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ABSTRACT
With the improvement of genotyping technologies and the exponentially growing number of available

markers, case-control genome-wide association studies promise to be a key tool for investigation of com-
plex diseases. However new analytical methods have to be developed to face the problems induced by
this data scale-up, such as statistical multiple testing, data quality control, biological interpretation and
computational tractability. We present a novel method to analyze genome-wide association studies results.
The algorithm is based on a Bayesian model that integrates genotyping errors and genomic structure de-
pendencies. Probability values are assigned to genomic regions termed bins, which are defined from a
gene-biased partitioning of the genome, and the false-discovery rate is estimated. We have applied this
algorithm to data coming from three genome-wide association studies of Multiple Sclerosis. The method
practically overcomes the scale-up problems and permits to identify new putative regions statistically
associated with the disease.
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1. Biological definitions

This part is a glossary to introduce biological con-
cepts used in the article.

DNA is a linear molecule whose duplication is pos-
sible. It is a sequence of 4 different “base pairs” (let-
ters). Position on DNA is measured for each chromo-
some from one of its extremity in number of base pairs
(1000bp = 1 kbp, ex: chr. 6, 20 003 345 bp). Each
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individual holds 2 versions of the same DNA (except
for dissymmetricXY male chromosome pair, which is
not studied here).

“Genes” are sequences of DNA (∼100 000 bp) that
contain(i) templates for proteins(ii) information on
when and where the protein should be produced. Only
limits of the templates are well known. They are com-
posed of sequences called “exons”. There are about
21 000 known human genes.

“Genotyping” means reading a small sequence of
DNA of an individual (∼10 bp). These sequence are
called “markers”. They are chosen so as(i) to be found
only one time in all DNA(ii) to be variant between
individuals (“polymorphic”). They can be thought as
composed of a fixed flanking sequence immediately
followed by a variant sequence. The different variants
of a marker are called “alleles”. Each individual holds
2 alleles (one on each DNA version), the combination
being called “genotype”.

A “Single Nucleotide Polymorphism” (SNP) is a
marker with a variant sequence composed of one letter
(“base”). In this article, among the 4 possible letters at
a given position, only 2 are found in the studied pop-
ulations (arbitrary noted allelesa andA, without any
reference to the 4 letters). The corresponding geno-
types are notedaa, AA and Aa. The first2 are said
to be “homozygotous”, and the last one “heterozygo-
tous”.

A “complex disease” is a genetic disease (caused by
variations of DNA) with complex heredity rules. The
complexity comes from genetic and/or environmental
interactions.

An “association study” aims at identifying spots on
DNA (“loci”) which are correlated with a character-
istic of patients (“phenotype”). It is “genome-wide”
when spots are researched across all DNA. Conversely,
it is “candidate gene” based if spots are researched in
the region of DNA containing a specific gene. In terms
of machine learning, a patient is a sample with a label:
its phenotype. The goal is to identify predictors inside
the DNA.

“Haplotype blocks” are blocks of strongly corre-
lated neighbor markers. An “haplotype” is a sequence
of alleles held by the same version of DNA. For exam-
ple, let consider 2 neighbor SNPA andB, and an indi-
vidual with genotypesaAandbB. Eithera andb (hap-
lotypesabandAB) or a andB (haplotypesaBandAb)
are held on the same DNA molecule. There is a cor-
relation if one pair of haplotype is more frequent than

the other in a population: Due their proximity: they
are most of the time transmitted together from genera-
tion to generation. The correlation is therefore stronger
between individuals or in populations with near com-
mon ancestors. This type of correlation is called “link-
age disequilibrium” (LD). Thanks to LD, it is possi-
ble to sample the DNA of an individual at predefined
markers, and thus to realize association studies without
reading all DNA (“full sequencing”): If a variation of
DNA causing the phenotype (a “functional mutation”)
occurs between samples, it is likely to be correlated
with these sampled markers. The technology used in
the article (Affymetrix GeneChipR© human mapping
100K) allows to study around 100 000 SNP.

“Stratification” occurs in an association study if two
populations different in terms of genotype frequencies
for a set of markers are unknowingly mixed in a collec-
tion and if the “prevalence” of the disease (proportion
of the population affected by the disease) is different
in both populations. As a result, all this set of mark-
ers is found associated, whereas only few of them are
biologically interesting.

2. Introduction

The last years have shown a tremendous increase
in the number of markers available for genome-wide
association studies, dealing either with the whole
genome at a very low resolution (for instance 5 264
micro-satellites Dib et al. (1996)) or with a carefully
chosen region of few mega base-pairs Cardon & Bell
(2001); Lewis (2002). Recent technologies allow the
genome-wide genotyping of hundred of thousands
SNPs) Kennedy et al. (2003). This has arisen the need
of new methodological developments to overcome dif-
ferent issues, such as the multiple-testing problem,
gene biases, data quality analysis and the computa-
tional tractability.

First, the so-called multiple testing problem seems
to cause association studies ability to detect associa-
tions to decrease as the number of markers increases.
The classical genetic analysis strategy, based on an as-
sociation test for each marker Klein et al. (2005), en-
counters increasing difficulties as the number of mark-
ers available will soon reach a few millions: Increasing
the number of tests prevents from the detection of the
mild genetic effects expected in complex diseases, as
only strong effects emerges from the huge noise gen-
erated by the increased number of tests. Methods like
False Discovery Rate (FDR) Benjamini & Hochberg

2



(1995) computation allow to control the error rigor-
ously, but do not increase the statistical power. As
an example of this loss of power, let assume a study
with only associated marker (one true-positive) whose
p-value is 10−5. Testing it with 1 000 other mark-
ers allows to select it alone with a FDR threshold of
≈ 1%. With 1 000 000 markers, it is selected with 10
other non associated markers, with a subsequent FDR
threshold of≈ 91%. Better strategies based on hap-
lotype blocks are being developed, the first step being
gathering such block data (see the HapMap project, In-
ternationalHapMapConsortium (2005)). They will
ultimately allow to test all linked markers together,
which should increase detection power. As an illustra-
tion, continuing the preceding example, let assume that
2 markers in the same haplotype block are associated,
both with the same10−5 p-value and 1 000 000 mark-
ers. Separate testing leads to select 10 other markers
with a FDR threshold of≈ 83%. On the contrary, as-
suming thatp-values are evaluated from a 1 degree
of freedomχ2 score, markers can simply be tested to-
gether using a 2 degree of freedomχ2 test by adding
their scores. The newp-value is≈ 3.410−9. The FDR
threshold is≈ 0.3%.

Secondly, a genetic association of a given SNP
is a statistical feature and does not explain by itself
a phenotype. To interprete biologically an associ-
ated marker, its haplotype block should first be delim-
ited. Then, the association can be refined by fine-scale
genotyping technologies or ideally by full resequenc-
ing. This eventually allows to identify functional mu-
tations. Most of the time, these mutations impact rel-
atively close genes. This is a first argument to bias
this analysis towards genes. Moreover, even if haplo-
type blocks are unreachable, DNA might be cut into
distinct regions (callsbins) on an other basis, so as
to limit the multiple-testing problem and make it in-
dependent of the number of markers. Combining this
two arguments leads to choose one bin for each gene,
and to create ’desert’ bins in large unannotated regions.
It allows to associate a list of genes with a test, which
simplifies the analysis of results. The drawbacks are(i)
that it makes more difficult the study of these ’deserts’,
however the goal is here to maximize, not the chance
of finding an association, but the chance of elucidating
a mechanism of a complex disease given the current
knowledge(ii) that a bin might contain several haplo-
type blocks, resulting in a dilution of the association
signal if only one block is associated. Reciprocally,
neighbor bins are not independent because they might

share an haplotype block, but neighbor SNP were not
independent either. The third argument is also congru-
ent with this process: analysis of the results through
genomic approaches based on pathway reconstruction
(see Rajagopalan & Agarwal (2005) for example) re-
quire the use of biological knowledge, mainly struc-
tured by genes and corresponding proteins.

Thirdly, one must keep in mind that such genome-
wide genotyping data are obtained by high-throughput
experiment which encompass limitations requiring
careful statistical methodology. Especially, with
Affymetrix GeneChipR© human mapping 100K, the
trade-off between the call-rate (i.e. errors detected by
the genotyping process and resulting in missing geno-
types in the data set) and the error-rate (i.e. errors
left in the data) is difficult to adjust. Obtaining un-
biased statistical results is then conditioned to good
pre-processing filters. Indeed spurious markers must
be eliminated and missing data correctly managed.

In addition, polymorphism tends to be low for most
of SNPs present of Affymetrix GeneChipR© human
mapping 100K Some genotypes are held by less than
few percents of patients, which, given usual collec-
tion size of few hundreds,(i) is not enough for good
asymptotic approximations and(ii) should be consid-
ered with care given possible high error rate.

Finally, whatever algorithmic solution is developed,
because the number of markers available will proba-
bly quickly reach a few millions, creating a scalability
problem, it has to be linear in the number of markers.

In this paper we present a novel Bayesian algorithm
developed to practically analyze genome-wide associ-
ation studies. This algorithm is based on a gene-based
partitioning of DNA into regions, called bins.

A p-value of association is computed for each bin.
The model takes into account genotyping errors and
missing data and tries to detect simple differences in
the haplotype block structure between cases and con-
trols. The study of different collections is allowed. The
multiple testing problem is addressed by estimation of
FDR.

The method has been applied to analyze the results
of three genome-wide case-control association stud-
ies of the complex disease Multiple Sclerosis (MS). It
identifies putatively associated bins, containing genes
previously described to be linked to MS (Dyment et al.
(2004) for review) as well as new candidate genes.
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3. Materials

Three association studies dealing with MS in three
independent collections have been realized in collabo-
ration with Serono Genetics Institute Cohen (2005).
Around 600 patients have been recruited for each
study, half of them as cases affected by the disease,
half of them as controls (table 1). Controls have been
matched with cases as best as possible so as to avoid
stratification (see Thomas & Witte (2002) for exam-
ple). For chromosomeX, only female patients are
studied. No SNP is studied on chromosomeY.

Genotypes of the 116 204 SNPs selected by Affymetrix
have been determined for each patient using Affymetrix
GeneChipR© human mapping 100K technology. SNPs
have been mapped on the NCBI build35of the Human
genome.

4. Method

4.1. Notations

Stochastic variables are noted with a round letter
(V ), a realization is noted in lower case (v). Indices
are noted in lower case (k), ranging from1 to the cor-
responding upper case letter (K). Unless needed, this
range of indices (k∈ [1,K]) is omitted. The number of
different values is noted cardV .

The n-dimensional table of the number of individ-
uals having the same combination of values for given
variablesV k,k ∈ [1,K] is notedn(V 1, . . . ,V K). It is
the contingency table of these variables. The marginal-
ization of such a contingency table over one vari-
able, for exampleV 1, is notedn(⊕,V 2, . . . ,V K) =
∑v∈card(V 1) n(v,V 2, . . . ,V K).

Estimation of a probability distributionP(V ) is
noted with hatted letter,̂P(V ).

Each binb∈ [1,B] containsJb genetic markersG j
b

with j ∈ [1,Jb].
Each patienti ∈ [1, I ] has a phenotype values(i) (in

case-control studies, card(S) = 2), discrete co-variable
valuesvm(i),m∈ [1,M] (gender:m= 1, or collection
of origin: m = 2 ), and a genotype value for each
markerg j

b(i) (with SNPs, card(G j
b) = 3).

A patienti is therefore represented by the following
vector:

i =
[
s(i),vm(i),g j

b(i)
]

(1)

with: m∈ [1,M],b∈ [1,B], j ∈ [1,Jb]

The data set is notedD = {i}i∈[1,I ]

A first level of the method aggregates predictors at
the bin level. The “restriction” of a patient to a given
bin is notedib:

ib =
[
s(i),vm(i),g j

b(i)
]

(2)

with: m∈ [1,M], j ∈ [1,Jb]

The corresponding data set is notedDb = {ib}i∈[1,I ]

4.2. Data preprocessing

Due to Affymetrix GeneChipR© human mapping
100K technology (the D.M. calling algorithm), all er-
rors are unevenly distributed: It is likelier to make an
error on heterozygotous genotypes, because they lie
“between” the two homozygotous genotypes in terms
of pattern matching, i.e., the heterozygotous genotype
pattern has a frontier with each of two homozygo-
tous ones whereas each homozygotous genotype pat-
tern has a frontier only with the heterozygotous one
Liu et al. (2003); Rabbee & Speed (2006). It is indeed
very unlikely to mistake one homozygotous genotype
for the other one. This often results in gaps of het-
erozygotous genotypes. It can be detected through
the evaluation of the probability that the distribution
of genotypes observed in controls follows the Hardy-
Weinberg equilibrium, which basically states that, un-
der some hypothesis like random mating in the stud-
ied population, notingP(a) = P(aa) + P(Aa)/2 and
P(A) = P(AA)+P(Aa)/2:





P(aa) = P(a)2

P(Aa) = 2P(a)P(A)
P(AA) = P(A)2

(3)

Therefore, the following pre-processing filters are
applied. SNPs are discarded(i) if the number of miss-
ing genotypes is higher than5%because this is an indi-
cation that the genotyping process quality was low for
this SNP,(ii) if the minimum allele frequency in con-
trols MAF = min(P(a),P(A)) is lower than1%, be-
cause the SNP is not polymorphic in the studied pop-
ulation, would lead to bad quality probability estima-
tion and would deter FDR estimations, or(iii) if the
probability that the SNP follows the Hardy-Weinberg
equilibrium in controls is lower than0.02, because it
is the indication of errors that the genotyping process
did not self-detect. For chromosomeX, only female
patients are retained for pre-processing.
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TABLE 1

GENOME-WIDE ASSOCIATION MULTIPLE SCLEROSIS COLLECTIONS.

Collection Origin #Cases #Controls %Females

A French 314 352 69%
B Swedish 279 301 71%
C American 289 289 85%

Cases and controls are matched on age and gender. The risk of being
affected is 1.7 times higher for females.

SNPs from chromosomeY have been discarded as
well as SNPs with multiple localizations on the assem-
bly NCBI 35of the human genome.

4.3. Bin definition

Bins are defined on DNA from protein genes as de-
fined in the version35.35 of EnsEMBL Birney et al.
(2006) of the human DNA sequence. The basic re-
gion of a gene lie from the beginning of its first exon
to the end of its last exon. Overlapping genes are clus-
tered in the same bin. If two consecutive genes or clus-
ters of overlapping genes are separated by less than
200kbp, the bin limit is fixed in the middle of the in-
terval. Otherwise, the limit of the upstream bin is set
50kbp downstream its last exon, the limit of the down-
stream bin is set50 kbp upstream its first exon, and a
special bin corresponding to adesertis created in be-
tween the two bins. With these rules, desert bins have
a minimum length of100kbp (figure 1).

2nd gene

-¾

?6?6

¾
-¾

-
GJb

bG1
b

b

1st gene

Fig. 1.— Representation of a bin containing two genes
and Jb markers. Bins are defined according to gene
boundaries and intergenic distances.

4.4. Assessing bin association

4.4.1. General model and hypotheses

We assume that each bin constitutes an independent
data set. The following ideal probability distribution is
defined:

∀b∈ [1,B],P(Ib) = P(S ,Vm,G j
b) (4)

As experimenters choose cases and controls (phe-
notypes) of patients in order to have about as many of
each kind, as well as they choose for each case a con-
trol with the same co-variables, each individual subset
of the study is a realization of the conditional distribu-
tionsP(G j

b|S ,Vm).
Estimations of probability distribution are possible

from contingency tables:

P̂(G j
b|S ,Vm) =

n(S ,Vm,G j
b)

n(S ,Vm,⊕)
(5)

On the contrary, due to the experimental design, esti-
mationsP(S ,Vm) are impossible.

Finally, the hypothesis that each patient is indepen-
dently chosen from others is made. In particular, they
are supposed to be from different families. If this is
false, for example if all cases are from the same fam-
ily, all SNPs specific to this family will appear to be
correlated with the disease.

4.4.2. Statistics

A general way to assess the association of a binb
is to estimate whether(G j

b) j∈[1,Jb] is independent from

the phenotypeS , i.e., whetherP(G j
b|Vm) is “far” from

P(G j
b|S ,Vm).

Hb
0 : P(G j

b|S ,Vm) = P(G j
b|Vm) (6)

5



However, as onlyP(G j
b|Vm,S) is estimable, esti-

mation ofP(G j
b|Vm) is not possible. Therefore, one

estimateŝPHb
0
(G j

b|Vm) assuming that hypothesisHb
0 is

true, as indicated by the subscript.

There are many different ways of computing the
“distance” between estimations ofP(G j

b|S ,Vm) and

P(G j
b|Vm), depending on the parameters used to de-

scribe them and on what is understood under “far”
from Hb

0 . Usually, a score called a statistic which is

large whenP̂(G j
b|S ,Vm) is “far” from P̂(G j

b|Vm) is
computed. In this paper, we have chosen likelihood
ratioLRas a statistic. For each patient, the probability
of observing his/her genotypes is computed according
to 2 underlying distributions: thetrue underlying dis-
tributionP̂(G j

b|S ,Vm) or the distribution assuming that

Hb
0 is trueP̂Hb

0
(G j

b|Vm). The ratio of these probabilities
is the likelihood ratio of the patient:

P̂(G j
b|S ,Vm) =

n(⊕,Vm,G j
b)

n(⊕,Vm,⊕)
(7)

LR(ib) =
p̂(g j

b(i)|s(i),vm(i))

p̂Hb
0
(g j

b(i)|vm(i))
(8)

As all patients are considered to be independently
chosen, the likelihood of the set of patients available
is:

LR(Db) = ∏
i∈[1,I ]

LR(ib) (9)

The likelihood ratio satisfies LR(Db) ≥ 1. In-
deed, P̂Hb

0
(G j

b|Vm) represents a model included in

P̂(G j
b|S ,Vm).

4.4.3. Probability values

Due to randomness and finite sample size, errors are
made on estimations ofP(G j

b|S ,Vm) andP(G j
b|Vm).

Therefore, the probability of getting a likelihood ra-
tio as high as or higher than the observed one assum-
ing thatHb

0 is true, i.e. the probability thatHb
0 is true

given the observation, i.e. thep-valueπb needs to be
computed. This is theoretically achieved by enumer-
ating all possible outcomesDb(σ) of the experiment
that lead to the observed dataDb(σ0) (σ is a enumer-
ation parameter to be defined. The following notation

simplification is done:Db(σ0) = Db). Then the prob-
ability p(Db(σ)) of each outcome assuming thatHb

0 is
true is computed as well as its likelihood ratio. Finally,
the p-value is obtained:

πb = p(LR(Db(σ))≥ LR(Db)) (10)

= ∑
σ|LR(Db(σ))≥LR(Db)

p(Db(σ))

Ways of doing it are either exact (ex.: Fisher’s exact
p-values), asymptotic (ex.: Pearsonχ2, valid whenI
is large) or permutation based Agresti (2002). Here
we have chosen the last one because it handles well
complex models with missing values.

Let define the space of possible outcomes. Because
of the experimental design which matches cases and
controls (phenotypes), all possible outcomes are con-
strained to have the same contingency table reduced
to phenotypes and co-variablesn(S ,Vm,⊕). How-
ever, the number of each genotype for each marker
is not fixed: It reflects the population genotype fre-
quency, and thus only its mean over outcomes tends
to this frequency. Therefore, the space of possible pa-
tients in this model is huge, because any combination
of genotypes is possible for each patient without any
constraint on the number of genotype countn(G j

b). To
simplify the model, the following hypothesis is made:
the only possible patients are the one observed, except
that their phenotype can be permuted (permutation of
labels). It means thatn(⊕,Vm,G j

b) is unchanged in
all possible outcomes. The parameterσ can be de-
fined as a permutation of[1, I ] andσ0 is the identity
permutation. The probability of outcomes is uniform:
p(Db(σ)) = 1/I !.

Sampling the outcome space is possible: random
permutations of the phenotypes are drawn and used
to compute a likelihood ratio. This is a Monte-Carlo
procedure, for which we propose an optimized imple-
mentation that guarantees the precision required for
FDR estimation (described in appendix). Indeed FDR
is very sensitive to badp-value estimations Pounds
(2006). Finally, due to this permutation structure, the
denominator of equation (8) is constant with respect
to the permutations realized, thereforep-values can be
estimated with the numerator only, this is why the de-
nominator is omitted in the article.

4.4.4. FDR

Finally, to address multiple testing, the method uses
an FDR estimation developed originally by Benjamini
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& Hochberg (1995) and defined as in Storey & Tibshi-
rani (2003):

FDR(θ) =
Π̂0θB

card({b|πb < θ}) (11)

The numerator is an estimation of the expectation of
the number of false-positive withπb ≤ θ. In this nu-
merator,Π̂0 is an estimation of the proportion of bins
under the null hypothesis. Given that it is expected
to be very high in current study, it is (conservatively)
fixed at its upper bound:̂Π0 = 1. The denominator is
the number of tests withp-values belowθ. The ratio is
therefore an estimation of the proportion of false nega-
tives in the set of bins with ap-value belowθ. Because
we want to analyze thoroughly the FDR for around
the 10 bins with the lowestp-values, the FDR is not
controlled at a specified threshold as in Benjamini &
Hochberg (1995) but only estimated.

This estimation relies on two main hypothesis:(i)
tests are independent or positively correlated Ben-
jamini & Yekutieli (2001), (ii) p-values are continu-
ously and uniformly distributed in[0,1]. Assuming
that sharing of haplotype block by neighbor bins is the
only source of correlation between tests, the positive
correlation seems reasonable. Indeed, if thep-value
of a not associated bin decreases, thep-values of bins
sharing the same haplotype block are more than likely
to decrease too. The uniform distribution is less ob-
vious, because the number of possible contingency ta-
bles is finite so that even the null distribution is not
uniform. However, the sample size is one to two order
of magnitude higher than in other applications of FDR
to discrete data in which the problem is acute Pounds
& Cheng (2004).

4.4.5. Model of linkage disequilibrium

Due to linkage disequilibrium, neighbor markers
may carry information about each other. If the correla-
tion between a marker and its neighbor is very different
between cases and controls, it means that haplotypes
are different in cases and controls (even if there is no
direct correlation between each marker and the pheno-
type), therefore the region surrounding the 2 markers
might be associated with the disease. The model devel-
oped tries to implicitly find such differences in haplo-
types as well as usual associations. It is an inhomoge-
neous hidden Markov chain that makes the approxima-
tion that the genotypes of two markers separated by a
third one are independent conditional to the genotype

of this third one. Indeed, as a rough approximation,
for each marker, most information will be found on its
first neighbor on each direction of DNA. In a directed
graphical model, independence assumptions therefore
consist in:

P(G j
b|(G l

b)l 6= j) =





P
(

G j
b|G j−1

b

)
if j 6= 1

P
(

G j
b

)
if j = 1

(12)

The probability distributions modelled are the same as
the one obtained in the reverse order onj. Indeed, as
no node has strictly more than one incoming edge, the
distributions modelled are the same in the two config-
urations (Näım et al. (2004)).

Finally, this assumptions also allow to obtain cor-
rect estimations because corresponding contingency
tables are sufficiently filled. More precisely, if the min-
imum cell countmin(n(V k)) is low, random effects
are high because a change of one in the count will
lead to a great change in the probability estimation.
Therefore contingency tables should not be computed
for too many variables at a time. The assumptions
implies that contingency tables will be computed for
2 SNPs (card(G j

b) = 3), the phenotype (card(S) = 2)
and the co-variables together. The gender co-variable
will not be used. It requires the hypothesis that the
SNP distribution is independent from it. The only co-
variable is the study patients belong to (cf. table 1,
card(V2) = 3). As collection sizes for a given study
are around600, the average number of patients in each
cell of contingency tables is then̄n = 33. However the
minimum cell count is much less in real data because
low minimum allele frequencies and linkage disequi-
librium might result in very rare combinations of geno-
types.

4.4.6. Model of error

An error model is introduced with observed geno-
typesO j

b (with SNPs,O j
b ∈ {aa,Aa,AA, /0}, where /0

means that the genotype is missing):

P(O j
b|(G l

b)l∈[1,Jb]) = P(O j
b|G j

b) (13)

Indeed, the technology is the same for all determi-
nations of the same marker and there is no correlation
between the genomic order of SNPs and the localiza-
tion of their probes on the genotyping chips, so that
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there is no reason why the observed genotype should
depend on something else than the real genotype. The
model is represented graphically in fig. 2.

? ??

-

?

-- GJb−1
b

O1
b

G2
bG1

b

O2
b OJb

bOJb−1
b

GJb
b

Fig. 2.— Error and linkage disequilibrium model of
bin k. The LD is modelled by dependencies between
genotypesG j

b and the genotyping errors by the re-

lationships between observed genotypesO j
b and real

genotypesG j
b. The model is an inhomogeneous hidden

Markov chain.

Since G j
b are hidden variables, estimation of a

priori probabilities of P(G j
b|G j−1

b ) and P(O j
b|G j

b)
is not straightforward. Usual strategy is to use an
Expectation-Maximization (E.-M.) algorithm to infer
the state of hidden variables. However, it is not re-
quired in order to assess bin associations, and, if used,
the likelihood of the model is approximated to the one
of the most probable configuration of hidden variables,
which is a strong approximation.

Therefore, an alternative strategy is developed.
P(G j

b|G j−1
b ) andP(G1

b) are estimated through the re-
moval of patients with missing genotypes:

P̂(G j
b|G j−1

b ) =
n(O j

b,O
j−1
b )+C

n(⊕,O j−1
b )−n/0 +mC

(14)

Wheren/0 is the number of patients with eitherO j
b or

O j−1
b missing and andm is the number of cells. To ob-

tain more regular estimates, a constant is added to all
cell counts. It is a Dirichlet prior on parameters (cf.
Näım et al. (2004) for example). This constant is cho-
sen to beC = αn̄, whereα is the chosen error rate and
n̄ is the mean number of individuals per cell. This con-
stant means that uncertainty on low cell counts is high,
not only because of randomness, but also because of
genotyping errors.

On the other hand, given the previously developed
structure of errors, the following model ofP(O j

b|G j
b)

is chosen:

P(O j
b|G j

b) =



O j
b\G j

b aa Aa AA

aa
1−β

×1−α
1−2β
×α 0

Aa
1−β
×α

1−2β
×1−2α

1−β
×α

AA 0
1−2β
×α

1−β
×1−α

/0 β 2β β




(15)

The error rateα is estimated during external com-
parison of Affymetrix GeneChipR© human mapping
100K and other technologies. In this study, the er-
ror rate is chosen to beα = 0.05 (cf. Affymetrix
GeneChipR© human mapping 100K assay manual
p115). The missing rateβ is estimated for each marker
through the resolution of this non-linear system:




P(O j
b = Aa) = ∑g j

b∈{aa,Aa,AA}P(Aa|g j
b)P(g j

b)

P(O j
b = /0) = ∑g j

b∈{aa,Aa,AA} P( /0|g j
b)P(g j

b)

1 = ∑g j
b∈{aa,Aa,AA}P(g j

b)

(16)

The system sums up in these equations in whichβ ∈
[0,1/2] andz= P(G j

b = Aa) ∈ [0,1] are unknown:





P(O j
b = Aa) = f (α,β,z)

with: f = (1−β)α(1−z)+(1−2β)(1−2α)z
P(O j

b = /0) = β(1+z)
(17)

However the system has no acceptable solution
when min( f ) ≥ P(O j

b = Aa). With α = 0.05, this
happens for SNPs with low diversity. In this case,
The a-priori error rate is decreased: Given partial
derivatives∂ f/∂β and∂ f/∂z, f decreases whenβ in-
creases and increases withz under the condition that
β < 1−3α/2−5α, which is always satisfied because
P(O j

b = /0) ≤ 0.05 (due to the pre-processing) thus

β ≤ P(O j
b = /0)≤ 0.05. Moreover, the second relation

implies thatβ decreases whenz increases. As a result,
min( f ) is reached whenβ is maximum, i.e. forz= 0
andβ = P(O j

b = /0). When it happens, the error rate
is decreased to the maximum possible error-rateαmax,
obtained for the unrealistic value ofP(O j

b = Aa) = 0
(all heterozygotous observed are errors):

αmax =
P(O j

b = Aa)

1−P(O j
b = /0)

(18)
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If a SNP satisfies the Hardy-Weinberg equilibrium,
has no missing values and nonetheless do not satisfy
αmax≥ 5%, its minimum allele frequency is lower that
approximatively2.5%, which shows that this problem
occurs only for SNP of low diversity.

4.4.7. Likelihood computation

If real genotypesg j
b(i) were known with certainty

(or if they were inferred through an E.-M. algorithm,
see Näım et al. (2004)), the likelihood would be:

L0(ib) = p
(

g j
b(i),o

j
b(i)

)

= ∏ j>1 p
(

o j
b(i)|g j

b(i)
)

p
(

g j
b(i)|g j−1

b (i)
)

×p
(
o1

i (i)|g1
i (i)

)
p
(
g1

i (i)
)

(19)

However, they are not, so one has to compute this
likelihoodL0(ib) for each combination of hidden vari-
ables. The likelihood of a patient is therefore:

L1(ib) = p
(

o j
b(i)

)
=

∑g j
b∈[1,card(G j

b)]

(
∏ j>1 p

(
o j

b(i)|g j
b

)
p
(

g j
b(i)|g j−1

b (i)
)

×p
(
o1

b(i)|g1
b

)
p(g1

b)

)
(20)

This a computation inO
(

∏card(G j
b)

)
∼ O

(
3Jb

)
.

Some approximations in the model are required to ob-
tain tractable likelihood computations (i.e. linear with
the number of markers). The following one is based
on two-marker sliding windows and corresponds to the
model of fig. 3:

L2(ib) =

∏ j≥2 ∑g j−1
b ,g j

b




p(o j
b(i)|g j

b)
×p(gb

b j,g j−1
b )

×p(o j−1
b (i)|g j−1

b )


 (21)

This equation considers information coming from
two neighbor markers together. Compared to the full
model, information flow is limited to pair of markers.
The likelihood could be falsely increased in this ex-
treme situation: suppose that a missing genotype is in-
ferredaa from its left neighbor andAA from its right
neighbor, the merging of this two inferences would re-
sults in a contradiction and thus a low resulting like-
lihood. On the contrary, the approximated likelihood
will not detect this contradiction and will be falsely

-.........

??

-

??

.........G j+1
bG j

bG j
bG j−1

b

O j+1
bO j

bO j
bO j−1

b

Fig. 3.— Simplified model of two-marker likelihood
computation.It is based on a two-marker sliding win-
dow. Compared to the ideal model shown in figure 2,
information flow is restricted to couples of neighbor
genotypesG j

b.

increased. This likelihood is named thereafter “two-
marker” likelihood.

Simplifying further leads to consider markers one
by one. There is no model of linkage disequilibrium
anymore, but noise is reduced as cells are better filled.
This likelihood is named thereafter “naive likelihood”
because it corresponds to a naive Bayesian model:

L3(ib) = ∏
j

∑
g j

b

p(o j
b(i)|g j

b)p(g j
b) (22)

5. Results

The method has been applied to each of the three
collectionsA, B, C (table 1) as well as to the three col-
lections at once (A+B+C), considering the collection
of origin as a co-variable. The overall computation
time is about 10 days on a single Altix Itanium proces-
sor but can be easily parallelized (for instance chromo-
some by chromosome) to drop down to less than 24h.

The pre-processing filters discard around20% of
SNP: for collectionA, out of 112 463 SNP, the missing
data filter discards 14 407 SNP, the Hardy-Weinberg
filter 9 422 SNP, and the MAF filter 12 662. As some
SNP are removed by several filters, 84 430 SNP re-
main. For collectionB andC, respectively 93 548 and
86 652 SNP remain. If all SNP satisfied the Hardy-
Weinberg equilibrium, 2 249 SNP are expected to be
discarded. Four times as many were. It can be ex-
plained(i) by artifacts of DM calling algorithm which
has a higher error rate on heterozygotous genotypes
(ii) by deviations from the assumptions underlying this
theoretical equilibrium.
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The bin partioning algorithm divides the genome
into 19 556 gene bins and 1 993 desert bins. Out of
these 21 549 bins, only 11 264 (52%) contain one SNP
or more after pre-processing in at least one MS col-
lections and are considered for further analyses. To be
collection independent, the distribution of the number
of SNP per bin is studied before pre-processing. It is
heavy tailed: out of 12 512 SNP with one bin or more,
2 781 have only one SNP, and 2 188 bins have10SNP
or more. The maximum is 210.

Figure 4 shows the FDR plotted againstp-values
computed using the two-markerL2 or the naiveL3

likelihood for the three collections. With the clas-
sical type I error rate threshold of5%, the FDR is
estimated to be88% for 679 bins and84% for 713
bins with the naive and two-marker likelihood respec-
tively. Two-marker FDR remains below naive FDR
until a p-value level of0.01 and both increase slowly
towards 1. This slow increase of FDR may reflect
an association noise, like stratification, which results
in a large number of lowly associated bins. It seems
worse for two-marker FDR because it uses more in-
formation: this is quantified by the estimation of the
number of true positives, for which a lower bound is
maxθ∈[0,1] (card({b|πb < θ})− θB). This estimation
is 427 for the two-marker likelihood and275 for the
naive one.

FDR against the number of selected SNP plots are
detailed by collection in figure 5. As observed in other
studies Pounds (2006), the FDR is not monotonous
with the p-value. The oscillations are less important
for the three collection design, maybe because of the
three time increase of sample size. With a FDR thresh-
old of 5%, only between2 and6 bins are selected de-
pending on the collections and likelihood considered
(table 2). Most of them are located on chromosome 6,
in the Major Histocompatibility Complex (MHC) re-
gion, mainly in the class III subregion. The class II
subregion is known to be associated with MS Horton
et al. (2004).(i) the number of collections studied si-
multaneously (one or three) and(ii) the likelihood type
(L2 or L3) impact the results. First, the three collection
design selects more associated bins than one collec-
tion designs, independently on the likelihood. Only
one bin (chr. 6, 32 499 261-32 528 188 bp, contain-
ing the HLA-DRA gene) is found replicated indepen-
dently on the collection or likelihood considered. Sec-
ond, let compare likelihoods only for the three col-
lection design. One bin is selected exclusively by the
naive likelihoodL3 (chr. 6, 33 036 631-33 069 204 bp).

−6
10

−5
10

−4
10

−3
10

−2
10

−1
10

0
10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p−value

F
D
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Fig. 4.— FDR versusp-values. The FDR is com-
puted for the three collectionsA+B+C using the two-
markerL2 (thick line) or the naiveL3 (thin line). FDR
is plotted against thep-value of each bin sorted by in-
creasingp-value. The logarithmic scale emphasizes
the rapid increase of FDR for lowp-values (< 0.01)
and shows the slow tendency towards 1 for highp-
values. FDR is slightly lower forL2.

This bin is ranked9th using the two-marker likelihood,
corresponding to a FDR of6.6%. On the contrary,
two bins are selected exclusively by the two-marker
likelihood (chr. 11, 48 432 965-48 517 820 bpandchr.
6, 32 827 002-32 863 903 bp) and are ranked5th and
11649th respectively using the naive likelihood. The
former could have been selected by the naive like-
lihood with a slightly less stringent FDR threshold
(6%) but the latter can only be captured by the two-
marker likelihood. Moreover, as it is not selected in
one collection designs, it suggests the ability of the
three-collection design to accumulate small evidences.
Taken together, these features tend to illustrate greater
power (i) of the three collection design over the one
collection design and(ii) of L2 over L3 in the three
collection design. These conclusions are strengthened
by results with a less stringent FDR threshold of50%
(table 3).

But FDR is misleading in this study because the
MHC region is known to be associated with MS (Dy-
ment et al. (2004) for review). It leads to an overesti-
mation of the FDR at which bins outside of this region
are selected. Indeed, the fact that true positives are
known reduces the FDR of the rest of set of selected
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TABLE 2

ASSOCIATED BINS ATFDR 5% THRESHOLD.

Chr. Start End L3(A) L3(B) L3(C) L3(ABC) L2(A) L2(B) L2(C) L2(ABC) Genesa

1 244 919 282 244 952 903 1 1 1 1 OR2T2
2 213 646 850 213 908 230 1 ZNFN1A2
6 32 269 737 32 334 279 1 1 1 1 1 1 1 NOTCH4 and NM022107.1
6 32 334 280 32 459 062 1 1 1 ENSG00000161877
6 32 499 261 32 528 188 1 1 1 1 1 1 1 1 HLA-DRA
6 32 827 002 32 863 903 1 HLA-DQB2
6 33 036 631 33 069 204 1 HLA-DMA and BRD2
8 67 691 180 67 742 206 1 VCPIP1
11 48 432 965 48 517 820 1 OR4A47

3 3 2 4 2 6 2 6

A, B, C refer to the collections studied independently,ABC to the simultaneous study of the 3 collections.L2 is the two-marker model likelihood model andL3 the
naive one. Bins onChr. 6are assumed to be true positives given previous studies. HLA-DRA is always detected. Selection of OR4A47 withL2(ABC) illustrates that the
three collection designs accumulate small evidence from each collection.

aDue to linkage disequilibrium, association of a bin may be caused by functional mutations in adjacent bins, thus it cannot be inferred directly that genes of the bins
are linked with the phenotype.

TABLE 3

NUMBER OF ASSOCIATED BINS ATFDR 50%THRESHOLD.

Collection(s) L3 L2 Common

A 6 6 4
B 14 7 5
C 6 28 6
A+B+C 20 33 17

The power is greater with the three popula-
tion design. TheL2 likelihood is more powerful
thanL3 for the three collection design.
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Fig. 5.— FDR usingL3 naive likelihood (top) andL2

two-marker likelihood (bottom).The FDR is plotted
against the rank of the 100 best bins sorted by increas-
ing p-value, for the three collections independently (A:
solid, B: dash,C: dash dot) as well as for the three
collections studied together (A+ B+C: thick). FDR
oscillates above1 in theC collection forL3 and has
been maxed to1. In both cases, the FDR is lower for
the three collection design. It is also more regular.

bins. If tests corresponding to the106bins of this re-
gion of 3.6 Mbp are removed from analysis (chr. 6,
29 720 822-33 276 526 bp, classical class I, II and III
MHC subregions), 12 bins out of the 33 selected byL2

on the three collection design are also removed (table
3). Assuming that these 12 bins are truly associated,
the corrected FDR of the 21 remaining bins is69%.
Results at50% FDR threshold without the MHC re-
gion presented in table 4: only 10 bins are selected.
Again, the bins selected with the naive likelihood in
A+B+C are either selected or not far from being se-
lected with the two-marker likelihood (the two-marker
likelihood ranked99th or less all the bins selected by
the naive likelihood).

Finally, a one test per SNP method was also tested1.
It is based on exact Fisherp-values and FDR estima-
tion following Storey & Tibshirani (2003). Due to
exact p-value computation limits and genetic hetero-
geneity (in the same bin, different SNP are expected
to be associated in different collections), collections
are studied independently. A bin is selected if it con-
tains one bin selected at the chosen threshold. Con-
sequently, FDR is underestimated at the bin level (For
example, let assume that 10 SNP are selected, 9 in one
bin and 1 in another bin. With a FDR level of10%,
due to LD, the SNP in the 1 SNP bin is likely to be
the false positive. Therefore, the 9 SNP bin is a true
positive and the 1 SNP bin a false-positive. The FDR
on bins is50%). The comparison of both methods at
a threshold of5% is in table 5. For one collection de-
signs, the number of bins selected is similar, but all
bins selected by the one test per SNP method are in
the MHC region.

6. Discussion

We have developed a new method to practically
analyze data coming from genome-wide association
studies. Our algorithm is based on a bin partition-
ning of the genome, takes advantage of studying sev-
eral collections simultaneously and takes into account
genotyping errors and local genomic structure (LD)
while staying computationally tractable. The method
has been applied to analyze around 216 million geno-
types from three association studies in Multiple Scle-
rosis, leading to the discovery of novel potentially as-
sociated genes with FDR estimation.

The underlying model relies on definition of ge-

1Unpublished methods and results.
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TABLE 4

NUMBER OF ASSOCIATED BINS ATFDR 50%AFTER EXCLUSION OFMHC REGION BINS.

Collection(s) L3 L2 Common

A 2 0 0
B 1 1 1
C 0 0 0
A+B+C 8 10 7

MHC region bins are assumed to be true-
positives. One collection designs select very
few bins.

TABLE 5

NUMBER OF ASSOCIATED BINS ATFDR 5% THRESHOLD.

Collection(s) L3 L2 one test per SNP

A 3 2 6
B 3 6 2
C 2 2 3
A+B+C 4 6 N/A

For the one test per SNP method, a bin is selected
if it contains at least one selected SNP, leading to an
underestimation of FDR.

nomic regions called the bins. This bin definition
is purposefully gene-based and has some drawbacks.
Firstly, if a new gene is discovered in a desert bin, one
has to redefine this bin as well as its neighbors. Sec-
ondly, a frontier might fall inside an haplotype block,
therefore neighbor bins might not be independent. An
improvement would be to refine bin limits using hap-
lotype blocks as soon as a consensus will be found on
them. But, for several collection studies, bins must be
identical for the all collections and it is still difficult
to define haplotype blocks across collections from dif-
ferent populations InternationalHapMapConsortium
(2005).

The algorithm assignsp-values to bins in order to
assess the significance of association which is sup-
posed to be linked by design to the studied disease.
However, other mechanisms like stratification could
also create spurious association of bins. In our stud-
ies, the collections have been checked for stratifica-
tion using a set of 200 unrelated markers Pritchard &
Rosenberg (1999) (data not shown). Our method may
also be used to a posteriori detect such stratification
through the slope of the FDR against thep-value for
medium to highp-value (> 0.01): Assuming no com-
putation artifacts, a slow increase reflects a large num-
ber of mild associations.

We have chosen to take into account genotyping
errors occuring more often for heterozygotous geno-
types and chromosomal structure by using a Bayesian
model. In our model, we can integrate LD (L2 two-
marker likelihood) or ignore SNP dependencies (L3

naive model).L2 is better on the three collection de-
sign whereas it is unclear for one collection designs.
Indeed, as two neighbor markers are studied together
with L2, the sample size must be higher. This restric-
tion to neighbor markers is not optimal, especially if
one of the marker have a low diversity of genotypes.
In this case, considering non neighbor pairs may be
more efficient because low-diversity markers contain
very few information on associations. Instead of a
linear chain, the dependence between SNPs could be
modeled as a DAG (Direct Acyclic Graph). This DAG
could be inferred from the Minimum Spanning Tree
obtained using a measure of the LD of all pairs of SNP
in a region as a distance.

Despite its biases, the bin approach has the signif-
icant advantage to reduce dramatically the number of
tests performed, here from 116 204 (number of SNPs
in Affymetrix GeneChipR© human mapping 100K) to
11 264 (number of bins). It minimizes the multiple-
testing problem to the expense of diluting localized as-
sociations in large bins. It happens when a bin contains
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many haplotype blocks, among which only one is as-
sociated. As a result of this trade-off, in one collection
designs, the number of bins selected is similar with our
method and with a one test per bin method. However,
any increase in the number of SNP tested will balance
results in favor of bin approaches. Our results clearly
show that it is still required to controlp-value thresh-
old by FDR: FDR is over80% with the classical5%
type I error rate threshold, see figure 4. Here again,
having the haplotype block structure would be helpful
to build more efficiently the bins.

The FDR threshold is chosen according to the de-
sired application. To conduct expensive downstream
experiments with putatively associated genes, a very
low rate of false-positives is required, with the risk of
missing true positives. A FDR threshold of5% seems
reasonable. On the contrary, if one wants to minimize
the false-negative rate, a FDR of50% or more is ac-
ceptable but the comparison with other sets of inde-
pendent data (such as bibliography or expression data)
is necessary to drag out signal out of noise.

Applying the method to experimental genome-wide
association data on three collections permits(i) to as-
sess the algorithm and evaluate the different parame-
ters and design and(ii) to identify genes potentially
associated to Multiple Sclerosis.

We have evidenced that the three collection design
outperforms the one-study design in terms of expected
number of true-positives, despite differences between
the studied collections, especially on the severity of the
disease. Indeed, using the collection as a co-variable
in a bin approach (contrary to a one test per SNP ap-
proach) does not hypothesize that a specific marker of
the bin should be found associated in all studies (or
even a specific allele like in the Mantel-Haenszel test)
but it still assumes that the phenotype is identical over
all collections. Furthermore, with this three collection
design, the two-marker likelihoodL2 seems to be more
efficient thanks to the additional information used.

With this configuration, a FDR threshold of5%
gives 6 associated bins. Four of them are located in
the MHC region on chromosome 6 already known to
be linked to Multiple Sclerosis Dyment et al. (2004).
It is a validation of the method. The two others are
bins containing olfactory receptor genesOR2T2 and
OR4A47. The biological meaning of such association
is unclear but the extended MHC regions contain many
other olfactory genes Horton et al. (2004) and olfac-
tory dysfunction has already been reported in Multiple
Sclerosis Doty et al. (1998); Zivadinov et al. (1999).

At FDR threshold of50%and after exclusion of bins
from MHC, the method selects ten bins. Excluding the
ones containingOR2T2 and OR4A47, most of them
are desert bins or contain uncharacterized genes. One
of them is located on chromosome X despite the small-
est number of individuals in collections (only females).
These novel potentially associated bins open the per-
spective of new gene discovery or new gene function-
alization to explain Multiple Sclerosis . They are good
targets for genotyping validation in a candidate gene
approach.
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A. Optimization of the Monte-Carlo procedure

The goal of the procedure is to sortB bins by empiricalp-value estimationπ̂b so as to select only the most likely
associated bins for further analysis. The questions are: What is the number of permutations needed sort confidently
the bins? How to use most of the computing power on estimations of lowerp-values (πb ≤ θ) which are likelier to be
true positives?

Firstly, for a given binb, the number of permutationsN+
b leading to likelihood ratio higher than the observed one

out of theNb permutations realized leads to the following estimator ofπb: π̂b = N+
b /Nb. Indeed,N+

b follows a binomial
law of parameter thep-valueπb which is asymptotically (inNb) normal of meanNbπb and variance

√
Nbπb(1−πb).

For instance, a90% confidence lower bound can be estimated asNbπb− γ
√

Nbπb(1−πb) with γ = 1.3. More-
over, as the difference of two consecutivep-valuesπb1 and πb2 is a linear combination of two independent nor-
mal distributions, the correspondingN+

b difference is normally distributed of meanNb(πb2− πb1) and of variance√
Nb(πb1(1−πb1)+πb2(1−πb2)) which is approximatively equal to

√
2Nbπb(1−πb) if πb1 ≈ πb2 ≈ πb. Assuming

thatπb1 ≤ πb2, sorting consecutivep-values requires that the lower bound of the difference is positive,i.e.:

γ
√

2Nbπb(1−πb)≤ Nb(πb2−πb1) (A1)

Secondly, if no bin is associated, the asymptotic (in sample sizeI ) distribution of ap-value is assumed to be
uniform between 0 and 1. Consequently, the difference between two consecutivep-values is asymptotically (inB)
characterized by a Poisson process of intensityB. Therefore, this difference follows an exponential law of density
Be−Bx, soπb2−πb1≥ δ/B with probabilitye−δ. Combined with equation (A1), we obtain that the probability to be able
to order with a confidence levelγ two consecutivep-values approximately equal toπb is e−δ if γ

√
2Nbπb(1−πb) ≤

δNb/B≤ Nb(πb2−πb1), i.e. if Nb is high enough such that:

Nb ≥
(√

2γ
δ

B

)2

πb(1−πb) (A2)

The right term of this inequality is increasing forπb ∈ [0,1/2]. Therefore, if an upper bound of the threshold that will
be used to selectp-values isθ≤ 1/2 andπb ≤ θ, it is enough thatNb satisfy:

πb ≤ θ ⇒ Nb ≥
(√

2γ
δ

B

)2

θ(1−θ) (A3)

However, it is useless to spent computation time to estimatep-values aboveθ with so many permutations, because
they almost surely concern not associated bins. Only a lower bound of suchp-values is required. For coherence, the
confidence on the lower bound is chosen to beγ as previously. Given a toleranceβ and a binb, it is enough to have a
relative confidence interval ofβπb that tend to 0 for lowerp-values:βNbπb ≥ γ

√
Nbπb(1−πb). It yields a new bound

on the number of permutations needed to computep-valuesπb ≥ θ:

πb ≥ θ ⇒ Nb ≥
(

γ
β

)2 1−πb

πb
(A4)

To ensure coherence of inequalities (A3) and (A4) forπb = θ, β must be defined as:

β =
δ√
2Bθ

(A5)

Given that the right term of inequality (A4) decreases withp-value, the 2 inequalities sum up in:

Nb ≥
(

Bθ
√

2γ
δ

)2

min

(
1−θ

θ
,
1−πb

πb

)
(A6)
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This inequality draw the lines of a Monte-Carlo procedure: for each binb compute likelihood ratios for new
permutations of phenotypes (labels) until the number of permutations realizedNb satisfies it, replacingπb by its
estimationN+

b /Nb. The inequality also shows that 2 parameters control the quality of the method:θ which is an upper
bound of the threshold that will be used and

√
2γ/δ which controls the error due to the randomness of the process.

The right term of the inequality is quadratic with the number of testsB, illustrating a computational difficulty of the
multi-test problem.

For the computations of this article,B = 11264, θ = 0.001,
√

2γ/δ = 2 thusNb ≤ 507003.
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