- —W)2> v >0 et Cy:= {(n/(n — 1))E(W, — W)? v
i=1
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Sketch of the proof

@ Expectations :
_ P— S
E[IY = plloe] = B E [[Yw = W Y]]
e Gaussian concentration theorem for ||Y — y||o : standard
deviation < on~1/2

@ Gaussian concentration theorem for E [[[Yyw — WY||s] :
standard deviation < Cyon!
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Remarks

@ By, and Cyy are independent from K and easy to compute.
In most cases, CWB;V1 =0(1).

@ ||||oc can be replaced by |[-||,, p > 1, or by sup, ()+
=> different shapes for the confidence regions.

@ True for any exchangeable weight vector.
Can be generalized to V-fold cross-validation weights (with
CWB;‘/l ~+/n/V)

@ Can be extended (with larger constants) to symmetric
bounded variables.

@ Almost deterministic threshold.
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Choice of the weights

Accuracy : ratio Cyy/By in the ieviation term
Complexity when computing E[-|Y] : cardinal of the support of

W = (W,);
’ Weight H Accuracy Cw//Bw \ Complexity ‘
Efron <s1-LHr—z¢ n"
n—oo
Rademacher <(1-ntY2)"t —1 2"
n—oo
~1/2
R. h-o. (n/2) - m 1 (n72) o n~1/2n
Leave-one-out Vg —— 1 n
n—oo
regular V-fold c-v. || = \/ o %

For all exchangable weights, Cyv/Bw > /n/(n—1).
= Leave-one-out and regular V-fold c.-v. seem good (V to be
chosen).



Concentration method
[elelelolo] }

Simulations : n = 1000, K = 16384, 0 =1

0.2 T T T T T T T
— conc
—— Bonferroni
0.18} ---- Est. true quantile ]
0.16f 1
e
.g N
g 0.14f \\ 1
\
ﬁ \\\.
=
0.12} e, ]
Smemany
AN T,
0.1}F ~ s ]
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Second concentration threshold

If g™ (Y) was constant, we would take min (qg’nc Loy), taBonf)
as threshold.

Theorem
Same assumptions as Thm. 1. Then, Vo, 6 € (0;1), the threshold

conc 2(

Y) equal to

E|ValYy _wleolY]
min (t(fffié)v [ VBVWW ] 4o 1

(a(1—8)/2) + \jﬁCW % a 6/2))

satisfies

P (VaY = oo > ™3(Y)) < a

= g>"?(Y) always better than g5°"“'(Y) and Bonferroni
threshold (up to ¢)




Simulations : n

Concentration method

, K=16384, 0 =1

0.2

0.18F

0.16F

— conc

- min(conc,bonf)
—— Bonferroni

-=--- Est. true quantile

0.14f

Threshold

0.12F

0.1F

0.08
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Method

e Rademacher weights : W; i.i.d. ~ %(5_1 + %51

quant

@ Resampling heuristics suggests that g5~ (Y), the (1 — «)

quantile of B L
£ (VA ¥w - WY |Y)

should satisfy P (Y — pflee > ga**™(Y)) < c.

gm(Y) = inf {x|Pw(v/Al[Y — pl|o > x) < @}

_ inf{x2_” Z 1[ﬁ N

*ZW,‘(YI' —Y)H > X:| <a
we{-1,1}n = 00 .

N
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Theorem

Theorem

Let o, 6,y € (0,1) and f a non-negative threshold with FWER
bounded by ary/2 :

P (VY -l > (V) < 5

Then,

uan uan 2log(2/(dcx
a2 (Y) = af7 50 (Y) g(n/( ))f(Y)

has a FWER bounded by «: :

P (VY =l > g (Y)) < a
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Remarks

@ Uses only the symmetry of Y around its mean

@ The threshold f only appears in a second-order term.

@ Gaussian case = three thresholds :

Bonf conc,1 conc,2
take f among tos)2r om)o and Doy 3 -

@ In simulation experiments, f is almost unnecessary.
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Simulations : n = 1000, K = 16384, 0 =1

Threshold

0.08

— conc

o min(conc,bonf)
—— quant+conc
s quant+bonf
—— Bonferroni

---- Est. true quantile
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Simulations : without the additive term 7

0.17

—— quant+conc
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- quant
4 gquant mini 1
v quant maxi
— Bonferroni
---- Est. true quantile

0.16}
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o
-
N

Threshold
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Step-down procedure [Holm 1979 ; Westfall and Young

1993 ; Romano and Wolf 2005]

sup {Yi — k) > SUP {¥Yi — i}

1<k<K
0.8+ T T T
* + sorted empirical means
—— thresholds
0.7+ A
06 S
0.5+ A
04 : B
03 "% \ |
0.2 . il
0.1 =
0 1
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@ Reorder the coordinates : o8
Yo 2+ 2 Yoy o
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@ Reorder the coordinates : o8
Yoy = = [You)] o
@ Define the thresholds 0s

ty = t(YJ(k), ces 7Y0'(K)) for oy
k - ].7 ey K =04
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Step-down procedure

@ Reorder the coordinates : o8
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Step-down procedure

@ Reorder the coordinates : o8
Yoy = = [You)] o
@ Define the thresholds os
ty = t(YJ(k), ces 7Y0'(K)) for oy
k — ].7 ey K o4

o Define k = B x
max{ks.t.Vk’ < k,YU(k/) > tk/(Y)} 0

Reject Hp x for all k < k I R )

0 10 20 30 40 50 60 70

= this procedure has a FWER controlled by « if each tx has (use
that tx = t((Y«)kex) is a non-decreasing function of K).
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Step-down procedure
oce

Numerical simulation : 0 < px <0.29, b =24

1) 1) 12
2 ® 0 100 120 2 E3 0 100 120 2 0 % 0 100 120

Empirical means Bonf. : t =0.148 Holm : t = 0.146

: - : -
1) 1)
2 E3 0 100 120 2 E3 0 100 120
100 120

Quant+Bonf : Uncentered quant. : Quant. : t =0.106
t=0.123 t =0.122 (=5-d Q+B)
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Future works

o FDR instead of FWER ?
@ Theoretical study of power (with regular ) ?

@ Self-contained result for quantiles (without f) ?
@ Quantiles with other weights ?

@ Quantiles without the symmetry assumption ?

@ Real-data sets 7



Conclusion

Thank you for your attention !
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