Conditions for validity

of re-sampling based
multiple testing

with applications In
genomics

1



Violeta Calian

Science Institute,University of Iceland
Dunhaga 3, 107 Reykjavik, Iceland

and

Jason C. Hsu

Department of Statistics, The Ohio State University
Columbus OH 43210, USA



Outline

1

2

3

4

3

6

. Problem, motivation and our solution

. Error rates and error control

. The MCP principle

. Models. Test statistics. Critical values

. Theoretical results on re-sampling distributions. Examples

. Conclusions



1 Problem,
motivation and

our solution



1.1 The problem

Inference for high-dimensional (d) multivariate distributions:
Huge number of hypotheses to be tested.

Data: X ~ Fx(kq, ks, ...)

where:

k., = cumulants of the unknown , multivariate distribution F'x



Model : function of 8 = (vector-) parameter

Sample X1, X2, ..., X™ ~ Fx(k1, ks, ...) (i.i.d)

m << d

sample estimate: 0 ~ P, (ky1, kx2, ...) = functional(F'y )

A

Re-sample: 60, ~ P,.(k,1, k2, ...) = functional( F'x )



Strategies for hypotheses testing:

Assume MVNormal distributions and do exact/approximate MCP

adjustments

Create empirical distributions by re-sampling methods and apply

MCP adjustments



1.2 Motivation: gene expression levels

microarray data

Clinical uses:

® Disease prognosis: Gene expression levels measured by
microarrays may be used to predict an individual’s prognosis
In a certain disease. For example, MammaPrint by Agendia
provides prognostics for breast cancer patients based on
expression levels in tumor samples measured by

microarrays.



e Pharmacogenomics: Pharmacogenomics is the
co-development of a drug that targets a subpopulation of the
patient population, as well as a device that can be used to
predicts whether a patient is in this subpopulation of
responders to the drug. An example of such a drug is

Herceptin for HER-2/neu positive breast cancer patients.



Developing a clinical device for prognostic or pharmacogenomics

iSs a 2-stage process:

The first stage: find marker genes to train a prognostic algorithm,

based on data with known disease outcomes. > uses

MCP to select genes.

The second stage: a separate clinical trial validating the

prediction algorithm, in terms of sensitivity and specificity.

10



1.3 Our solution

Hypotheses < > Parameters < >

Test statistics (T) < > x maxrl < >

critical values ¢y defined by P(max’T" > c¢;) = « so that:

P(more than m mistakes) < «
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The exact, theoretical distribution of the tests is compared with
the analytically derived re-sampling distributions, all being

expressed as:

functionals of the data underlying multivariate (unknown)

distributions.
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2 Error rates and error control

Testing the multiple null hypotheses Hy1, . .., Hyg
Type | errors: rejecting a true null hypothesis.

Type Il errors: failing to reject a false null hypothesis.

Impossible to be simultaneously minimized > solution:

Specify an acceptable level « for the Type | error rate. Then
select the procedure (in this class) which minimizes Type |l

(maximizes power).
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Error rate control, at ¢ - level should satisfy:

P(an Incorrect decision) < «. (1)
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1. the comparison-wise error rate:
each H; is tested so that P(reject Hy;) < «

when H; is true.
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2. the experiment-wise error rate
(weak control of the family-wise error rate):

when all H(; are true,

P(reject at least one Hy;) < «.
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3. the family-wise error rate (FWER), strongly controlled:

(control of the maximum Type | error rate)

regardless of which { Hy;, 1 € I}, I C {1,...,k}, are
true,

P(reject at least one Hy;, 1 € I) < a.
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4. the False Discovery Rate (FDR):

the expected proportion of incorrectly rejected (true) null

hypotheses is no more than « :

no. of true H; rejected
B 02 J. < a.
total no. of Hy; rejected

Consequence: good performance when majority of H; are

true.
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5. generalised family-wise error rates (QFWER):

P(reject more than m of true Hy;,7 € 1) < «

with m - a “reasonable” number.

gFWER at m = 0 is FWER.
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3 The MCP principle

( Stefansson et all (1988); FinnerStrassburger(2002))

Simple example: hypotheses to be tested: {6” =0},i=1,2
Partitioning principle creates the disjoint hypotheses:

05 = 0 AND 63 # 0

05 # 0 AND 07 = 0

05 = 0AND 02 = 0

(number of hypotheses: 2¢ — 1, with d = 2)

20



Conseqguences:
(1) at most one of the disjoint hypotheses can be true.
(i) we do not need any multiplicity adjustment

(iii) the number of disjoint hypotheses can be very large (if d is

large)
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More general form of Partitioning principle
Hypotheses to be tested Hy; : 00 € ©;, 1 € 1,

Scientific hypotheses to be proven: the complements @g, of

©,, ¢ € I, and their intersections.
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1. Partition | J,; ©; into disjoint ©%, J C I, as follows: For
each J C I,1et ©% = (1, ; ©;[((;¢; ©F)- Then
{©%, J C I}, including OF = ﬂje] @?, partition the
parameter space. Note that @} can be interpreted as the
part of the parameter space in which exactly Hy;, 2 € J,

are true, and Ho;, j ¢ J are false.
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2. Test each H(%DJ : 0 € ©F atlevel .. Since the null
hypotheses are disjoint, at most one null hypothesis is true.
Therefore, even though no multiplicity adjustment to the

levels of the tests is made, the probability of rejecting at least

one true null hypothesis is at most .
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3. ForallJ C I,inferf ¢ O ifall H}; suchthat J C J'
are rejected. That is, infer the intersection null hypothesis
Hy ; is false if all null hypotheses H [ ;, implying it are
rejected. In terms of useful scientific inference of rejecting
the original null hypotheses Hy;, © € I, since
0, = U, 5,; ©7, Partitioning rejects Hy; if all H(I)DJ such

that J O 7 are rejected.
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Notations:
Test statistic: T = (11,715, ...,T},)

1], ..., |g] random indices such that Ty} < --- < Tjg
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Step-down Algorithm

Step 1: If T[g] > Cy1]

step 2; else stop.

....[g]}» theninfer 64 7 0 and go to

Step 2: If T[g—l] > C(1],...,[g—1]} > then infer 9[9_1] # 0

and go to step 3; else stop.

Step g : If 171) > cqppy, then infer 0411y 7 0 and stop;

else stop.
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Conditions of validity

SO: A level-« test for H 1 should satisfy

S1:

S2:

supgece, Poimazxicr T; > cr} <

where Oy = {6 : 6, =0fori € Tand j # Oforj & I} (!
the supremum of this rejection probability may or may not
occuratty =--- =0, =0.)

Tests for all hypotheses are based on statistics

T;, 1 =1,...,g,whose values do not vary with H;;

The level-a test for Hj; is of the form of rejecting H [ if
max;cr 1; > cr;
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S3: Critical values cj have the property that if J C [ then
cr < cy.
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Comments

e Hochberg's (1988) method is a step-up version of the

Bonferroni test.

e Holm’s (1979) method is a step-down version of the

Bonferroni test.

e they both are special cases of Partitioning testing and
control FWER.

e Partitioning Is related to (although more fundamental than)
Closed Testing ( MarcusPeritzGabriel(1976)).
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4 Models. Test statistics. Critical values

Model 1: linear model

X=ux +eand Y = uvy +¢€

Hypotheses of interest: is there a difference between the mean -

vector - components of X and Y ?
0" = px — py
HO’i . (97’ =0

Data: observations X, Y7, with 3 = 1,2, ..., sample size.
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Model 2: linear mixed effects model
Xo=ux +24, +e¢€

and

Y, =uy+24,+ce¢

with:

Z ., - random (subject) effects and ux, puy - fixed (group)

effects, random effects and ¢ are independently distributed.

Hypotheses of interest: is there a difference between the mean -

vector - components of X and Y ?
0" = py — By
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Data: observations X,”, Y,”, with 8 =1,2,..., sample size

and o = 1, 2, ... within-subject-sample-size.

No normality assumptions.
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Test statistics

(i)TZ':Xi—Yi,Withi:1,2,...]€,SOT:X—Y

(1) standard multivariate t-test:

A

tstand — (k2 (T))_1/2T (2)

where ko ('T') = the estimated variance-covariance matrix > of

the random variable T
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In practice, an other version of this test is used:

tpract — (]%Q,dia,g(T))—l/ZT (3)
where (]%Q,diag(T))_l/2 = Z;Z.Z; and X444 is a diagonal

matrix with same diagonal elements as 2_.
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Relation between the 2 versions:

—1/2

diag Zl/Qtstand = stand (4)

tpract =)
(ka(tpract))ilw'”ia —

Z Qiljl Qisz " 'Qipja (ka (tstand))jle'”ja

1192---Ja
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5 Theoretical results on maxl’

re-sampling distributions

Types of re-sampling:

(1) with replacement (bootstrap) / without replacement

(permutations)
(i) from raw data (observations) / from model-residuals

Comparing the test statistic distributions obtained by various
re-sampling methods with the true distribution: in terms of

cumulants.
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Test statistic re-sampling distributions
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Proposition 1 (true distribution)

Let X ~ F'x, Y ~ Fy, and cumulants of general multivariate
(dimension K) distributions F'x, F'y exist and are finite (at least
up to some order q). Let T' = X — Y. Then the cumulants of

the test statistic true distribution F%j,.., are:

ka(Ttheor) _ ml_aka(Fx) + (—1)an1_aka(Fy) (5)
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Proposition 2 (re-sampling distributions)

Let X ~ F'x, Y ~ Fy, and assume that cumulants of general
multivariate (dimension K) distributions F'x, F'y exist and are
finite (at least up to some order q). Let T' = X —Y and

assume large sample sizes.

Then: ko (PBboot) = ka(PresBoot) = ka(Ptheor) and
ko (Ppermut) = ka(Ppboot) = ka(Prespoot ), forany a > 1
and k7 is the zero - vector for all methods except bootstrap raw
data. The cumulants for all methods are explicitly given as

functionals of the original distributions as follows:
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al) re-sampling with replacement, from the raw data samples
(PBboot):

ka(TBbOOt) _ ml_al{?a(Fx) + (—1)a’n1_a’ka(Fy) (6)

(large sample size n approximation, order O(n_l) )
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a2) re-sampling with replacement, separately, on each group of

residuals:

ka(TTesBoot) — k?c;l(al*}i) ((1 . 1/m)a + (_1)0, m—l) | (7)

me

(—1)ekelB) (1 —1/n)o 4 (—1)en=1)

,na
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bl, b2) permutations (Fpermut) =

re-sampling with replacement (Ppboot) of/from the pooled

sample:

ka(Tpermut) — ka(FX) | (_1>aka(FY)

(ko (Fx) — ko(Fy)) 2D

1/ m+1/n
a mka FX ’I’Lk‘a Fy
(mc}—l | ( 1) nal—l) ( ’n”)Lin : ) —

ka (proot)
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b3) re-sampling with replacement from pooled residuals

(Pfrespool):

ka (Trespool) — (9)

1/ma—1_|_(_1)a/na—1 .
m-+n

[FelI) (1 — 1) ((m — 1)% 4 (
kally) (n — 1) ((n — 1) + (

na/_l

|
e
N——"
Q
N—"
+

|
—
~—
S
~——
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Simple examples (a = 2):

re-sampling raw data:

1 1
]C (TBboot) k (Ttheor) _ Ek2(FX)‘|‘Ek2(FY) (10)

1 1
ko (TPP0%) = ko (TP ™YY = —ka(Fx) + —ka(Fy)
(11)
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and re-sampling residuals:

ko(F ko (F
kz(T'r‘espool) _ kQ(Tpermut) 2( X)W;I_n 2( Y) (12)

ko(Fx)  kao(Fy)
m2 n?

kQ(TfresBoot) _ kQ(TBboot) (13)
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max’l’ distributions
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P(maxT = a) = Zfil P(T’(D]Ti =a)=  (14)

K a
iz Hl;éz' f_oo dTl/P(T/(i) T; = a)

where P(maxT) = P(max;c;T;) and
’(i) = (T, ..., T;_1,T; 1, ..., Tk) is the vector obtained
from T’ by removing the component %.

The critical values cj are solutions of:

o = / P(mazT = a)da (15)

Cr
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Distribution of the vector test statistic may be expressed in terms

of cumulants:

P(T) =

/eipTe—iklp 1 pkap+>" 1kn1n2 nk’p?lpg2 .pzk—l—...

g
/ RET Pl 2/2 Z’ 1kn1n2 ng?lp;@ N HLET d P
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where k, = ko /(y/k2)®, formally.

Note: k, will be of order m—2/2%1 (since k, is of order m~%+!

for any a).

1
VKol
where higher order terms
O(m=1/2),0(m™1),0(m=3/2), ... can be expressed in
terms of multidimensional Hermite polynomials and

T = k1 (T) + z/ko(T).

P(T) = ¢(z)(1 + higher order terms )) (18)
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Example 1. same means, different correlations
10,000 sample data sets
g = 500, 600, ..., 1000. dimensional distributions:

MV Ny(ux,3x)and MV N, (uy, 3y ) where

tx = puy = 0, X x has all the diagonal elements equal to 1
and all the off-diagonal elements equal to zero, while 22y has all
the diagonal elements equal to 1 and all the off-diagonal

elements equal to 0.9.

Sample sizes: m = 2and n = 8.
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Critical values

g=500,600, ...,1000; m=2,n=8

p p p p p p
t true distribution
P permuation distribution
| | | | | |
500 600 700 800 900 1000

Number of hypotheses



Example 2: same means, different skewness



CDF

1.0

0.8

0.6

0.4

0.2

0.0

CDF of Uniform(0,1) and Simulated p-values

Prob(p<0.05)=0.15

--- Uniform(0,1)
— Simulated p-values

0.4

0.6

0.8

1.0




6 Conclusions

e An advantage of permutation testing is no knowledge of the
distribution of the observations is required. Its control of error
rate, however, only holds under the condition of identical
distribution among groups to be compared. If the purpose of
testing is to detect differences in means, then permutation
testing may pick up unintended signals, rejecting an equality

hypothesis for the wrong reason.
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e The true and permutation distributions of the test statistic T

will have the same even-order cumulants if . = n.

e The true and permutation distributions of the test statistic will

th

not necessarily have the same a""* order cumulants for a

odd, regardless of whether M = n, unless

ko(Fx) = ko(Fy).

e If X and Y are not multivariate normal, then differences in
cumulants of order higher than two can cause permutation

test for equality of means to be liberal even if m = n.
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e Best re-sampling solutions: re-sampling with replacement,
residuals or raw data (with post-centering), when the sample

sizes are reasonably large.
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