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1 Problem,

motivation and

our solution
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1.1 The problem

Inference for high-dimensional (d) multivariate distributions:

Huge number of hypotheses to be tested.

Data : X ∼ FX(k1, k2, ...)

where:

ka = cumulants of the unknown , multivariate distribution FX
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Model : function of θ = (vector-) parameter

Sample X1,X2, ...,Xm ∼ FX(k1, k2, ...) (i.i.d)

m << d

Sample estimate: θ̂ ∼ P∗(k∗1, k∗2, ...) = functional(FX)

Re-sample: θ̂r ∼ Pr(kr1, kr2, ...) = functional(FX)
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Strategies for hypotheses testing:

Assume MVNormal distributions and do exact/approximate MCP

adjustments

Create empirical distributions by re-sampling methods and apply

MCP adjustments
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1.2 Motivation: gene expression levels

microarray data

Clinical uses:

• Disease prognosis: Gene expression levels measured by

microarrays may be used to predict an individual’s prognosis

in a certain disease. For example, MammaPrint by Agendia

provides prognostics for breast cancer patients based on

expression levels in tumor samples measured by

microarrays.
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• Pharmacogenomics: Pharmacogenomics is the

co-development of a drug that targets a subpopulation of the

patient population, as well as a device that can be used to

predicts whether a patient is in this subpopulation of

responders to the drug. An example of such a drug is

Herceptin for HER-2/neu positive breast cancer patients.
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Developing a clinical device for prognostic or pharmacogenomics

is a 2-stage process:

The first stage: find marker genes to train a prognostic algorithm,

based on data with known disease outcomes. −−− > uses

MCP to select genes.

The second stage: a separate clinical trial validating the

prediction algorithm, in terms of sensitivity and specificity.
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1.3 Our solution

Hypotheses < −−− > Parameters < −−− >

Test statistics (T) < −−− > ∗maxT < −−− >

critical values cI defined by P (maxT > cI) = α so that:

P (more than m mistakes) < α
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The exact, theoretical distribution of the tests is compared with

the analytically derived re-sampling distributions, all being

expressed as:

functionals of the data underlying multivariate (unknown)

distributions.

12



2 Error rates and error control

Testing the multiple null hypotheses H01, . . . ,H0d

Type I errors: rejecting a true null hypothesis.

Type II errors: failing to reject a false null hypothesis.

Impossible to be simultaneously minimized −−− > solution:

Specify an acceptable level α for the Type I error rate. Then

select the procedure (in this class) which minimizes Type II

(maximizes power).
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Error rate control, at α - level should satisfy:

P (an incorrect decision) ≤ α. (1)
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1. the comparison-wise error rate:

each H0i is tested so that P (reject H0i) ≤ α

when H0i is true.
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2. the experiment-wise error rate

(weak control of the family-wise error rate):

when all H0i are true,

P (reject at least one H0i) ≤ α.
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3. the family-wise error rate (FWER), strongly controlled:

(control of the maximum Type I error rate)

regardless of which {H0i, i ∈ I}, I ⊆ {1, . . . , k}, are

true,

P (reject at least one H0i, i ∈ I) ≤ α.

17



4. the False Discovery Rate (FDR):

the expected proportion of incorrectly rejected (true) null

hypotheses is no more than α :

E

(
no. of true H0i rejected

total no. of H0i rejected

)
≤ α.

Consequence: good performance when majority of H0i are

true.
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5. generalised family-wise error rates (gFWER):

P (reject more than m of true H0i, i ∈ I) ≤ α

with m - a “reasonable” number.

gFWER at m = 0 is FWER.
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3 The MCP principle

( Stefansson et all (1988); FinnerStrassburger(2002))

Simple example: hypotheses to be tested: {θi
0 = 0}, i = 1, 2

Partitioning principle creates the disjoint hypotheses:

θ1
0 = 0 AND θ2

0 6= 0

θ1
0 6= 0 AND θ2

0 = 0

θ1
0 = 0 AND θ2

0 = 0

(number of hypotheses: 2d − 1, with d = 2)
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Consequences:

(i) at most one of the disjoint hypotheses can be true.

(ii) we do not need any multiplicity adjustment

(iii) the number of disjoint hypotheses can be very large (if d is

large)
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More general form of Partitioning principle

Hypotheses to be tested H0i : θ ∈ Θi, i ∈ I,

Scientific hypotheses to be proven: the complements Θc
i , of

Θi, i ∈ I, and their intersections.
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1. Partition
⋃

i∈I Θi into disjoint Θ?
J , J ⊆ I, as follows: For

each J ⊆ I, let Θ?
J =

⋂
i∈J Θi

⋂
(
⋂

j 6∈J Θc
j ). Then

{Θ?
J , J ⊆ I}, including Θ?

∅ =
⋂

j∈I Θc
j , partition the

parameter space. Note that Θ?
J can be interpreted as the

part of the parameter space in which exactly H0i, i ∈ J,

are true, and H0j , j /∈ J are false.
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2. Test each HP
0J : θ ∈ Θ?

J at level α. Since the null

hypotheses are disjoint, at most one null hypothesis is true.

Therefore, even though no multiplicity adjustment to the

levels of the tests is made, the probability of rejecting at least

one true null hypothesis is at most α.
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3. For all J ⊆ I, infer θ 6∈ ΘJ if all H?
0J′ such that J ⊆ J ′

are rejected. That is, infer the intersection null hypothesis

H0J is false if all null hypotheses H?
0J′ implying it are

rejected. In terms of useful scientific inference of rejecting

the original null hypotheses H0i, i ∈ I , since

Θi =
⋃

J3i Θ?
J , Partitioning rejects H0i if all HP

0J such

that J 3 i are rejected.
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Notations:

Test statistic: T = (T1, T2, ..., Tg)

[1], . . . , [g] random indices such that T[1] < · · · < T[g]
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Step-down Algorithm

Step 1: If T[g] > c{[1],...,[g]}, then infer θ[g] 6= 0 and go to

step 2; else stop.

Step 2: If T[g−1] > c{[1],...,[g−1]}, then infer θ[g−1] 6= 0
and go to step 3; else stop.

· · ·

Step g : If T[1] > c{[1]}, then infer θ{[1]} 6= 0 and stop;

else stop.
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Conditions of validity

S0: A level-α test for H?
I should satisfy

supθ∈ΘI
Pθ{maxi∈I Ti > cI} ≤ α

where ΘI = {θ : θi = 0 for i ∈ I and j 6= 0 for j /∈ I} (!

the supremum of this rejection probability may or may not

occur at θ1 = · · · = θg = 0. )

S1: Tests for all hypotheses are based on statistics

Ti, i = 1, . . . , g, whose values do not vary with H?
0I ;

S2: The level-α test for H?
0I is of the form of rejecting H?

0I if

maxi∈I Ti > cI ;
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S3: Critical values cI have the property that if J ⊂ I then

cJ ≤ cI .

29



Comments

• Hochberg’s (1988) method is a step-up version of the

Bonferroni test.

• Holm’s (1979) method is a step-down version of the

Bonferroni test.

• they both are special cases of Partitioning testing and

control FWER.

• Partitioning is related to (although more fundamental than)

Closed Testing ( MarcusPeritzGabriel(1976)).
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4 Models. Test statistics. Critical values

Model 1: linear model

X = µX + ε and Y = µY + ε

Hypotheses of interest: is there a difference between the mean -

vector - components of X and Y ?

θi = µi
X − µi

Y

H0i : θi = 0

Data: observations Xβ , Yβ , with β = 1, 2, ..., sample size.
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Model 2: linear mixed effects model

Xα = µX + Zα + ε

and

Yα = µY + Zα + ε

with:

Zα - random (subject) effects and µX, µY - fixed (group)

effects, random effects and ε are independently distributed.

Hypotheses of interest: is there a difference between the mean -

vector - components of X and Y ?

θi = µi
X − µi

Y
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Data: observations Xα
β , Yα

β , with β = 1, 2, ..., sample size

and α = 1, 2, ... within-subject-sample-size.

No normality assumptions.
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Test statistics

(i) Ti = X̄i − Ȳi, with i = 1, 2, ...k, so T = X̄− Ȳ

(ii) standard multivariate t-test:

tstand = (k̂2(T))−1/2T (2)

where k̂2(T) = the estimated variance-covariance matrix Σ of

the random variable T
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In practice, an other version of this test is used:

tpract = (k̂2,diag(T))−1/2T (3)

where (k̂2,diag(T))−1/2 = Σ−1/2
diag and Σdiag is a diagonal

matrix with same diagonal elements as Σ.
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Relation between the 2 versions:

tpract = Σ−1/2
diag Σ1/2tstand = Ωtstand (4)

(ka(tpract))i1i2...ia =

∑
j1j2...ja

Ωi1j1Ωi2j2 ...Ωipja
(ka(tstand))j1j2...ja
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5 Theoretical results on maxT

re-sampling distributions

Types of re-sampling:

(i) with replacement (bootstrap) / without replacement

(permutations)

(ii) from raw data (observations) / from model-residuals

Comparing the test statistic distributions obtained by various

re-sampling methods with the true distribution: in terms of

cumulants.
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Test statistic re-sampling distributions
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Proposition 1 (true distribution)

Let X ∼ FX , Y ∼ FY , and cumulants of general multivariate

(dimension K) distributions FX , FY exist and are finite (at least

up to some order q). Let T = X̄− Ȳ. Then the cumulants of

the test statistic true distribution Ptheor are:

ka(Ttheor) = m1−aka(FX) + (−1)an1−aka(FY ) (5)

39



Proposition 2 (re-sampling distributions)

Let X ∼ FX , Y ∼ FY , and assume that cumulants of general

multivariate (dimension K) distributions FX , FY exist and are

finite (at least up to some order q). Let T = X̄− Ȳ and

assume large sample sizes.

Then: ka(PBboot) ≈ ka(PresBoot) ≈ ka(Ptheor) and

ka(Ppermut) = ka(Ppboot) ≈ ka(Prespool), for any a > 1
and k1 is the zero - vector for all methods except bootstrap raw

data. The cumulants for all methods are explicitly given as

functionals of the original distributions as follows:
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a1) re-sampling with replacement, from the raw data samples

(PBboot):

ka(TBboot) = m1−aka(FX) + (−1)an1−aka(FY ) (6)

(large sample size n approximation, order O(n−1) )
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a2) re-sampling with replacement, separately, on each group of

residuals:

ka(TresBoot) = ka(FX)
ma−1

(
(1− 1/m)a + (−1)a m−1

ma

)
+ (7)

(−1)a ka(FY )
na−1

(
(1− 1/n)a + (−1)a n−1

na

)
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b1, b2) permutations (Ppermut) =

re-sampling with replacement (Ppboot) of/from the pooled

sample:

ka(Tpermut) = ka(FX)
ma−1 + (−1)aka(FY )

na−1 − (8)

(ka(FX)− ka(FY )) 1/ma−(−1)a/na

1/m+1/n =(
1

ma−1 + (−1)a 1
na−1

) mka(FX)+nka(FY )
m+n =

ka(Tpboot)
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b3) re-sampling with replacement from pooled residuals

(Prespool):

ka(Trespool) = (9)

1/ma−1+(−1)a/na−1

m+n ·

[ka(FX)
ma−1 (m− 1)

(
(m− 1)a−1 + (−1)a

)
+

ka(FY )
na−1 (n− 1)

(
(n− 1)a−1 + (−1)a

)
]
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Simple examples (a = 2):

re-sampling raw data:

k2(TBboot) ≈ k2(Ttheor) =
1
m

k2(FX)+
1
n

k2(FY ) (10)

k2(Tpboot) = k2(Tpermut) =
1
n

k2(FX) +
1
m

k2(FY )
(11)
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and re-sampling residuals:

k2(Trespool) = k2(Tpermut)− k2(FX) + k2(FY )
mn

(12)

k2(TresBoot) = k2(TBboot)− k2(FX)
m2

− k2(FY )
n2

(13)
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maxT distributions
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P (maxT = a) =
∑K

i=1 P (T′
(i)|T

i = a) = (14)∑K
i=1

∏
l 6=i

∫ a

−∞ dT ′
l P (T′

(i)|Ti = a)

where P (maxT ) = P (maxi∈ITi) and

T′
(i) = (T 1, ..., Ti−1, Ti+1, ..., TK) is the vector obtained

from T by removing the component i.

The critical values cI are solutions of:

α =
∫ ∞

cI

P (maxT = a)da (15)
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Distribution of the vector test statistic may be expressed in terms

of cumulants:

P (T) =

∫
eiρT e−ik1ρ− 1

2 ρk2ρ+
P′ 1

a! k
n1n2...nk
a ρ

n1
1 ρ

n2
2 ...ρ

nk
k +... dgρ

(2π)g
=

(16)

1
|
√

k2|

∫
eizρe−ρ2/2e

P′ 1
a! k̃

n1n2...nig
a ρ

n1
1 ρ

n2
2 ...ρ

nk
k +... dgρ

(2π)g

(17)
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where k̃a = ka/(
√

k2)a, formally.

Note: k̃a will be of order m−a/2+1 (since ka is of order m−a+1

for any a).

P (T) =
1

|
√

k2|
φ(z)(1 + higher order terms )) (18)

where higher order terms

O(m−1/2), O(m−1), O(m−3/2), ... can be expressed in

terms of multidimensional Hermite polynomials and

T = k1(T ) + z
√

k2(T ).
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Example 1: same means, different correlations

10,000 sample data sets

g = 500, 600, ..., 1000. dimensional distributions:

MV Ng(µX ,ΣX) and MV Ng(µY ,ΣY ) where

µX = µY = 0, ΣX has all the diagonal elements equal to 1

and all the off-diagonal elements equal to zero, while ΣY has all

the diagonal elements equal to 1 and all the off-diagonal

elements equal to 0.9.

Sample sizes: m = 2 and n = 8.
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Figure 1: Critical values of the test statistic maxi=1,...,g |Ti| for

g = 500, 600, ..., 1000 with m = 2 and n = 8. Critical val-

ues based on permutation distribution are smaller than the ones

based on true null distribution.



Example 2: same means, different skewness
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Figure 2: Cumulative distribution plot of simulated p-value.

m = 5 random samples are drawn from Lognormal(µX =
−0.25, σ2

X = 1) and n = 5 random samples from

Lognormal(µY = 0.125, σ2
Y = 0.25), independently.



6 Conclusions

• An advantage of permutation testing is no knowledge of the

distribution of the observations is required. Its control of error

rate, however, only holds under the condition of identical

distribution among groups to be compared. If the purpose of

testing is to detect differences in means, then permutation

testing may pick up unintended signals, rejecting an equality

hypothesis for the wrong reason.
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• The true and permutation distributions of the test statistic T
will have the same even-order cumulants if m = n.

• The true and permutation distributions of the test statistic will

not necessarily have the same ath order cumulants for a

odd, regardless of whether m = n, unless

ka(FX) = ka(FY ).

• If X and Y are not multivariate normal, then differences in

cumulants of order higher than two can cause permutation

test for equality of means to be liberal even if m = n.
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• Best re-sampling solutions: re-sampling with replacement,

residuals or raw data (with post-centering), when the sample

sizes are reasonably large.
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