
Probabilistic Approaches for Computational
Biology and Medicine

Neil D. Lawrence

MLPM Summer School

25th September 2013

Outline

Health

Regression

Gaussian Processes

Basis Function Representations

Kalman Filter

Conclusions

What’s Changed (Changing) for Medicine?

I Modern data availability.

What’s Changed (Changing) for Medicine?

I Modern data availability.

Gaussian Processes for Big Data

James Hensman∗

Dept. Computer Science
The University of Sheffield

Sheffield, UK

Nicolò Fusi∗

Dept. Computer Science
The University of Sheffield

Sheffield, UK

Neil D. Lawrence∗

Dept. Computer Science
The University of Sheffield

Sheffield, UK

Abstract

We introduce stochastic variational inference
for Gaussian process models. This enables
the application of Gaussian process (GP)
models to data sets containing millions of
data points. We show how GPs can be vari-
ationally decomposed to depend on a set
of globally relevant inducing variables which
factorize the model in the necessary manner
to perform variational inference. Our ap-
proach is readily extended to models with
non-Gaussian likelihoods and latent variable
models based around Gaussian processes. We
demonstrate the approach on a simple toy
problem and two real world data sets.

1 Introduction

Gaussian processes [GPs, Rasmussen and Williams,
2006] are perhaps the dominant approach for inference
on functions. They underpin a range of algorithms
for regression, classification and unsupervised learn-
ing. Unfortunately, when applying a Gaussian process
to a data set of size n exact inference has complexity
O(n3) with storage demands of O(n2). This hinders
the application of these models for many domains. In
particular, large spatiotemporal data sets, video, large
social network data (e.g. from Facebook), population
scale medical data sets, models that correlate across
multiple outputs or tasks (for these models complex-
ity is O(n3p3) and storage is O(n2p2) where p is the
number of outputs or tasks). Collectively we can think
of these applications as belonging to the domain of ‘big
data’.

Traditionally in Gaussian process a large data set is
one that contains over a few thousand data points.

∗Also at Sheffield Institute for Translational Neuro-
science, SITraN

Even to accommodate these data sets, various approx-
imate techniques are required. One approach is to par-
tition the data set into separate groups [e.g. Snelson
and Ghahramani, 2007, Urtasun and Darrell, 2008].
An alternative is to build a low rank approximation
to the covariance matrix based around ‘inducing vari-
ables’ [see e.g. Csató and Opper, 2002, Seeger et al.,
2003, Quiñonero Candela and Rasmussen, 2005, Tit-
sias, 2009]. These approaches lead to a computational
complexity of O(nm2) and storage demands of O(nm)
where m is a user selected parameter governing the
number of inducing variables. However, even these
reduced storage are prohibitive for big data, where
n can be many millions or billions. For parametric
models, stochastic gradient descent is often applied to
resolve this storage issue, but in the GP domain, it
hasn’t been clear how this should be performed. In
this paper we show how recent advances in variational
inference [Hensman et al., 2012, Hoffman et al., 2012]
can be combined with the idea of inducing variables
to develop a practical algorithm for fitting GPs using
stochastic variational inference (SVI).

2 Sparse GPs Revisited

We start with a succinct rederivation of the variational
approach to inducing variables of Titsias [2009]. This
allows us to introduce notation and derive expressions
which allow for the formulation of a SVI algorithm.

Consider a data vector1 y, where each entry yi is a
noisy observation of the function f(xi), for all the
points X = {xi}ni=1. We consider the noise to be in-
dependent Gaussian with precision β. Introducing a
Gaussian process prior over f(·), let the vector f con-
tain values of the function at the points X. We shall
also introduce a set of inducing variables: let the vec-
tor u contain values of the function f at the points
Z = {zi}mi=1 which live in the same space as X. Us-

1Our derivation trivially extends to multiple indepen-
dent output dimensions, but we omit them here for clarity.

http://auai.org/uai2013/prints/papers/244.pdf

Figure 4: Convergence of the SVIGP algorithm on the
two dimensional toy data

land-registry-monthly-price-paid-data/, which
covers England and Wales, and filtered for apart-
ments. This resulted in a data set with 75,000 entries,
which we cross referenced against a postcode database
to get lattitude and longitude, on which we regressed
the normalised logarithm of the apartment prices.

Randomly selecting 10,000 data as a test set, we build
a GP as described with a covariance function k(·, ·)
consisting of four parts: two squared exponential co-
variances, initialised with different length scales were
used to account for national and regional variations in
property prices, a constant (or ’bias’) term allowed for
non-zero mean data, and a noise variance accounted
for variation that could not be modelled using simply
latitude and longitude.

We selected 800 inducing input sites using a k-means
algorithm, and optimised the parameters of the co-
variance function alongside the variational parameters.
We performed some manual tuning of the learning
rates: empirically we found that the step length should
be much higher for the variational parameters of q(u)
than for the values of the covariance function parame-
ters. We used 0.01 and 1× 10−5. Also, we included a
momentum term for the covariance function parame-
ters (set to 0.9). We tried including momentum terms
for the variational parameters, but we found this hin-
dered performance. A large mini-batch size (1000) re-
duced the stochasticity of the gradient computations.
We judged that the algorithm had converged after 750
iterations, as the stochastic estimate of the marginal
lower bound on the marginal likelihood failed to in-
crease further.

For comparison to our model, we constructed a se-
ries of GPs on subsets of the training data. Splitting
the data into sets of 500, 800, 1000 and 1200, we fit-

Figure 5: Variability of apartment price (logarithmi-
cally!) throughout England and Wales.

ted a GP with the same covariance function as our
stochastic GP. Parameters of the covariance function
were optimised using type-II maximum likelihood for
each batch. Table 1 reports the mean squared error in
our model’s prediction of the held out prices, as well
as the same for the random sub-set approach (along
with two standard deviations of the inter-sub-set vari-
ability).

Table 1: Mean squared errors in predicting the log-
apartment prices across England and Wales by latti-
tude and longitude

Mean square Error

SVIGP 0.426
Random sub-set (N=500) 0.522 +/- 0.018
Random sub-set (N=800) 0.510 +/- 0.015
Random sub-set (N=1000) 0.503 +/- 0.011
Random sub-set (N=1200) 0.502 +/- 1.012

4.3 Airline Delays

The second large scale dataset we considered consists
of flight arrival and departure times for every commer-
cial flight in the USA from January 2008 to April 2008.
This dataset contains extensive information about al-
most 2 million flights, including the delay (in minutes)
in reaching the destination. The average delay of a
flight in the first 4 months of 2008 was of 30 minutes.
Of course, much better estimates can be given by ex-
ploiting the enourmous wealth of data available, but
rich models are often overlooked in these cases due

http://auai.org/uai2013/prints/papers/244.pdf

What’s Changed (Changing) for Medicine?

I Try Googling for: “patient data ”...

Image from Wikimedia Commons

http://en.wikipedia.org/wiki/File:Bicycling-ca1887-bigwheelers.jpg

Image from Wikimedia Commons

http://en.wikipedia.org/wiki/File:Riley_car_with_chauffeur,_c1910.jpg

INF57

7/06

A brief history
of Registration
For more information go to: www.direct.gov.uk/motoring

http://www.direct.gov.uk/prod_consum_dg/groups/dg_digitalassets/@dg/@en/@motor/documents/digitalasset/dg_180212.pdf

A brief history of registration
The early days
Prior to the appearance of the first railways in Britain, there was a brief development and interest
in steam powered road going vehicles. In 1834, a Mr Hancock started a steam coach called the
“Era”, carrying up to 14 passengers from Paddington to Regents Park and the City at 6d a head.
And in the following year, a Mr Church built an omnibus capable of carrying 40 passengers for
the London and Birmingham Steam Carriage Company.

However, the success of the railway movement drove all such traffic off the roads.
A Parliamentary Commission of Enquiry in 1836 reported “strongly in favour of steam
carriages on roads”, but subsequent Acts of Parliament tended to have a discouraging and
restrictive effect. The Locomotive Act 1861 limited the weight of steam engines to 12 tons
and imposed a speed limit of 10 mph.

The Locomotive Act 1865 set a speed limit of 4 mph in the country and 2 mph in towns.
The 1865 Act also provided for the famous “man with a red flag”. Walking 60 yards ahead
of each vehicle, a man with a red flag or lantern enforced a walking pace, and warned horse
riders and horse drawn traffic of the approach of a self propelled machine.

The Locomotive Amendment Act 1878 made the red flag optional under local regulations, and
reduced the distance of warning to a more manageable 20 yards. But this did not make life much
easier for the motorist. Although British engineers were working on electrical and combustion
engines, and motor vehicles had been patented as early as 1882, they were never developed.

The arrival of the modern motor car
The Locomotive and Highways Act 1896 enabled faster and more popular light motor vehicles
to be used. Around this time Britain saw its first ever petrol driven car, either the 1888 Benz
now in the Science Museum in London, or the Benz imported by Henry Hewetson in 1894.
1896 saw the first British built Daimler – it looked more like a carriage than a car, but it was the
forerunner of the modern motor car.

The 1896 Act was the first improvement in the motoring laws to encourage motor vehicles.
Vehicles under 3 tons were exempted from the requirements of the 1878 Act and the speed
limit was raised to 14 mph, or to a lower limit prescribed by a local government board. Lights
also became compulsory along with “an instrument capable of giving audible and sufficient
warning”. Every heavy locomotive (with certain exceptions) had to be licensed by the County
or County Borough Council. The excepted cases, however, still had to be registered.

Regulations passed soon afterwards also provided for a speed limit of 12 mph; keeping to the
left when passing on-coming carriages, horses and cattle and to the right when overtaking;
and stopping the vehicle at the request of any police constable or person “in charge of a
restive horse”.

To celebrate the lifting of the restrictions the newly formed British Motor Car Club staged
an informal drive from London to Brighton. Fifty eight vehicles entered, thirty five started,
and twenty five arrived safely in Brighton. Before the start, the Earl of Winchester solemnly
tore up a symbolic red flag – this event is still commemorated in November each year (the
London to Brighton run).

http://www.direct.gov.uk/prod_consum_dg/groups/dg_digitalassets/@dg/@en/@motor/documents/digitalasset/dg_180212.pdf

Image from Wikimedia Commons

http://en.wikipedia.org/wiki/File:The_Highway_Code_1931.djvu

Image from Wikimedia Commons

http://en.wikipedia.org/wiki/File:Modern_Beijing_Traffic.jpg

What’s Changed (Changing) for Medicine?

I Genotyping.
I Epigenotyping.
I Transcriptome: detailed characterization of phenotype.

I Stratification of data.

Open Data

I Automatic data curation: from curated data to curation of
publicly available data.

I Open Data: http://www.openstreetmap.org/?lat=53.
38086&lon=-1.48545&zoom=17&layers=M.

http://www.openstreetmap.org/?lat=53.38086&lon=-1.48545&zoom=17&layers=M
http://www.openstreetmap.org/?lat=53.38086&lon=-1.48545&zoom=17&layers=M

Open Data

I Automatic data curation: from curated data to curation of
publicly available data.

I Open Data: http://www.openstreetmap.org/?lat=53.
38086&lon=-1.48545&zoom=17&layers=M.

http://www.openstreetmap.org/?lat=53.38086&lon=-1.48545&zoom=17&layers=M
http://www.openstreetmap.org/?lat=53.38086&lon=-1.48545&zoom=17&layers=M

Data Sources

I UK Goverment Stipulation on Data Availability Telegraph
Article

I Patient Access:
http://www.patient.co.uk/patient-access.asp

I The midata project: Tescos, T-mobile ...
I A social network for personal health?? e.g. EMIS

myHealth

http://www.telegraph.co.uk/health/healthnews/9673802/Patients-will-view-their-NHS-records-online-in-three-years.html
http://www.telegraph.co.uk/health/healthnews/9673802/Patients-will-view-their-NHS-records-online-in-three-years.html
https://patient.uservoice.com/knowledgebase/articles/214226-how-do-i-view-my-medical-record-
https://www.gov.uk/government/policies/providing-better-information-and-protection-for-consumers/supporting-pages/personal-data
https://myhealth.patient.co.uk/
https://myhealth.patient.co.uk/

Deep Health

I1I2

x1
1 x1

2 x1
3 x1

4 x1
5

y2 y3y4

x2
1 x2

2 x2
3 x2

4
y1y5

x3
1 x3

2 x3
3 x3

4

G E EG

latent representation
of disease stratification

survival
analysis

gene ex-
pression

clinical mea-
surements

and treatment

clinical
notes

X-raybiopsy

environment epigenotypegenotype

Missing Data

I If missing at random it can be marginalized.
I As data sets become very large (39 million in EMIS) data

becomes extremely sparse.
I Imputation becomes impractical.

Imputation

I Expectation Maximization (EM) is gold standard
imputation algorithm.

I Exact EM optimizes the log likelihood.
I Approximate EM optimizes a lower bound on log

likelihood.
I e.g. variational approximations (VIBES, Infer.net).

I Convergence is guaranteed to a local maxima in log
likelihood.

Expectation Maximization

Require: An initial guess for missing data

repeat
Update model parameters
Update guess of missing data

until convergence

(M-step)
(E-step)

Expectation Maximization

Require: An initial guess for missing data
repeat

Update model parameters
Update guess of missing data

until convergence

(M-step)
(E-step)

Expectation Maximization

Require: An initial guess for missing data
repeat

Update model parameters

Update guess of missing data
until convergence

(M-step)

(E-step)

Expectation Maximization

Require: An initial guess for missing data
repeat

Update model parameters
Update guess of missing data

until convergence

(M-step)
(E-step)

Expectation Maximization

Require: An initial guess for missing data
repeat

Update model parameters
Update guess of missing data

until convergence

(M-step)
(E-step)

Imputation is Impractical

I In very sparse data imputation is impractical.
I EMIS: 39 million patients, thousands of tests.
I For most people, most tests are missing.
I M-step becomes confused by poor imputation.

Direct Marginalization is the Answer

I Perhaps we need joint distribution of two test outcomes,

p(y1, y2)

I Obtained through marginalizing over all missing data,

p(y1, y2) =

∫
p(y1, y2, y3, . . . , yp)dy3, . . .dyp

I Where y3, . . . , yp contains:
1. all tests not applied to this patient
2. all tests not yet invented!!

Magical Marginalization in Gaussians

Multi-variate Gaussians

I Given 10 dimensional multivariate Gaussian, y ∼ N (0,C).
I Generate a single correlated sample y =

[
y1, y2 . . . y10

]
.

I How do we find the marginal distribution of y1, y2?

Gaussian Marginalization Property

-2

-1

0

1

2

0 2 4 6 8 10

y i

i

(a) A 10 dimensional sample
j

i
-4
-3
-2
-1
0
1
2
3
4

(b) colormap showing covariance be-
tween dimensions.

Figure: A sample from a 10 dimensional correlated Gaussian
distribution.

Gaussian Marginalization Property

-2

-1

0

1

2

0 2 4 6 8 10

y i

i

(a) A 10 dimensional sample
j

i
-4
-3
-2
-1
0
1
2
3
4

(b) colormap showing covariance be-
tween dimensions.

Figure: A sample from a 10 dimensional correlated Gaussian
distribution.

Gaussian Marginalization Property

-2

-1

0

1

2

0 2 4 6 8 10

y i

i

(a) A 10 dimensional sample
-4
-3
-2
-1
0
1
2
3
4

(b) colormap showing covariance be-
tween dimensions.

Figure: A sample from a 10 dimensional correlated Gaussian
distribution.

Gaussian Marginalization Property

-2

-1

0

1

2

0 2 4 6 8 10

y i

i

(a) A 10 dimensional sample
-4
-3
-2
-1
0
1
2
3
4

(b) colormap showing covariance be-
tween dimensions.

Figure: A sample from a 10 dimensional correlated Gaussian
distribution.

Gaussian Marginalization Property

-2

-1

0

1

2

0 2 4 6 8 10

y i

i

(a) A 10 dimensional sample
-4
-3
-2
-1
0
1
2
3
4

(b) colormap showing covariance be-
tween dimensions.

Figure: A sample from a 10 dimensional correlated Gaussian
distribution.

Gaussian Marginalization Property

-2

-1

0

1

2

0 2 4 6 8 10

y i

i

(a) A 10 dimensional sample
-4
-3
-2
-1
0
1
2
3
4

(b) colormap showing covariance be-
tween dimensions.

Figure: A sample from a 10 dimensional correlated Gaussian
distribution.

Gaussian Marginalization Property

-2

-1

0

1

2

0 2 4 6 8 10

y i

i

(a) A 10 dimensional sample

1 0.96793

0.96793 1

(b) colormap showing covariance be-
tween dimensions.

Figure: A sample from a 10 dimensional correlated Gaussian
distribution.

Gaussian Marginalization Property

-2

-1

0

1

2

0 2 4 6 8 10

y i

i

(a) A 10 dimensional sample

4.1 3.1111

3.1111 2.5198

(b) covariance between y1 and y2.

Figure: A sample from a 10 dimensional correlated Gaussian
distribution.

Gaussian Marginalization Property

-2

-1

0

1

2

0 2 4 6 8 10

y i

i

(a) A 10 dimensional sample

1 0.96793

0.96793 1

(b) correlation between y1 and y2.

Figure: A sample from a 10 dimensional correlated Gaussian
distribution.

Rogers and Girolami

Bishop

Outline

Health

Regression

Gaussian Processes

Basis Function Representations

Kalman Filter

Conclusions

Regression Examples

I Predict a real value, yi given some inputs xi.
I Predict quality of meat given spectral measurements

(Tecator data).
I Radiocarbon dating, the C14 calibration curve: predict age

given quantity of C14 isotope.
I Predict quality of different Go or Backgammon moves

given expert rated training data.

Olympic Marathon Data

I Gold medal times for
Olympic Marathon since
1896.

I Marathons before 1924
didn’t have a
standardised distance.

I Present results using
pace per km.

I In 1904 Marathon was
badly organised leading
to very slow times.

Image from Wikimedia
Commons

http://bit.ly/16kMKHQ

http://bit.ly/16kMKHQ

Olympic Marathon Data

3

3.5

4

4.5

5

1900 1920 1940 1960 1980 2000 2020

y,
pa

ce
m

in
/k

m

x, year

Olympic Marathon Data.

What is Machine Learning?

data

+ model = prediction

I data: observations, could be actively or passively acquired
(meta-data).

I model: assumptions, based on previous experience (other
data! transfer learning etc), or beliefs about the regularities
of the universe. Inductive bias.

I prediction: an action to be taken or a categorization or a
quality score.

What is Machine Learning?

data +

model = prediction

I data: observations, could be actively or passively acquired
(meta-data).

I model: assumptions, based on previous experience (other
data! transfer learning etc), or beliefs about the regularities
of the universe. Inductive bias.

I prediction: an action to be taken or a categorization or a
quality score.

What is Machine Learning?

data + model

= prediction

I data: observations, could be actively or passively acquired
(meta-data).

I model: assumptions, based on previous experience (other
data! transfer learning etc), or beliefs about the regularities
of the universe. Inductive bias.

I prediction: an action to be taken or a categorization or a
quality score.

What is Machine Learning?

data + model =

prediction

I data: observations, could be actively or passively acquired
(meta-data).

I model: assumptions, based on previous experience (other
data! transfer learning etc), or beliefs about the regularities
of the universe. Inductive bias.

I prediction: an action to be taken or a categorization or a
quality score.

What is Machine Learning?

data + model = prediction

I data: observations, could be actively or passively acquired
(meta-data).

I model: assumptions, based on previous experience (other
data! transfer learning etc), or beliefs about the regularities
of the universe. Inductive bias.

I prediction: an action to be taken or a categorization or a
quality score.

Regression: Linear Releationship

y = mx + c

I y: winning time/pace.

I x: year of Olympics.
I m: rate of improvement over time.
I c: winning time at year 0.

Regression: Linear Releationship

y = mx + c

I y: winning time/pace.
I x: year of Olympics.

I m: rate of improvement over time.
I c: winning time at year 0.

Regression: Linear Releationship

y = mx + c

I y: winning time/pace.
I x: year of Olympics.
I m: rate of improvement over time.

I c: winning time at year 0.

Regression: Linear Releationship

y = mx + c

I y: winning time/pace.
I x: year of Olympics.
I m: rate of improvement over time.
I c: winning time at year 0.

Two Simultaneous Equations

A system of two simultaneous
equations with two unknowns.

y1 =mx1 + c
y2 =mx2 + c

3

4

5

1900 1940 1980 2020
ti

m
e

in
m

in
/k

m
,y

year, x

Two Simultaneous Equations

A system of two simultaneous
equations with two unknowns.

y1 − y2 =m(x1 − x2)

3

4

5

1900 1940 1980 2020
ti

m
e

in
m

in
/k

m
,y

year, x

Two Simultaneous Equations

A system of two simultaneous
equations with two unknowns.

y1 − y2

x1 − x2
=m

3

4

5

1900 1940 1980 2020
ti

m
e

in
m

in
/k

m
,y

year, x

Two Simultaneous Equations

A system of two simultaneous
equations with two unknowns.

m =
y2 − y1

x2 − x1

c = y1 −mx1 3

4

5

1900 1940 1980 2020
ti

m
e

in
m

in
/k

m
,y

year, x

y 1
−

y 2

x2 − x1

Two Simultaneous Equations

How do we deal with three
simultaneous equations with
only two unknowns?

y1 =mx1 + c
y2 =mx2 + c
y3 =mx3 + c

3

4

5

1900 1940 1980 2020
ti

m
e

in
m

in
/k

m
,y

year, x

y 1
−

y 2

x2 − x1

Overdetermined System

I With two unknowns and two observations:

y1 =mx1 + c
y2 =mx2 + c

I Additional observation leads to overdetermined system.

y3 = mx3 + c

I This problem is solved through a noise model ε ∼ N
(
0, σ2

)
y1 = mx1 + c + ε1

y2 = mx2 + c + ε2

y3 = mx3 + c + ε3

Overdetermined System

I With two unknowns and two observations:

y1 =mx1 + c
y2 =mx2 + c

I Additional observation leads to overdetermined system.

y3 = mx3 + c

I This problem is solved through a noise model ε ∼ N
(
0, σ2

)
y1 = mx1 + c + ε1

y2 = mx2 + c + ε2

y3 = mx3 + c + ε3

Overdetermined System

I With two unknowns and two observations:

y1 =mx1 + c
y2 =mx2 + c

I Additional observation leads to overdetermined system.

y3 = mx3 + c

I This problem is solved through a noise model ε ∼ N
(
0, σ2

)
y1 = mx1 + c + ε1

y2 = mx2 + c + ε2

y3 = mx3 + c + ε3

Noise Models

I We aren’t modeling entire system.
I Noise model gives mismatch between model and data.
I Gaussian model justified by appeal to central limit

theorem.
I Other models also possible (Student-t for heavy tails).
I Maximum likelihood with Gaussian noise leads to least

squares.

y = mx + c

0

1

2

3

4

5

0 1 2 3 4 5

y

x

y = mx + c

0

1

2

3

4

5

0 1 2 3 4 5

y

x

y = mx + cc

m

0

1

2

3

4

5

0 1 2 3 4 5

y

x

y = mx + cc

m

0

1

2

3

4

5

0 1 2 3 4 5

y

x

y = mx + cc

m

0

1

2

3

4

5

0 1 2 3 4 5

y

x

y = mx + c

0

1

2

3

4

5

0 1 2 3 4 5

y

x

y = mx + c

0

1

2

3

4

5

0 1 2 3 4 5

y

x

y = mx + c

y = mx + c

point 1: x = 1, y = 3

3 = m + c

point 2: x = 3, y = 1

1 = 3m + c

point 3: x = 2, y = 2.5

2.5 = 2m + c

y = mx + c + ε

point 1: x = 1, y = 3

3 = m + c + ε1

point 2: x = 3, y = 1

1 = 3m + c + ε2

point 3: x = 2, y = 2.5

2.5 = 2m + c + ε3

The Gaussian Density

I Perhaps the most common probability density.

p(y|µ, σ2) =
1

√

2πσ2
exp

(
−

(y − µ)2

2σ2

)
4
= N

(
y|µ, σ2

)
I The Gaussian density.

Gaussian Density

0

1

2

3

0 1 2

p(
h|
µ
,σ

2)

h, height/m

The Gaussian PDF with µ = 1.7 and variance σ2 = 0.0225. Mean
shown as red line. It could represent the heights of a
population of students.

Gaussian Density

N

(
y|µ, σ2

)
=

1
√

2πσ2
exp

(
−

(y − µ)2

2σ2

)
σ2 is the variance of the density and µ is
the mean.

Two Important Gaussian Properties

Sum of Gaussians

I Sum of Gaussian variables is also Gaussian.

yi ∼ N
(
µi, σ

2
i

)

And the sum is distributed as

n∑
i=1

yi ∼ N

 n∑
i=1

µi,
n∑

i=1

σ2
i

(Aside: As sum increases, sum of non-Gaussian, finite
variance variables is also Gaussian [central limit theorem].)

Two Important Gaussian Properties

Sum of Gaussians

I Sum of Gaussian variables is also Gaussian.

yi ∼ N
(
µi, σ

2
i

)
And the sum is distributed as

n∑
i=1

yi ∼ N

 n∑
i=1

µi,
n∑

i=1

σ2
i

(Aside: As sum increases, sum of non-Gaussian, finite
variance variables is also Gaussian [central limit theorem].)

Two Important Gaussian Properties

Sum of Gaussians

I Sum of Gaussian variables is also Gaussian.

yi ∼ N
(
µi, σ

2
i

)
And the sum is distributed as

n∑
i=1

yi ∼ N

 n∑
i=1

µi,
n∑

i=1

σ2
i

(Aside: As sum increases, sum of non-Gaussian, finite
variance variables is also Gaussian [central limit theorem].)

Two Important Gaussian Properties

Sum of Gaussians

I Sum of Gaussian variables is also Gaussian.

yi ∼ N
(
µi, σ

2
i

)
And the sum is distributed as

n∑
i=1

yi ∼ N

 n∑
i=1

µi,
n∑

i=1

σ2
i

(Aside: As sum increases, sum of non-Gaussian, finite
variance variables is also Gaussian [central limit theorem].)

Two Important Gaussian Properties

Scaling a Gaussian

I Scaling a Gaussian leads to a Gaussian.

y ∼ N
(
µ, σ2

)
And the scaled density is distributed as

wy ∼ N
(
wµ,w2σ2

)

Two Important Gaussian Properties

Scaling a Gaussian

I Scaling a Gaussian leads to a Gaussian.

y ∼ N
(
µ, σ2

)

And the scaled density is distributed as

wy ∼ N
(
wµ,w2σ2

)

Two Important Gaussian Properties

Scaling a Gaussian

I Scaling a Gaussian leads to a Gaussian.

y ∼ N
(
µ, σ2

)
And the scaled density is distributed as

wy ∼ N
(
wµ,w2σ2

)

A Probabilistic Process

I Set the mean of Gaussian to be a function.

p
(
yi|xi

)
=

1
√

2πσ2
exp

− (
yi − f (xi)

)2

2σ2

 .
I This gives us a ‘noisy function’.
I This is known as a process.

Height as a Function of Weight

I In the standard Gaussian, parametized by mean and
variance.

I Make the mean a linear function of an input.
I This leads to a regression model.

yi = f (xi) + εi,

εi ∼N
(
0, σ2

)
.

I Assume yi is height and xi is weight.

Linear Function

1

2

50 60 70 80 90 100

y

x

data points
best fit line

A linear regression between x and y.

Data Point Likelihood

I Likelihood of an individual data point

p
(
yi|xi,m, c

)
=

1
√

2πσ2
exp

− (
yi −mxi − c

)2

2σ2

 .
I Parameters are gradient, m, offset, c of the function and

noise variance σ2.

Data Set Likelihood

I If the noise, εi is sampled independently for each data
point.

I Each data point is independent (given m and c).
I For independent variables:

p(y) =

n∏
i=1

p(yi)

Data Set Likelihood

I If the noise, εi is sampled independently for each data
point.

I Each data point is independent (given m and c).
I For independent variables:

p(y|x,m, c) =

n∏
i=1

p(yi|xi,m, c)

Data Set Likelihood

I If the noise, εi is sampled independently for each data
point.

I Each data point is independent (given m and c).
I For independent variables:

p(y|x,m, c) =

n∏
i=1

1
√

2πσ2
exp

− (
yi −mxi − c

)2

2σ2

 .

Data Set Likelihood

I If the noise, εi is sampled independently for each data
point.

I Each data point is independent (given m and c).
I For independent variables:

p(y|x,m, c) =
1

(2πσ2)
n
2

exp

−∑n
i=1

(
yi −mxi − c

)2

2σ2

 .

Log Likelihood Function

I Normally work with the log likelihood:

L(m, c, σ2) = −
n
2

log 2π −
n
2

log σ2
−

n∑
i=1

(
yi −mxi − c

)2

2σ2 .

Consistency of Maximum Likelihood

I If data was really generated according to probability we
specified.

I Correct parameters will be recovered in limit as n→∞.
I This can be proven through sample based approximations

(law of large numbers) of “KL divergences”.
I Mainstay of classical statistics.

Probabilistic Interpretation of the Error Function

I Probabilistic Interpretation for Error Function is Negative
Log Likelihood.

I Minimizing error function is equivalent to maximizing log
likelihood.

I Maximizing log likelihood is equivalent to maximizing the
likelihood because log is monotonic.

I Probabilistic interpretation: Minimizing error function is
equivalent to maximum likelihood with respect to
parameters.

Error Function

I Negative log likelihood is the error function leading to an
error function

E(m, c, σ2) =
n
2

log σ2 +
1

2σ2

n∑
i=1

(
yi −mxi − c

)2 .

I Learning proceeds by minimizing this error function for
the data set provided.

Connection: Sum of Squares Error

I Ignoring terms which don’t depend on m and c gives

E(m, c) ∝
n∑

i=1

(yi − f (xi))2

where f (xi) = mxi + c.
I This is known as the sum of squares error function.
I Commonly used and is closely associated with the

Gaussian likelihood.

Linear Function

3

3.5

4

4.5

5

1900 1920 1940 1960 1980 2000 2020

y,
pa

ce
m

in
/k

m

x, year

data points
best fit line

Linear regression for Male Olympics Marathon Gold Medal
times.

Reading

I Section 1.2.5 of Bishop up to equation 1.65.
I Section 1.1-1.2 of Rogers and Girolami for fitting linear

models.

Multi-dimensional Inputs

I Multivariate functions involve more than one input.
I Height might be a function of weight and gender.
I There could be other contributory factors.
I Place these factors in a feature vector xi.
I Linear function is now defined as

f (xi) =

q∑
j=1

w jxi, j + c

Vector Notation

mo

I Write in vector notation,

f (xi) = w>xi + c

I Can absorb c into w by assuming extra input x0 which is
always 1.

f (xi) = w>xi

Log Likelihood for Multivariate Regression

I The likelihood of a single data point is

p
(
yi|xi

)
=

1
√

2πσ2
exp

− (
yi −w>xi

)2

2σ2

 .
I Leading to a log likelihood for the data set of

L(w, σ2) = −
n
2

log σ2
−

n
2

log 2π −
∑n

i=1
(
yi −w>xi

)2

2σ2 .

I And a corresponding error function of

E(w, σ2) =
n
2

log σ2 +

∑n
i=1

(
yi −w>xi

)2

2σ2 .

Expand the Brackets

E(w, σ2) =
n
2

log σ2 +
1

2σ2

n∑
i=1

y2
i −

1
σ2

n∑
i=1

yiw>xi

+
1

2σ2

n∑
i=1

w>xix>i w + const.

=
n
2

log σ2 +
1

2σ2

n∑
i=1

y2
i −

1
σ2 w>

n∑
i=1

xiyi

+
1

2σ2 w>
 n∑

i=1

xix>i

 w + const.

Multivariate Derivatives

I We will need some multivariate calculus.
I For now some simple multivariate differentiation:

da>w
dw

= a

and
dw>Aw

dw
=

(
A + A>

)
w

or if A is symmetric (i.e. A = A>)

dw>Aw
dw

= 2Aw.

Differentiate

Differentiating with respect to the vector w we obtain

∂L
(
w, β

)
∂w

= β
n∑

i=1

xiyi − β

 n∑
i=1

xix>i

 w

Leading to

w∗ =

 n∑
i=1

xix>i

−1 n∑

i=1

xiyi,

Rewrite in matrix notation:

n∑
i=1

xix>i = X>X

n∑
i=1

xiyi = X>y

Update Equations

I Update for w∗.

w∗ =
(
X>X

)−1
X>y

I The equation for σ2 ∗ may also be found

σ2 ∗ =

∑n
i=1

(
yi − w∗ > xi

)2

n
.

Reading

I Section 1.3 of Rogers and Girolami for Matrix & Vector
Review.

Basis Functions
Nonlinear Regression

I Problem with Linear Regression—x may not be linearly
related to y.

I Potential solution: create a feature space: define φ(x)
where φ(·) is a nonlinear function of x.

I Model for target is a linear combination of these nonlinear
functions

f (x) =

K∑
j=1

w jφ j(x) (1)

Quadratic Basis

I Basis functions can be global. E.g. quadratic basis:

[1, x, x2]

-2

-1

0

1

2

-1 0 1

φ
(x

)

x

φ(x) = 1

Figure: A quadratic basis.

Quadratic Basis

I Basis functions can be global. E.g. quadratic basis:

[1, x, x2]

-2

-1

0

1

2

-1 0 1

φ
(x

)

x

φ(x) = 1

φ(x) = x

Figure: A quadratic basis.

Quadratic Basis

I Basis functions can be global. E.g. quadratic basis:

[1, x, x2]

-2

-1

0

1

2

-1 0 1

φ
(x

)

x

φ(x) = 1

φ(x) = x
φ(x) = x2

Figure: A quadratic basis.

Functions Derived from Quadratic Basis
f (x) = w1 + w2x + w3x2

-4
-3
-2
-1
0
1
2
3

-1 0 1

f(
x)

x
Figure: Function from quadratic basis with weights w1 = 0.87466,
w2 = −0.38835, w3 = −2.0058 .

Functions Derived from Quadratic Basis
f (x) = w1 + w2x + w3x2

-4
-3
-2
-1
0
1
2
3

-1 0 1

f(
x)

x
Figure: Function from quadratic basis with weights w1 = −0.35908,
w2 = 1.2274, w3 = −0.32825 .

Functions Derived from Quadratic Basis
f (x) = w1 + w2x + w3x2

-4
-3
-2
-1
0
1
2
3

-1 0 1

f(
x)

x
Figure: Function from quadratic basis with weights w1 = −1.5638,
w2 = −0.73577, w3 = 1.6861 .

Radial Basis Functions

I Or they can be local. E.g. radial (or Gaussian) basis

φ j(x) = exp
(
−

(x−µ j)2

`2

)

0

1

-2 -1 0 1 2

φ
(x

)

x

φ1(x) = e−2(x+1)2

Figure: Radial basis functions.

Radial Basis Functions

I Or they can be local. E.g. radial (or Gaussian) basis

φ j(x) = exp
(
−

(x−µ j)2

`2

)

0

1

-2 -1 0 1 2

φ
(x

)

x

φ1(x) = e−2(x+1)2

φ2(x) = e−2x2

Figure: Radial basis functions.

Radial Basis Functions

I Or they can be local. E.g. radial (or Gaussian) basis

φ j(x) = exp
(
−

(x−µ j)2

`2

)

0

1

-2 -1 0 1 2

φ
(x

)

x

φ1(x) = e−2(x+1)2

φ2(x) = e−2x2

φ3(x) = e−2(x−1)2

Figure: Radial basis functions.

Functions Derived from Radial Basis
f (x) = w1e−2(x+1)2

+ w2e−2x2
+ w3e−2(x−1)2

-2

-1

0

1

2

-3 -2 -1 0 1 2 3

f(
x)

x
Figure: Function from radial basis with weights w1 = −0.47518,
w2 = −0.18924, w3 = −1.8183 .

Functions Derived from Radial Basis
f (x) = w1e−2(x+1)2

+ w2e−2x2
+ w3e−2(x−1)2

-2

-1

0

1

2

-3 -2 -1 0 1 2 3

f(
x)

x
Figure: Function from radial basis with weights w1 = 0.50596,
w2 = −0.046315, w3 = 0.26813 .

Functions Derived from Radial Basis
f (x) = w1e−2(x+1)2

+ w2e−2x2
+ w3e−2(x−1)2

-2

-1

0

1

2

-3 -2 -1 0 1 2 3

f(
x)

x
Figure: Function from radial basis with weights w1 = 0.07179,
w2 = 1.3591, w3 = 0.50604 .

Reading

I Chapter 1, pg 1-6 of Bishop.
I Section 1.4 of Rogers and Girolami.
I Chapter 3, Section 3.1 of Bishop up to pg 143.

Polynomial Fits to Olympics Data

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-40
-35
-30
-25
-20
-15
-10

-5
0

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 0, model
error -3.3989, σ2 = 0.286, σ = 0.535.

Polynomial Fits to Olympics Data

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-40
-35
-30
-25
-20
-15
-10

-5
0

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 1, model
error -21.772, σ2 = 0.0733, σ = 0.271.

Polynomial Fits to Olympics Data

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-40
-35
-30
-25
-20
-15
-10

-5
0

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 2, model
error -29.101, σ2 = 0.0426, σ = 0.206.

Polynomial Fits to Olympics Data

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-40
-35
-30
-25
-20
-15
-10

-5
0

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 3, model
error -29.907, σ2 = 0.0401, σ = 0.200.

Polynomial Fits to Olympics Data

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-40
-35
-30
-25
-20
-15
-10

-5
0

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 4, model
error -29.943, σ2 = 0.0400, σ = 0.200.

Polynomial Fits to Olympics Data

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-40
-35
-30
-25
-20
-15
-10

-5
0

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 5, model
error -30.056, σ2 = 0.0397, σ = 0.199.

Polynomial Fits to Olympics Data

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-40
-35
-30
-25
-20
-15
-10

-5
0

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 6, model
error -32.866, σ2 = 0.0322, σ = 0.180.

Overfitting

I Increase number of basis functions, we obtain a better ‘fit’
to the data.

I How will the model perform on previously unseen data?

Training and Test Sets

I We call the data used for fitting the model the ‘training set’.
I Data not used for training, but when the model is applied

‘in the field’ is called the ‘test data’.
I Challenge for generalization is to ensure a good

performance on test data given only training data.

Validation Set

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-40
-20

0
20
40
60
80

100

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 0, training
error -1.8774, validation error -0.13132, σ2 = 0.302, σ = 0.549.

Validation Set

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-40
-20

0
20
40
60
80

100

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 1, training
error -15.325, validation error 2.5863, σ2 = 0.0733, σ = 0.271.

Validation Set

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-40
-20

0
20
40
60
80

100

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 2, training
error -17.579, validation error -8.4831, σ2 = 0.0578, σ = 0.240.

Validation Set

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-40
-20

0
20
40
60
80

100

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 3, training
error -18.064, validation error 11.27, σ2 = 0.0549, σ = 0.234.

Validation Set

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-40
-20

0
20
40
60
80

100

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 4, training
error -18.245, validation error 232.92, σ2 = 0.0539, σ = 0.232.

Validation Set

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-40
-20

0
20
40
60
80

100

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 5, training
error -20.471, validation error 9898.1, σ2 = 0.0426, σ = 0.207.

Validation Set

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-40
-20

0
20
40
60
80

100

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 6, training
error -22.881, validation error 67775, σ2 = 0.0331, σ = 0.182.

Leave One Out Error

I Take training set and remove one point.
I Train on the remaining data.
I Compute the error on the point you removed (which

wasn’t in the training data).
I Do this for each point in the training set in turn.
I Average the resulting error. This is the leave one out error.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.346, leave one out error
0.045811.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

Leave One Out Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-1

-0.5
0

0.5
1

1.5
2

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -32.237, leave one out error
1.5047.

k Fold Cross Validation

I Leave one out cross validation can be very time
consuming!

I Need to train your algorithm n times.
I An alternative: k fold cross validation.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-4
-3
-2
-1
0
1
2
3
4
5

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.2644, leave one out error
0.045811.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-4
-3
-2
-1
0
1
2
3
4
5

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.2644, leave one out error
0.045811.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-4
-3
-2
-1
0
1
2
3
4
5

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.2644, leave one out error
0.045811.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-4
-3
-2
-1
0
1
2
3
4
5

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.2644, leave one out error
0.045811.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-4
-3
-2
-1
0
1
2
3
4
5

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.2644, leave one out error
0.045811.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 0, training error -3.2644, leave one out error
0.045811.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -18.873, leave one out error
-0.15413.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -18.873, leave one out error
-0.15413.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -18.873, leave one out error
-0.15413.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -18.873, leave one out error
-0.15413.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -18.873, leave one out error
-0.15413.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 1, training error -18.873, leave one out error
-0.15413.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -25.177, leave one out error
0.34669.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -25.177, leave one out error
0.34669.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -25.177, leave one out error
0.34669.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -25.177, leave one out error
0.34669.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -25.177, leave one out error
0.34669.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 2, training error -25.177, leave one out error
0.34669.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -25.777, leave one out error
0.51621.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -25.777, leave one out error
0.51621.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -25.777, leave one out error
0.51621.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -25.777, leave one out error
0.51621.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -25.777, leave one out error
0.51621.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 3, training error -25.777, leave one out error
0.51621.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -26.048, leave one out error
0.84844.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -26.048, leave one out error
0.84844.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -26.048, leave one out error
0.84844.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -26.048, leave one out error
0.84844.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -26.048, leave one out error
0.84844.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 4, training error -26.048, leave one out error
0.84844.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -26.892, leave one out error
1.48.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -26.892, leave one out error
1.48.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -26.892, leave one out error
1.48.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -26.892, leave one out error
1.48.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -26.892, leave one out error
1.48.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 5, training error -26.892, leave one out error
1.48.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -29.395, leave one out error
1.5047.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -29.395, leave one out error
1.5047.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -29.395, leave one out error
1.5047.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -29.395, leave one out error
1.5047.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -29.395, leave one out error
1.5047.

Cross Validation Error

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7

polynomial order

Polynomial order 6, training error -29.395, leave one out error
1.5047.

Underdetermined System

What about two unknowns and
one observation?

y1 = mx1 + c

0
1
2
3
4
5

0 1 2 3
y

x

Underdetermined System

Can compute m given c.

m =
y1 − c

x

0
1
2
3
4
5

0 1 2 3
y

x

Underdetermined System

Can compute m given c.

c = 1.75 =⇒ m = 1.25

0
1
2
3
4
5

0 1 2 3
y

x

Underdetermined System

Can compute m given c.

c = −0.777 =⇒ m = 3.78

0
1
2
3
4
5

0 1 2 3
y

x

Underdetermined System

Can compute m given c.

c = −4.01 =⇒ m = 7.01

0
1
2
3
4
5

0 1 2 3
y

x

Underdetermined System

Can compute m given c.

c = −0.718 =⇒ m = 3.72

0
1
2
3
4
5

0 1 2 3
y

x

Underdetermined System

Can compute m given c.

c = 2.45 =⇒ m = 0.545

0
1
2
3
4
5

0 1 2 3
y

x

Underdetermined System

Can compute m given c.

c = −0.657 =⇒ m = 3.66

0
1
2
3
4
5

0 1 2 3
y

x

Underdetermined System

Can compute m given c.

c = −3.13 =⇒ m = 6.13

0
1
2
3
4
5

0 1 2 3
y

x

Underdetermined System

Can compute m given c.

c = −1.47 =⇒ m = 4.47

0
1
2
3
4
5

0 1 2 3
y

x

Underdetermined System

Can compute m given c.
Assume

c ∼ N (0, 4) ,

we find a distribution of solu-
tions.

0
1
2
3
4
5

0 1 2 3
y

x

Probability for Under- and Overdetermined

I To deal with overdetermined introduced probability
distribution for ‘variable’, εi.

I For underdetermined system introduced probability
distribution for ‘parameter’, c.

I This is known as a Bayesian treatment.

Reading

I Bishop Section 1.2.3 (pg 21–24).
I Bishop Section 1.2.6 (start from just past eq 1.64 pg 30-32).
I Rogers and Girolami use an example of a coin toss for

introducing Bayesian inference Chapter 3, Sections 3.1-3.4
(pg 95-117). Although you also need the beta density
which we haven’t yet discussed. This is also the example
that Laplace used.

Prior Distribution

I Bayesian inference requires a prior on the parameters.
I The prior represents your belief before you see the data of

the likely value of the parameters.
I For linear regression, consider a Gaussian prior on the

intercept:
c ∼ N (0, α1)

Posterior Distribution

I Posterior distribution is found by combining the prior with
the likelihood.

I Posterior distribution is your belief after you see the data of
the likely value of the parameters.

I The posterior is found through Bayes’ Rule

p(c|y) =
p(y|c)p(c)

p(y)

Bayes Update

0

1

2

-3 -2 -1 0 1 2 3 4
c

p(c) = N (c|0, α1)

Figure: A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.

Bayes Update

0

1

2

-3 -2 -1 0 1 2 3 4
c

p(c) = N (c|0, α1)

p(y|m, c, x, σ2) = N
(
y|mx + c, σ2

)

Figure: A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.

Bayes Update

0

1

2

-3 -2 -1 0 1 2 3 4
c

p(c) = N (c|0, α1)

p(y|m, c, x, σ2) = N
(
y|mx + c, σ2

)
p(c|y,m, x, σ2) =

N

(
c| y−mx

1+σ2/α1
, (σ−2 + α−1

1)−1
)

Figure: A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.

Stages to Derivation of the Posterior

I Multiply likelihood by prior
I they are “exponentiated quadratics”, the answer is always

also an exponentiated quadratic because
exp(a2) exp(b2) = exp(a2 + b2).

I Complete the square to get the resulting density in the
form of a Gaussian.

I Recognise the mean and (co)variance of the Gaussian. This
is the estimate of the posterior.

Multivariate Prior Distributions

I For general Bayesian inference need multivariate priors.
I E.g. for multivariate linear regression:

yi =
∑

i

w jxi, j + εi

(where we’ve dropped c for convenience), we need a prior
over w.

I This motivates a multivariate Gaussian density.

Multivariate Prior Distributions

I For general Bayesian inference need multivariate priors.
I E.g. for multivariate linear regression:

yi = w>xi,: + εi

(where we’ve dropped c for convenience), we need a prior
over w.

I This motivates a multivariate Gaussian density.

Two Dimensional Gaussian

I Consider height, h/m and weight, w/kg.
I Could sample height from a distribution:

p(h) ∼ N (1.7, 0.0225)

I And similarly weight:

p(w) ∼ N (75, 36)

Height and Weight Models
p(

h)

h/m

p(
w

)

w/kg

Gaussian distributions for height and weight.

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Samples of height and weight

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Samples of height and weight

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Samples of height and weight

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Samples of height and weight

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Samples of height and weight

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Samples of height and weight

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Samples of height and weight

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Samples of height and weight

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Samples of height and weight

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Samples of height and weight

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Samples of height and weight

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Samples of height and weight

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Samples of height and weight

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Samples of height and weight

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Samples of height and weight

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Samples of height and weight

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Samples of height and weight

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Samples of height and weight

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Samples of height and weight

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Samples of height and weight

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Samples of height and weight

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Samples of height and weight

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Samples of height and weight

Independence Assumption

I This assumes height and weight are independent.

p(h,w) = p(h)p(w)

I In reality they are dependent (body mass index) = w
h2 .

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Sampling Two Dimensional Variables

Joint Distribution

w
/k

g

h/m

Marginal Distributions

p(
h)

p(
w

)

Independent Gaussians

p(w, h) = p(w)p(h)

Independent Gaussians

p(w, h) =
1√

2πσ2
1

√
2πσ2

2

exp

−1
2

 (w − µ1)2

σ2
1

+
(h − µ2)2

σ2
2

Independent Gaussians

p(w, h) =
1

2π
√
σ2

1σ
2
2

exp

−1
2

([
w
h

]
−

[
µ1
µ2

])> [
σ2

1 0
0 σ2

2

]−1 ([
w
h

]
−

[
µ1
µ2

])

Independent Gaussians

p(y) =
1

2π |D|
exp

(
−

1
2

(y − µ)>D−1(y − µ)
)

Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

p(y) =
1

2π |D|
1
2

exp
(
−

1
2

(y − µ)>D−1(y − µ)
)

Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

p(y) =
1

2π |D|
1
2

exp
(
−

1
2

(R>y − R>µ)>D−1(R>y − R>µ)
)

Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

p(y) =
1

2π |D|
1
2

exp
(
−

1
2

(y − µ)>RD−1R>(y − µ)
)

this gives a covariance matrix:

C−1 = RD−1R>

Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

p(y) =
1

2π |C|
1
2

exp
(
−

1
2

(y − µ)>C−1(y − µ)
)

this gives a covariance matrix:

C = RDR>

Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.

yi ∼ N
(
µi, σ

2
i

)

n∑
i=1

yi ∼ N

 n∑
i=1

µi,
n∑

i=1

σ2
i

2. Scaling a Gaussian leads to a Gaussian.

y ∼ N
(
µ, σ2

)
wy ∼ N

(
wµ,w2σ2

)

Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.

yi ∼ N
(
µi, σ

2
i

)
n∑

i=1

yi ∼ N

 n∑
i=1

µi,
n∑

i=1

σ2
i

2. Scaling a Gaussian leads to a Gaussian.

y ∼ N
(
µ, σ2

)
wy ∼ N

(
wµ,w2σ2

)

Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.

yi ∼ N
(
µi, σ

2
i

)
n∑

i=1

yi ∼ N

 n∑
i=1

µi,
n∑

i=1

σ2
i

2. Scaling a Gaussian leads to a Gaussian.

y ∼ N
(
µ, σ2

)
wy ∼ N

(
wµ,w2σ2

)

Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.

yi ∼ N
(
µi, σ

2
i

)
n∑

i=1

yi ∼ N

 n∑
i=1

µi,
n∑

i=1

σ2
i

2. Scaling a Gaussian leads to a Gaussian.

y ∼ N
(
µ, σ2

)

wy ∼ N
(
wµ,w2σ2

)

Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.

yi ∼ N
(
µi, σ

2
i

)
n∑

i=1

yi ∼ N

 n∑
i=1

µi,
n∑

i=1

σ2
i

2. Scaling a Gaussian leads to a Gaussian.

y ∼ N
(
µ, σ2

)
wy ∼ N

(
wµ,w2σ2

)

Multivariate Consequence

I If
x ∼ N

(
µ,Σ

)

I And
y = Wx

I Then
y ∼ N

(
Wµ,WΣW>

)

Multivariate Consequence

I If
x ∼ N

(
µ,Σ

)
I And

y = Wx

I Then
y ∼ N

(
Wµ,WΣW>

)

Multivariate Consequence

I If
x ∼ N

(
µ,Σ

)
I And

y = Wx

I Then
y ∼ N

(
Wµ,WΣW>

)

Multivariate Regression Likelihood

I Noise corrupted data point

yi = w>xi,: + εi

I Multivariate regression likelihood:

p(y|X,w) =
1

(2πσ2)n/2 exp

− 1
2σ2

n∑
i=1

(
yi −w>xi,:

)2

I Now use a multivariate Gaussian prior:

p(w) =
1

(2πα)
p
2

exp
(
−

1
2α

w>w
)

Multivariate Regression Likelihood

I Noise corrupted data point

yi = w>xi,: + εi

I Multivariate regression likelihood:

p(y|X,w) =
1

(2πσ2)n/2 exp

− 1
2σ2

n∑
i=1

(
yi −w>xi,:

)2

I Now use a multivariate Gaussian prior:

p(w) =
1

(2πα)
p
2

exp
(
−

1
2α

w>w
)

Multivariate Regression Likelihood

I Noise corrupted data point

yi = w>xi,: + εi

I Multivariate regression likelihood:

p(y|X,w) =
1

(2πσ2)n/2 exp

− 1
2σ2

n∑
i=1

(
yi −w>xi,:

)2

I Now use a multivariate Gaussian prior:

p(w) =
1

(2πα)
p
2

exp
(
−

1
2α

w>w
)

Polynomial Fits to Olympics Data

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012

55

60

65

70

75

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: marginal log likelihood. Polynomial
order 0, model error 29.757, σ2 = 0.286, σ = 0.535.

Polynomial Fits to Olympics Data

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012

55

60

65

70

75

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: marginal log likelihood. Polynomial
order 1, model error 14.942, σ2 = 0.0749, σ = 0.274.

Polynomial Fits to Olympics Data

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012

55

60

65

70

75

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: marginal log likelihood. Polynomial
order 2, model error 9.7206, σ2 = 0.0427, σ = 0.207.

Polynomial Fits to Olympics Data

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012

55

60

65

70

75

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: marginal log likelihood. Polynomial
order 3, model error 10.416, σ2 = 0.0402, σ = 0.200.

Polynomial Fits to Olympics Data

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012

55

60

65

70

75

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: marginal log likelihood. Polynomial
order 4, model error 11.34, σ2 = 0.0401, σ = 0.200.

Polynomial Fits to Olympics Data

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012

55

60

65

70

75

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: marginal log likelihood. Polynomial
order 5, model error 11.986, σ2 = 0.0399, σ = 0.200.

Polynomial Fits to Olympics Data

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012

55

60

65

70

75

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: marginal log likelihood. Polynomial
order 6, model error 12.369, σ2 = 0.0384, σ = 0.196.

Validation Set

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-40
-20

0
20
40
60
80

100

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 0, training
error 29.757, validation error -0.29243, σ2 = 0.302, σ = 0.550.

Validation Set

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-40
-20

0
20
40
60
80

100

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 1, training
error 14.942, validation error 4.4027, σ2 = 0.0762, σ = 0.276.

Validation Set

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-40
-20

0
20
40
60
80

100

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 2, training
error 9.7206, validation error -8.6623, σ2 = 0.0580, σ = 0.241.

Validation Set

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-40
-20

0
20
40
60
80

100

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 3, training
error 10.416, validation error -6.4726, σ2 = 0.0555, σ = 0.236.

Validation Set

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-40
-20

0
20
40
60
80

100

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 4, training
error 11.34, validation error -8.431, σ2 = 0.0555, σ = 0.236.

Validation Set

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-40
-20

0
20
40
60
80

100

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 5, training
error 11.986, validation error -10.483, σ2 = 0.0551, σ = 0.235.

Validation Set

2.5
3

3.5
4

4.5
5

5.5

1892 1932 1972 2012
-40
-20

0
20
40
60
80

100

0 1 2 3 4 5 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 6, training
error 12.369, validation error -3.3823, σ2 = 0.0537, σ = 0.232.

Example: GWAS Studies

I Try predicting phenotype (Y) from a set of known
mutations (S):

yi,: = Vsi,: + εi,:

I Problem: observations are corrupted by environmental
disturbances:

yi,: = Vsi,: + Wxi,: + εi,:

Here xi,: is a vector of unobserved environmental factors
(Parts et al., 2011).

I Our contribution: marginalize both V and W.

Linear Dimensionality Reduction

Linear Latent Variable Model

I Represent data, Y, with a lower dimensional set of latent
variables X.

I Assume a linear relationship of the form

yi,: = Wxi,: + εi,:,

where
εi,: ∼ N

(
0, σ2I

)
.

Linear Latent Variable Model

Probabilistic PCA
I Define linear-Gaussian

relationship between
latent variables and
data.

I Standard Latent
variable approach:

I Define Gaussian prior
over latent space, X.

I Integrate out latent
variables.

Y

W X

σ2

p (Y|X,W) =

n∏
i=1

N

(
yi,:|Wxi,:, σ

2I
)

Linear Latent Variable Model

Probabilistic PCA
I Define linear-Gaussian

relationship between
latent variables and
data.

I Standard Latent
variable approach:

I Define Gaussian prior
over latent space, X.

I Integrate out latent
variables.

Y

W X

σ2

p (Y|X,W) =

n∏
i=1

N

(
yi,:|Wxi,:, σ

2I
)

Linear Latent Variable Model

Probabilistic PCA
I Define linear-Gaussian

relationship between
latent variables and
data.

I Standard Latent
variable approach:

I Define Gaussian prior
over latent space, X.

I Integrate out latent
variables.

Y

W X

σ2

p (Y|X,W) =

n∏
i=1

N

(
yi,:|Wxi,:, σ

2I
)

p (X) =

n∏
i=1

N

(
xi,:|0, I

)

Linear Latent Variable Model

Probabilistic PCA
I Define linear-Gaussian

relationship between
latent variables and
data.

I Standard Latent
variable approach:

I Define Gaussian prior
over latent space, X.

I Integrate out latent
variables.

Y

W X

σ2

p (Y|X,W) =

n∏
i=1

N

(
yi,:|Wxi,:, σ

2I
)

p (X) =

n∏
i=1

N

(
xi,:|0, I

)

p (Y|W) =

n∏
i=1

N

(
yi,:|0,WW> + σ2I

)

Computation of the Marginal Likelihood

yi,: = Wxi,: +εi,:, xi,: ∼ N (0, I) , εi,: ∼ N
(
0, σ2I

)

Wxi,: ∼ N
(
0,WW>

)
,

Wxi,: + εi,: ∼ N
(
0,WW> + σ2I

)

Computation of the Marginal Likelihood

yi,: = Wxi,: +εi,:, xi,: ∼ N (0, I) , εi,: ∼ N
(
0, σ2I

)
Wxi,: ∼ N

(
0,WW>

)
,

Wxi,: + εi,: ∼ N
(
0,WW> + σ2I

)

Computation of the Marginal Likelihood

yi,: = Wxi,: +εi,:, xi,: ∼ N (0, I) , εi,: ∼ N
(
0, σ2I

)
Wxi,: ∼ N

(
0,WW>

)
,

Wxi,: + εi,: ∼ N
(
0,WW> + σ2I

)

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

Y

W

σ2

p (Y|W) =

n∏
i=1

N

(
yi,:|0,WW> + σ2I

)

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p (Y|W) =

n∏
i=1

N
(
yi,:|0,C

)
, C = WW> + σ2I

log p (Y|W) = −
n
2

log |C| −
1
2

tr
(
C−1Y>Y

)
+ const.

If Uq are first q principal eigenvectors of n−1Y>Y and the
corresponding eigenvalues are Λq,

W = UqLR>, L =
(
Λq − σ

2I
) 1

2

where R is an arbitrary rotation matrix.

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p (Y|W) =

n∏
i=1

N
(
yi,:|0,C

)
, C = WW> + σ2I

log p (Y|W) = −
n
2

log |C| −
1
2

tr
(
C−1Y>Y

)
+ const.

If Uq are first q principal eigenvectors of n−1Y>Y and the
corresponding eigenvalues are Λq,

W = UqLR>, L =
(
Λq − σ

2I
) 1

2

where R is an arbitrary rotation matrix.

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p (Y|W) =

n∏
i=1

N
(
yi,:|0,C

)
, C = WW> + σ2I

log p (Y|W) = −
n
2

log |C| −
1
2

tr
(
C−1Y>Y

)
+ const.

If Uq are first q principal eigenvectors of n−1Y>Y and the
corresponding eigenvalues are Λq,

W = UqLR>, L =
(
Λq − σ

2I
) 1

2

where R is an arbitrary rotation matrix.

Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p (Y|W) =

n∏
i=1

N
(
yi,:|0,C

)
, C = WW> + σ2I

log p (Y|W) = −
n
2

log |C| −
1
2

tr
(
C−1Y>Y

)
+ const.

If Uq are first q principal eigenvectors of n−1Y>Y and the
corresponding eigenvalues are Λq,

W = UqLR>, L =
(
Λq − σ

2I
) 1

2

where R is an arbitrary rotation matrix.

Linear Latent Variable Model III

Dual Probabilistic PCA
I Define linear-Gaussian

relationship between
latent variables and
data.

I Novel Latent variable
approach:

I Define Gaussian prior
over parameters, W.

I Integrate out
parameters.

Y

W X

σ2

p (Y|X,W) =

n∏
i=1

N

(
yi,:|Wxi,:, σ

2I
)

Linear Latent Variable Model III

Dual Probabilistic PCA
I Define linear-Gaussian

relationship between
latent variables and
data.

I Novel Latent variable
approach:

I Define Gaussian prior
over parameters, W.

I Integrate out
parameters.

Y

W X

σ2

p (Y|X,W) =

n∏
i=1

N

(
yi,:|Wxi,:, σ

2I
)

Linear Latent Variable Model III

Dual Probabilistic PCA
I Define linear-Gaussian

relationship between
latent variables and
data.

I Novel Latent variable
approach:

I Define Gaussian prior
over parameters, W.

I Integrate out
parameters.

Y

W X

σ2

p (Y|X,W) =

n∏
i=1

N

(
yi,:|Wxi,:, σ

2I
)

p (W) =

p∏
i=1

N

(
wi,:|0, I

)

Linear Latent Variable Model III

Dual Probabilistic PCA
I Define linear-Gaussian

relationship between
latent variables and
data.

I Novel Latent variable
approach:

I Define Gaussian prior
over parameters, W.

I Integrate out
parameters.

Y

W X

σ2

p (Y|X,W) =

n∏
i=1

N

(
yi,:|Wxi,:, σ

2I
)

p (W) =

p∏
i=1

N

(
wi,:|0, I

)

p (Y|X) =

p∏
j=1

N

(
y:, j|0,XX> + σ2I

)

Computation of the Marginal Likelihood

y:, j = Xw:, j+ε:, j, w:, j ∼ N (0, I) , εi,: ∼ N
(
0, σ2I

)

Xw:, j ∼ N
(
0,XX>

)
,

Xw:, j + ε:, j ∼ N
(
0,XX> + σ2I

)

Computation of the Marginal Likelihood

y:, j = Xw:, j+ε:, j, w:, j ∼ N (0, I) , εi,: ∼ N
(
0, σ2I

)
Xw:, j ∼ N

(
0,XX>

)
,

Xw:, j + ε:, j ∼ N
(
0,XX> + σ2I

)

Computation of the Marginal Likelihood

y:, j = Xw:, j+ε:, j, w:, j ∼ N (0, I) , εi,: ∼ N
(
0, σ2I

)
Xw:, j ∼ N

(
0,XX>

)
,

Xw:, j + ε:, j ∼ N
(
0,XX> + σ2I

)

Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004,

2005)

Y

X

σ2

p (Y|X) =

p∏
j=1

N

(
y:, j|0,XX> + σ2I

)

Linear Latent Variable Model IV

Dual PPCA Max. Likelihood Soln (Lawrence, 2004, 2005)

p (Y|X) =

p∏
j=1

N

(
y:, j|0,K

)
, K = XX> + σ2I

log p (Y|X) = −
p
2

log |K| −
1
2

tr
(
K−1YY>

)
+ const.

If U′q are first q principal eigenvectors of p−1YY> and the
corresponding eigenvalues are Λq,

X = U′qLR>, L =
(
Λq − σ

2I
) 1

2

where R is an arbitrary rotation matrix.

Linear Latent Variable Model IV

PPCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p (Y|X) =

p∏
j=1

N

(
y:, j|0,K

)
, K = XX> + σ2I

log p (Y|X) = −
p
2

log |K| −
1
2

tr
(
K−1YY>

)
+ const.

If U′q are first q principal eigenvectors of p−1YY> and the
corresponding eigenvalues are Λq,

X = U′qLR>, L =
(
Λq − σ

2I
) 1

2

where R is an arbitrary rotation matrix.

Linear Latent Variable Model IV

PPCA Max. Likelihood Soln

p (Y|X) =

p∏
j=1

N

(
y:, j|0,K

)
, K = XX> + σ2I

log p (Y|X) = −
p
2

log |K| −
1
2

tr
(
K−1YY>

)
+ const.

If U′q are first q principal eigenvectors of p−1YY> and the
corresponding eigenvalues are Λq,

X = U′qLR>, L =
(
Λq − σ

2I
) 1

2

where R is an arbitrary rotation matrix.

Linear Latent Variable Model IV

PPCA Max. Likelihood Soln

p (Y|X) =

p∏
j=1

N

(
y:, j|0,K

)
, K = XX> + σ2I

log p (Y|X) = −
p
2

log |K| −
1
2

tr
(
K−1YY>

)
+ const.

If U′q are first q principal eigenvectors of p−1YY> and the
corresponding eigenvalues are Λq,

X = U′qLR>, L =
(
Λq − σ

2I
) 1

2

where R is an arbitrary rotation matrix.

Linear Latent Variable Model IV

Dual PPCA Max. Likelihood Soln (Lawrence, 2004, 2005)

p (Y|X) =

p∏
j=1

N

(
y:, j|0,K

)
, K = XX> + σ2I

log p (Y|X) = −
p
2

log |K| −
1
2

tr
(
K−1YY>

)
+ const.

If U′q are first q principal eigenvectors of p−1YY> and the
corresponding eigenvalues are Λq,

X = U′qLR>, L =
(
Λq − σ

2I
) 1

2

where R is an arbitrary rotation matrix.

Linear Latent Variable Model IV

PPCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p (Y|W) =

n∏
i=1

N
(
yi,:|0,C

)
, C = WW> + σ2I

log p (Y|W) = −
n
2

log |C| −
1
2

tr
(
C−1Y>Y

)
+ const.

If Uq are first q principal eigenvectors of n−1Y>Y and the
corresponding eigenvalues are Λq,

W = UqLR>, L =
(
Λq − σ

2I
) 1

2

where R is an arbitrary rotation matrix.

Equivalence of Formulations

The Eigenvalue Problems are equivalent

I Solution for Probabilistic PCA (solves for the mapping)

Y>YUq = UqΛq W = UqLR>

I Solution for Dual Probabilistic PCA (solves for the latent
positions)

YY>U′q = U′qΛq X = U′qLR>

I Equivalence is from

Uq = Y>U′qΛ
−

1
2

q

Back to the full model

Reading

I Section 2.3 of Bishop up to top of pg 85 (multivariate
Gaussians).

I Section 3.3 of Bishop up to 159 (pg 152–159).
I The LIMMI paper (Fusi et al., 2013).
I The PANAMA paper (Fusi et al., 2012).

Book

Rasmussen and Williams (2006)

Sampling a Function

Multi-variate Gaussians

I We will consider a Gaussian with a particular structure of
covariance matrix.

I Generate a single sample from this 25 dimensional
Gaussian distribution, f =

[
f1, f2 . . . f25

]
.

I We will plot these points against their index.

Gaussian Distribution Sample

-2

-1

0

1

2

0 5 10 15 20 25

f i

i(a) A 25 dimensional correlated ran-
dom variable (values ploted against
index)

j
i

0

0.2

0.4

0.6

0.8

1

(b) colormap showing correlations
between dimensions.

Figure: A sample from a 25 dimensional Gaussian distribution.

Gaussian Distribution Sample

-2

-1

0

1

2

0 5 10 15 20 25

f i

i(a) A 25 dimensional correlated ran-
dom variable (values ploted against
index)

j
i

0

0.2

0.4

0.6

0.8

1

(b) colormap showing correlations
between dimensions.

Figure: A sample from a 25 dimensional Gaussian distribution.

Gaussian Distribution Sample

-2

-1

0

1

2

0 5 10 15 20 25

f i

i(a) A 25 dimensional correlated ran-
dom variable (values ploted against
index)

0

0.2

0.4

0.6

0.8

1

(b) colormap showing correlations
between dimensions.

Figure: A sample from a 25 dimensional Gaussian distribution.

Gaussian Distribution Sample

-2

-1

0

1

2

0 5 10 15 20 25

f i

i(a) A 25 dimensional correlated ran-
dom variable (values ploted against
index)

0

0.2

0.4

0.6

0.8

1

(b) colormap showing correlations
between dimensions.

Figure: A sample from a 25 dimensional Gaussian distribution.

Gaussian Distribution Sample

-2

-1

0

1

2

0 5 10 15 20 25

f i

i(a) A 25 dimensional correlated ran-
dom variable (values ploted against
index)

0

0.2

0.4

0.6

0.8

1

(b) colormap showing correlations
between dimensions.

Figure: A sample from a 25 dimensional Gaussian distribution.

Gaussian Distribution Sample

-2

-1

0

1

2

0 5 10 15 20 25

f i

i(a) A 25 dimensional correlated ran-
dom variable (values ploted against
index)

0

0.2

0.4

0.6

0.8

1

(b) colormap showing correlations
between dimensions.

Figure: A sample from a 25 dimensional Gaussian distribution.

Gaussian Distribution Sample

-2

-1

0

1

2

0 5 10 15 20 25

f i

i(a) A 25 dimensional correlated ran-
dom variable (values ploted against
index)

0

0.2

0.4

0.6

0.8

1

(b) colormap showing correlations
between dimensions.

Figure: A sample from a 25 dimensional Gaussian distribution.

Gaussian Distribution Sample

-2

-1

0

1

2

0 5 10 15 20 25

f i

i(a) A 25 dimensional correlated ran-
dom variable (values ploted against
index)

1 0.96587

0.96587 1

(b) correlation between f1 and f2.

Figure: A sample from a 25 dimensional Gaussian distribution.

Prediction of f2 from f1

-1

0

1

-1 0 1

f 1

f2

1 0.96587

0.96587 1

I The single contour of the Gaussian density represents the
joint distribution, p(f1, f2).

I We observe that f1 = −0.313.
I Conditional density: p(f2| f1 = −0.313).

Prediction of f2 from f1

-1

0

1

-1 0 1

f 1

f2

1 0.96587

0.96587 1

I The single contour of the Gaussian density represents the
joint distribution, p(f1, f2).

I We observe that f1 = −0.313.

I Conditional density: p(f2| f1 = −0.313).

Prediction of f2 from f1

-1

0

1

-1 0 1

f 1

f2

1 0.96587

0.96587 1

I The single contour of the Gaussian density represents the
joint distribution, p(f1, f2).

I We observe that f1 = −0.313.
I Conditional density: p(f2| f1 = −0.313).

Prediction of f2 from f1

-1

0

1

-1 0 1

f 1

f2

1 0.96587

0.96587 1

I The single contour of the Gaussian density represents the
joint distribution, p(f1, f2).

I We observe that f1 = −0.313.
I Conditional density: p(f2| f1 = −0.313).

Prediction with Correlated Gaussians

I Prediction of f2 from f1 requires conditional density.
I Conditional density is also Gaussian.

p(f2| f1) = N

 f2|
k1,2

k1,1
f1, k2,2 −

k2
1,2

k1,1

where covariance of joint density is given by

K =

[
k1,1 k1,2
k2,1 k2,2

]

Prediction of f5 from f1

-1

0

1

-1 0 1

f 1

f5

1 0.57375

0.57375 1

I The single contour of the Gaussian density represents the
joint distribution, p(f1, f5).

I We observe that f1 = −0.313.
I Conditional density: p(f5| f1 = −0.313).

Prediction of f5 from f1

-1

0

1

-1 0 1

f 1

f5

1 0.57375

0.57375 1

I The single contour of the Gaussian density represents the
joint distribution, p(f1, f5).

I We observe that f1 = −0.313.

I Conditional density: p(f5| f1 = −0.313).

Prediction of f5 from f1

-1

0

1

-1 0 1

f 1

f5

1 0.57375

0.57375 1

I The single contour of the Gaussian density represents the
joint distribution, p(f1, f5).

I We observe that f1 = −0.313.
I Conditional density: p(f5| f1 = −0.313).

Prediction of f5 from f1

-1

0

1

-1 0 1

f 1

f5

1 0.57375

0.57375 1

I The single contour of the Gaussian density represents the
joint distribution, p(f1, f5).

I We observe that f1 = −0.313.
I Conditional density: p(f5| f1 = −0.313).

Prediction with Correlated Gaussians

I Prediction of f∗ from f requires multivariate conditional
density.

I Multivariate conditional density is also Gaussian.

p(f∗|f) = N
(
f∗|K∗,fK−1

f,f f,K∗,∗ −K∗,fK−1
f,f Kf,∗

)

I Here covariance of joint density is given by

K =

[
Kf,f K∗,f
Kf,∗ K∗,∗

]

Prediction with Correlated Gaussians

I Prediction of f∗ from f requires multivariate conditional
density.

I Multivariate conditional density is also Gaussian.

p(f∗|f) = N
(
f∗|µ,Σ

)
µ = K∗,fK−1

f,f f

Σ = K∗,∗ −K∗,fK−1
f,f Kf,∗

I Here covariance of joint density is given by

K =

[
Kf,f K∗,f
Kf,∗ K∗,∗

]

Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x, x′) = α exp

−‖x − x′‖22
2`2

I Covariance matrix is

built using the inputs to
the function x.

I For the example above it
was based on Euclidean
distance.

I The covariance function
is also know as a kernel.

Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x, x′) = α exp

−‖x − x′‖22
2`2

I Covariance matrix is

built using the inputs to
the function x.

I For the example above it
was based on Euclidean
distance.

I The covariance function
is also know as a kernel.

Covariance Functions
Where did this covariance matrix come from?

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x1 = −3.0, x1 = −3.0

k1,1 = 1.00 × exp
(
−

(−3.0−−3.0)2

2×2.002

)

Covariance Functions
Where did this covariance matrix come from?

1.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x1 = −3.0, x1 = −3.0

k1,1 = 1.00 × exp
(
−

(−3.0−−3.0)2

2×2.002

)

Covariance Functions
Where did this covariance matrix come from?

1.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x2 = 1.20, x1 = −3.0

k2,1 = 1.00 × exp
(
−

(1.20−−3.0)2

2×2.002

)

Covariance Functions
Where did this covariance matrix come from?

1.00

0.110

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x2 = 1.20, x1 = −3.0

k2,1 = 1.00 × exp
(
−

(1.20−−3.0)2

2×2.002

)

Covariance Functions
Where did this covariance matrix come from?

1.00 0.110

0.110

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x2 = 1.20, x1 = −3.0

k2,1 = 1.00 × exp
(
−

(1.20−−3.0)2

2×2.002

)

Covariance Functions
Where did this covariance matrix come from?

1.00 0.110

0.110

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x2 = 1.20, x2 = 1.20

k2,2 = 1.00 × exp
(
−

(1.20−1.20)2

2×2.002

)

Covariance Functions
Where did this covariance matrix come from?

1.00 0.110

0.110 1.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x2 = 1.20, x2 = 1.20

k2,2 = 1.00 × exp
(
−

(1.20−1.20)2

2×2.002

)

Covariance Functions
Where did this covariance matrix come from?

1.00 0.110

0.110 1.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x1 = −3.0

k3,1 = 1.00 × exp
(
−

(1.40−−3.0)2

2×2.002

)

Covariance Functions
Where did this covariance matrix come from?

1.00 0.110

0.110 1.00

0.0889

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x1 = −3.0

k3,1 = 1.00 × exp
(
−

(1.40−−3.0)2

2×2.002

)

Covariance Functions
Where did this covariance matrix come from?

1.00 0.110 0.0889

0.110 1.00

0.0889

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x1 = −3.0

k3,1 = 1.00 × exp
(
−

(1.40−−3.0)2

2×2.002

)

Covariance Functions
Where did this covariance matrix come from?

1.00 0.110 0.0889

0.110 1.00

0.0889

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x2 = 1.20

k3,2 = 1.00 × exp
(
−

(1.40−1.20)2

2×2.002

)

Covariance Functions
Where did this covariance matrix come from?

1.00 0.110 0.0889

0.110 1.00

0.0889 0.995

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x2 = 1.20

k3,2 = 1.00 × exp
(
−

(1.40−1.20)2

2×2.002

)

Covariance Functions
Where did this covariance matrix come from?

1.00 0.110 0.0889

0.110 1.00 0.995

0.0889 0.995

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x2 = 1.20

k3,2 = 1.00 × exp
(
−

(1.40−1.20)2

2×2.002

)

Covariance Functions
Where did this covariance matrix come from?

1.00 0.110 0.0889

0.110 1.00 0.995

0.0889 0.995

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x3 = 1.40

k3,3 = 1.00 × exp
(
−

(1.40−1.40)2

2×2.002

)

Covariance Functions
Where did this covariance matrix come from?

1.00 0.110 0.0889

0.110 1.00 0.995

0.0889 0.995 1.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x3 = 1.40

k3,3 = 1.00 × exp
(
−

(1.40−1.40)2

2×2.002

)

Covariance Functions
Where did this covariance matrix come from?

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 2.00 and α = 1.00.

x3 = 1.40, x3 = 1.40

k3,3 = 1.00 × exp
(
−

(1.40−1.40)2

2×2.002

)

Covariance Functions
Where did this covariance matrix come from?

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x1 = −3, x1 = −3

k1,1 = 1.0 × exp
(
−

(−3−−3)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x1 = −3, x1 = −3

k1,1 = 1.0 × exp
(
−

(−3−−3)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x1 = −3

k2,1 = 1.0 × exp
(
−

(1.2−−3)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

1.0

0.11

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x1 = −3

k2,1 = 1.0 × exp
(
−

(1.2−−3)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x1 = −3

k2,1 = 1.0 × exp
(
−

(1.2−−3)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x2 = 1.2

k2,2 = 1.0 × exp
(
−

(1.2−1.2)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x2 = 1.2, x2 = 1.2

k2,2 = 1.0 × exp
(
−

(1.2−1.2)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x1 = −3

k3,1 = 1.0 × exp
(
−

(1.4−−3)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

1.0 0.11

0.11 1.0

0.089

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x1 = −3

k3,1 = 1.0 × exp
(
−

(1.4−−3)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x1 = −3

k3,1 = 1.0 × exp
(
−

(1.4−−3)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x2 = 1.2

k3,2 = 1.0 × exp
(
−

(1.4−1.2)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0

0.089 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x2 = 1.2

k3,2 = 1.0 × exp
(
−

(1.4−1.2)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x2 = 1.2

k3,2 = 1.0 × exp
(
−

(1.4−1.2)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x3 = 1.4

k3,3 = 1.0 × exp
(
−

(1.4−1.4)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x3 = 1.4, x3 = 1.4

k3,3 = 1.0 × exp
(
−

(1.4−1.4)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x1 = −3

k4,1 = 1.0 × exp
(
−

(2.0−−3)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089

0.11 1.0 1.0

0.089 1.0 1.0

0.044

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x1 = −3

k4,1 = 1.0 × exp
(
−

(2.0−−3)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0

0.089 1.0 1.0

0.044

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x1 = −3

k4,1 = 1.0 × exp
(
−

(2.0−−3)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0

0.089 1.0 1.0

0.044

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x2 = 1.2

k4,2 = 1.0 × exp
(
−

(2.0−1.2)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0

0.089 1.0 1.0

0.044 0.92

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x2 = 1.2

k4,2 = 1.0 × exp
(
−

(2.0−1.2)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x2 = 1.2

k4,2 = 1.0 × exp
(
−

(2.0−1.2)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x3 = 1.4

k4,3 = 1.0 × exp
(
−

(2.0−1.4)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0

0.044 0.92 0.96

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x3 = 1.4

k4,3 = 1.0 × exp
(
−

(2.0−1.4)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

0.044 0.92 0.96

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x3 = 1.4

k4,3 = 1.0 × exp
(
−

(2.0−1.4)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

0.044 0.92 0.96

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x4 = 2.0

k4,4 = 1.0 × exp
(
−

(2.0−2.0)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

1.0 0.11 0.089 0.044

0.11 1.0 1.0 0.92

0.089 1.0 1.0 0.96

0.044 0.92 0.96 1.0

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x4 = 2.0

k4,4 = 1.0 × exp
(
−

(2.0−2.0)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3, x2 = 1.2, x3 = 1.4, and x4 = 2.0 with ` = 2.0 and α = 1.0.

x4 = 2.0, x4 = 2.0

k4,4 = 1.0 × exp
(
−

(2.0−2.0)2

2×2.02

)

Covariance Functions
Where did this covariance matrix come from?

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x1 = −3.0, x1 = −3.0

k1,1 = 4.00 × exp
(
−

(−3.0−−3.0)2

2×5.002

)

Covariance Functions
Where did this covariance matrix come from?

4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x1 = −3.0, x1 = −3.0

k1,1 = 4.00 × exp
(
−

(−3.0−−3.0)2

2×5.002

)

Covariance Functions
Where did this covariance matrix come from?

4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x1 = −3.0

k2,1 = 4.00 × exp
(
−

(1.20−−3.0)2

2×5.002

)

Covariance Functions
Where did this covariance matrix come from?

4.00

2.81

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x1 = −3.0

k2,1 = 4.00 × exp
(
−

(1.20−−3.0)2

2×5.002

)

Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x1 = −3.0

k2,1 = 4.00 × exp
(
−

(1.20−−3.0)2

2×5.002

)

Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x2 = 1.20

k2,2 = 4.00 × exp
(
−

(1.20−1.20)2

2×5.002

)

Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81 4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x2 = 1.20, x2 = 1.20

k2,2 = 4.00 × exp
(
−

(1.20−1.20)2

2×5.002

)

Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81 4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x1 = −3.0

k3,1 = 4.00 × exp
(
−

(1.40−−3.0)2

2×5.002

)

Covariance Functions
Where did this covariance matrix come from?

4.00 2.81

2.81 4.00

2.72

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x1 = −3.0

k3,1 = 4.00 × exp
(
−

(1.40−−3.0)2

2×5.002

)

Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00

2.72

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x1 = −3.0

k3,1 = 4.00 × exp
(
−

(1.40−−3.0)2

2×5.002

)

Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00

2.72

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x2 = 1.20

k3,2 = 4.00 × exp
(
−

(1.40−1.20)2

2×5.002

)

Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00

2.72 4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x2 = 1.20

k3,2 = 4.00 × exp
(
−

(1.40−1.20)2

2×5.002

)

Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00 4.00

2.72 4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x2 = 1.20

k3,2 = 4.00 × exp
(
−

(1.40−1.20)2

2×5.002

)

Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00 4.00

2.72 4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x3 = 1.40

k3,3 = 4.00 × exp
(
−

(1.40−1.40)2

2×5.002

)

Covariance Functions
Where did this covariance matrix come from?

4.00 2.81 2.72

2.81 4.00 4.00

2.72 4.00 4.00

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x3 = 1.40

k3,3 = 4.00 × exp
(
−

(1.40−1.40)2

2×5.002

)

Covariance Functions
Where did this covariance matrix come from?

k
(
xi, x j

)
= α exp

(
−
||xi−x j||

2

2`2

)

x1 = −3.0, x2 = 1.20, and x3 = 1.40 with ` = 5.00 and α = 4.00.

x3 = 1.40, x3 = 1.40

k3,3 = 4.00 × exp
(
−

(1.40−1.40)2

2×5.002

)

Basis Function Form

Radial basis functions commonly have the form

φk (xi) = exp

−
∣∣∣xi − µk

∣∣∣2
2`2

 .

I Basis function
maps data into a
“feature space” in
which a linear sum
is a non linear
function.

0

0.5

1

-8 -6 -4 -2 0 2 4 6 8

φ
(x

)

x
Figure: A set of radial basis functions with width
` = 2 and location parameters µ = [−4 0 4]>.

Basis Function Representations

I Represent a function by a linear sum over a basis,

f (xi,:; w) =

m∑
k=1

wkφk(xi,:), (2)

I Here: m basis functions and φk(·) is kth basis function and

w = [w1, . . . ,wm]> .

I For standard linear model: φk(xi,:) = xi,k.

Random Functions

Functions derived
using:

f (x) =

m∑
k=1

wkφk(x),

where W is sampled
from a Gaussian
density,

wk ∼ N (0, α) .

-2
-1
0
1
2

-8 -6 -4 -2 0 2 4 6 8
f(

x)
x

Figure: Functions sampled using the basis set from
figure 8. Each line is a separate sample, generated
by a weighted sum of the basis set. The weights, w
are sampled from a Gaussian density with variance
α = 1.

Covariance Functions

RBF Basis Functions

k (x, x′) = αφ(x)>φ(x′)

φi(x) = exp

−
∥∥∥x − µi

∥∥∥2
2

`2

µ =

−1
0
1

Covariance Functions

RBF Basis Functions

k (x, x′) = αφ(x)>φ(x′)

φi(x) = exp

−
∥∥∥x − µi

∥∥∥2
2

`2

µ =

−1
0
1

 -3
-2
-1
0
1
2
3

-3 -2 -1 0 1 2 3

Direct Construction of Covariance Matrix

I Use matrix notation to write function,

f (xi; w) =

m∑
k=1

wkφk (xi)

Direct Construction of Covariance Matrix

I Use matrix notation to write function,

f (xi; w) =

m∑
k=1

wkφk (xi)

computed at training data gives a vector

f =Φw.

Direct Construction of Covariance Matrix

I Use matrix notation to write function,

f (xi; w) =

m∑
k=1

wkφk (xi)

computed at training data gives a vector

f =Φw.

w and f are only related by an inner product.

Direct Construction of Covariance Matrix

I Use matrix notation to write function,

f (xi; w) =

m∑
k=1

wkφk (xi)

computed at training data gives a vector

f =Φw.

w and f are only related by an inner product.

Φ ∈ <n×p is a design matrix

Direct Construction of Covariance Matrix

I Use matrix notation to write function,

f (xi; w) =

m∑
k=1

wkφk (xi)

computed at training data gives a vector

f =Φw.

w and f are only related by an inner product.

Φ ∈ <n×p is a design matrix

Φ is fixed and non-stochastic for a given training set.

Direct Construction of Covariance Matrix

I Use matrix notation to write function,

f (xi; w) =

m∑
k=1

wkφk (xi)

computed at training data gives a vector

f =Φw.

w and f are only related by an inner product.

Φ ∈ <n×p is a design matrix

Φ is fixed and non-stochastic for a given training set.

f is Gaussian distributed.

Expectations

I We have
〈f〉 =Φ 〈w〉 .

I Prior mean of w was zero giving

〈f〉 = 0.

I Prior covariance of f is

K =
〈
ff>

〉
− 〈f〉 〈f〉>

We use 〈·〉 to denote expectations under prior distributions.

Expectations

I We have
〈f〉 =Φ 〈w〉 .

I Prior mean of w was zero giving

〈f〉 = 0.

I Prior covariance of f is

K =
〈
ff>

〉
− 〈f〉 〈f〉>

We use 〈·〉 to denote expectations under prior distributions.

Expectations

I We have
〈f〉 =Φ 〈w〉 .

I Prior mean of w was zero giving

〈f〉 = 0.

I Prior covariance of f is

K =
〈
ff>

〉
− 〈f〉 〈f〉>

We use 〈·〉 to denote expectations under prior distributions.

Expectations

I We have
〈f〉 =Φ 〈w〉 .

I Prior mean of w was zero giving

〈f〉 = 0.

I Prior covariance of f is

K =
〈
ff>

〉
− 〈f〉 〈f〉>

〈
ff>

〉
=Φ

〈
ww>

〉
Φ>,

giving
K = γ′ΦΦ>.

We use 〈·〉 to denote expectations under prior distributions.

Back to the full model

Gaussian Process Interpolation

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

f(
x)

x

Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

f(
x)

x

Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

f(
x)

x

Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

f(
x)

x

Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

f(
x)

x

Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

f(
x)

x

Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

f(
x)

x

Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Interpolation

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

f(
x)

x

Figure: Real example: BACCO (see e.g. (Oakley and O’Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).

Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

y(
x)

x

Figure: Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

y(
x)

x

Figure: Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

y(
x)

x

Figure: Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

y(
x)

x

Figure: Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

y(
x)

x

Figure: Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

y(
x)

x

Figure: Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

y(
x)

x

Figure: Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

y(
x)

x

Figure: Examples include WiFi localization, C14 callibration curve.

Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

y(
x)

x

Figure: Examples include WiFi localization, C14 callibration curve.

Dealing with Non Gaussian Data

I Marginalization property of Gaussians very attractive.
I How to incorporate non-Gaussian data?

I Data which isn’t missing at random.
I Binary data.
I Ordinal categorical data.
I Poisson counts.
I Outliers.

Project Back into Gaussian

I Combine non-Gaussian likelihood with
Gaussian prior.

I Either:
I Project back to Gaussian posterior that

is nearest in KL sense.
I Expectation propagation.

I Or:
I Fit a locally valid Gaussian

approximation.
I Laplace Approximation.

Ongoing work with Ricardo Andrade Pacheco (EP) and Alan Saul
(Laplace) also James Hensman.

Gaussian Noise

0

1

2

-3 -2 -1 0 1 2 3 4

p
(

f∗|X, x∗,y
)

Figure: Inclusion of a data point with Gaussian noise.

Gaussian Noise

0

1

2

-3 -2 -1 0 1 2 3 4

p
(

f∗|X, x∗,y
)

p
(
y∗ = 0.6| f∗

)

Figure: Inclusion of a data point with Gaussian noise.

Gaussian Noise

0

1

2

-3 -2 -1 0 1 2 3 4

p
(

f∗|X, x∗,y
)

p
(
y∗ = 0.6| f∗

)
p
(

f∗|X, x∗,y, y∗
)

Figure: Inclusion of a data point with Gaussian noise.

Classification Noise Model

Probit Noise Model

0

0.5

1

-4 -2 0 2 4

p(
y i
|f

i)

fi

yi = −1 yi = 1

Figure: The probit model (classification). The plot shows p
(
yi| fi

)
for

different values of yi. For yi = 1 we have

p
(
yi| fi

)
= φ

(
fi
)

=
∫ fi
−∞
N (z|0, 1) dz.

Classification

0

1

2

3

-3 -2 -1 0 1 2 3

p
(

f∗|X, x∗,y
)

Figure: An EP style update with a classification noise model.

Classification

0

1

2

3

-3 -2 -1 0 1 2 3

p
(

f∗|X, x∗,y
)

p
(
y∗ = 1| f∗

)

Figure: An EP style update with a classification noise model.

Classification

0

1

2

3

-3 -2 -1 0 1 2 3

p
(

f∗|X, x∗,y
)

p
(
y∗ = 1| f∗

)
p
(

f∗|X, x∗,y, y∗
)

Figure: An EP style update with a classification noise model.

Classification

0

1

2

3

-3 -2 -1 0 1 2 3

p
(

f∗|X, x∗,y
)

p
(
y∗ = 1| f∗

)
p
(

f∗|X, x∗,y, y∗
)

q
(

f∗|X, x∗,y
)

Figure: An EP style update with a classification noise model.

Ordinal Noise Model

Ordered Categories

0

0.5

1

-4 -2 0 2 4

p(
y i
|f

i)

fi

yi = −1 yi = 1yi = 0

Figure: The ordered categorical noise model (ordinal regression). The
plot shows p

(
yi| fi

)
for different values of yi. Here we have assumed

three categories.

Ordinal Regression

0

1

2

3

4

-3 -2 -1 0 1 2 3

p
(

f∗|X, x∗,y
)

Figure: An EP style update with an ordered category noise model.

Return

Ordinal Regression

0

1

2

3

4

-3 -2 -1 0 1 2 3

p
(

f∗|X, x∗,y
)

p
(
y∗ = 0| f∗

)

Figure: An EP style update with an ordered category noise model.

Return

Ordinal Regression

0

1

2

3

4

-3 -2 -1 0 1 2 3

p
(

f∗|X, x∗,y
)

p
(
y∗ = 0| f∗

)
p
(

f∗|X, x∗,y, y∗
)

Figure: An EP style update with an ordered category noise model.

Return

Ordinal Regression

0

1

2

3

4

-3 -2 -1 0 1 2 3

p
(

f∗|X, x∗,y
)

p
(
y∗ = 0| f∗

)
p
(

f∗|X, x∗,y, y∗
)

q
(

f∗|X, x∗,y
)

Figure: An EP style update with an ordered category noise model.

Return

Survival Models

Cox Gaussian Process Regression

h(t|x) =

exp(GP(t))︷ ︸︸ ︷
h0(t) exp (

GP(x(t),t)︷︸︸︷
βx)

Apply these extremely flexible methods to Survival Analysis

Alter assumptions of Cox Proportional Hazards Model to discover
how significant they are, test whether we can increase our predictive
power by:

1 Breaking proportionality assumption
2 Allowing for interactions between variables

Alan Saul Supervised by: Neil Lawrence () Survival Analysis with Gaussian Processes June 24, 2013 12 / 16

Learning Covariance Parameters
Can we determine covariance parameters from the data?

N
(
y|0,K

)
=

1

(2π)
n
2 |K|

exp
(
−

y>K−1y
2

)

The parameters are inside the covariance
function (matrix).

ki, j = k(xi, x j;θ)

Learning Covariance Parameters
Can we determine covariance parameters from the data?

N
(
y|0,K

)
=

1

(2π)
n
2 |K|

exp
(
−

y>K−1y
2

)

The parameters are inside the covariance
function (matrix).

ki, j = k(xi, x j;θ)

Learning Covariance Parameters
Can we determine covariance parameters from the data?

logN
(
y|0,K

)
=−

1
2

log |K|−
y>K−1y

2
−

n
2

log 2π

The parameters are inside the covariance
function (matrix).

ki, j = k(xi, x j;θ)

Learning Covariance Parameters
Can we determine covariance parameters from the data?

E(θ) =
1
2

log |K| +
y>K−1y

2

The parameters are inside the covariance
function (matrix).

ki, j = k(xi, x j;θ)

Eigendecomposition of Covariance

A useful decomposition for understanding the objective
function.

K = RΛ2R>

λ1
λ2

Diagonal of Λ represents distance
along axes.
R gives a rotation of these axes.

where Λ is a diagonal matrix and R>R = I.

Useful representation since |K| =
∣∣∣Λ2

∣∣∣ = |Λ|2.

Capacity control: log |K|

λ1 0

0 λ2

λ1

Λ =

Capacity control: log |K|

λ1 0

0 λ2

λ1

λ2
Λ =

Capacity control: log |K|

λ1 0

0 λ2

λ1

λ2
Λ =

Capacity control: log |K|

|Λ| = λ1λ2

λ1 0

0 λ2

λ1

λ2
Λ =

Capacity control: log |K|

|Λ| = λ1λ2

λ1 0

0 λ2

λ1

λ2
Λ =

Capacity control: log |K|

|Λ| = λ1λ2

λ1 0

0 λ2

λ1

λ2 |Λ|
Λ =

Capacity control: log |K|

|Λ| = λ1λ2

λ1 0 0

0 λ2 0

0 0 λ3
λ1

λ2 |Λ|
Λ =

Capacity control: log |K|

|Λ| = λ1λ2λ3

λ1 0 0

0 λ2 0

0 0 λ3
λ1

λ2

λ3

|Λ|
Λ =

Capacity control: log |K|

|Λ| = λ1λ2

λ1 0

0 λ2

λ1

λ2 |Λ|
Λ =

Capacity control: log |K|

|RΛ| = λ1λ2

w1,1 w1,2

w2,1 w2,2

λ1
λ2

|Λ|
RΛ =

Data Fit: y−1K−1y
2

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

y 2

y1

λ1

λ2

Data Fit: y−1K−1y
2

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

y 2

y1

λ1

λ2

Data Fit: y−1K−1y
2

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

y 2

y1

λ1
λ2

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y(
x)

x

-10
-5
0
5

10
15
20

10−1 100 101

length scale, `

E(θ) =
1
2

log |K| +
y>K−1y

2

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y(
x)

x

-10
-5
0
5

10
15
20

10−1 100 101

length scale, `

E(θ) =
1
2

log |K| +
y>K−1y

2

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y(
x)

x

-10
-5
0
5

10
15
20

10−1 100 101

length scale, `

E(θ) =
1
2

log |K| +
y>K−1y

2

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y(
x)

x

-10
-5
0
5

10
15
20

10−1 100 101

length scale, `

E(θ) =
1
2

log |K| +
y>K−1y

2

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y(
x)

x

-10
-5
0
5

10
15
20

10−1 100 101

length scale, `

E(θ) =
1
2

log |K| +
y>K−1y

2

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y(
x)

x

-10
-5
0
5

10
15
20

10−1 100 101

length scale, `

E(θ) =
1
2

log |K| +
y>K−1y

2

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y(
x)

x

-10
-5
0
5

10
15
20

10−1 100 101

length scale, `

E(θ) =
1
2

log |K| +
y>K−1y

2

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y(
x)

x

-10
-5
0
5

10
15
20

10−1 100 101

length scale, `

E(θ) =
1
2

log |K| +
y>K−1y

2

Learning Covariance Parameters
Can we determine length scales and noise levels from the data?

-2

-1

0

1

2

-2 -1 0 1 2

y(
x)

x

-10
-5
0
5

10
15
20

10−1 100 101

length scale, `

E(θ) =
1
2

log |K| +
y>K−1y

2

Gene Expression Example

I Given given expression levels in the form of a time series
from Della Gatta et al. (2008).

I Want to detect if a gene is expressed or not, fit a GP to each
gene (Kalaitzis and Lawrence, 2011).

RESEARCH ARTICLE Open Access

A Simple Approach to Ranking Differentially
Expressed Gene Expression Time Courses through
Gaussian Process Regression
Alfredo A Kalaitzis* and Neil D Lawrence*

Abstract

Background: The analysis of gene expression from time series underpins many biological studies. Two basic forms
of analysis recur for data of this type: removing inactive (quiet) genes from the study and determining which
genes are differentially expressed. Often these analysis stages are applied disregarding the fact that the data is
drawn from a time series. In this paper we propose a simple model for accounting for the underlying temporal
nature of the data based on a Gaussian process.

Results: We review Gaussian process (GP) regression for estimating the continuous trajectories underlying in gene
expression time-series. We present a simple approach which can be used to filter quiet genes, or for the case of
time series in the form of expression ratios, quantify differential expression. We assess via ROC curves the rankings
produced by our regression framework and compare them to a recently proposed hierarchical Bayesian model for
the analysis of gene expression time-series (BATS). We compare on both simulated and experimental data showing
that the proposed approach considerably outperforms the current state of the art.

Conclusions: Gaussian processes offer an attractive trade-off between efficiency and usability for the analysis of
microarray time series. The Gaussian process framework offers a natural way of handling biological replicates and
missing values and provides confidence intervals along the estimated curves of gene expression. Therefore, we
believe Gaussian processes should be a standard tool in the analysis of gene expression time series.

Background
Gene expression profiles give a snapshot of mRNA con-
centration levels as encoded by the genes of an organ-
ism under given experimental conditions. Early studies
of this data often focused on a single point in time
which biologists assumed to be critical along the gene
regulation process after the perturbation. However, the
static nature of such experiments severely restricts the
inferences that can be made about the underlying dyna-
mical system.
With the decreasing cost of gene expression microar-

rays time series experiments have become commonplace
giving a far broader picture of the gene regulation pro-
cess. Such time series are often irregularly sampled and
may involve differing numbers of replicates at each time
point [1]. The experimental conditions under which

gene expression measurements are taken cannot be per-
fectly controlled leading the signals of interest to be cor-
rupted by noise, either of biological origin or arising
through the measurement process.
Primary analysis of gene expression profiles is often

dominated by methods targeted at static experiments, i.
e. gene expression measured on a single time-point, that
treat time as an additional experimental factor [1-6].
However, were possible, it would seem sensible to con-
sider methods that can account for the special nature of
time course data. Such methods can take advantage of
the particular statistical constraints that are imposed on
data that is naturally ordered [7-12].
The analysis of gene expression microarray time-series

has been a stepping stone to important problems in sys-
tems biology such as the genome-wide identification of
direct targets of transcription factors [13,14] and the full
reconstruction of gene regulatory networks [15,16]. A
more comprehensive review on the motivations and

* Correspondence: A.Kalaitzis@sheffield.ac.uk; N.Lawrence@dcs.shef.ac.uk
The Sheffield Institute for Translational Neuroscience, 385A Glossop Road,
Sheffield, S10 2HQ, UK

Kalaitzis and Lawrence BMC Bioinformatics 2011, 12:180
http://www.biomedcentral.com/1471-2105/12/180

© 2011 Kalaitzis and Lawrence; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://www.biomedcentral.com/1471-2105/12/180

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1 1.5 2 2.5 3 3.5

lo
g 10

SN
R

log10 length scale

Contour plot of Gaussian process likelihood.

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1 1.5 2 2.5 3 3.5

lo
g 10

SN
R

log10 length scale

-1

-0.5

0

0.5

1

0 50100150200250300

y(
x)

x

Optima: length scale of 1.2221 and log10 SNR of 1.9654 log
likelihood is -0.22317.

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1 1.5 2 2.5 3 3.5

lo
g 10

SN
R

log10 length scale

-1

-0.5

0

0.5

1

0 50100150200250300

y(
x)

x

Optima: length scale of 1.5162 and log10 SNR of 0.21306 log
likelihood is -0.23604.

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1 1.5 2 2.5 3 3.5

lo
g 10

SN
R

log10 length scale

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

0 50100150200250300

y(
x)

x

Optima: length scale of 2.9886 and log10 SNR of -4.506 log
likelihood is -2.1056.

Gaussian Process Fit to Olympic Marathon Data

2

2.5

3

3.5

4

4.5

5

5.5

1892 1932 1972 2012

Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x, x′) = α exp

−‖x − x′‖22
2`2

I Covariance matrix is

built using the inputs to
the function x.

I For the example above it
was based on Euclidean
distance.

I The covariance function
is also know as a kernel.

Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x, x′) = α exp

−‖x − x′‖22
2`2

I Covariance matrix is

built using the inputs to
the function x.

I For the example above it
was based on Euclidean
distance.

I The covariance function
is also know as a kernel.

Covariance Functions

Linear Covariance Function

k (x, x′) = αx>x′

I Bayesian linear
regression.

α = 1

Covariance Functions

Linear Covariance Function

k (x, x′) = αx>x′

I Bayesian linear
regression.

α = 1

Covariance Functions

MLP Covariance Function

k (x, x′) = αasin
(

wx>x′ + b
√

wx>x + b + 1
√

wx′>x′ + b + 1

)

I Based on infinite neural
network model.

w = 40

b = 4

Covariance Functions

MLP Covariance Function

k (x, x′) = αasin
(

wx>x′ + b
√

wx>x + b + 1
√

wx′>x′ + b + 1

)

I Based on infinite neural
network model.

w = 40

b = 4

Covariance Functions
Where did this covariance matrix come from?

Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance
function

k (x, x′) = α exp
(
−
|x − x′|

2`2

)

I Covariance matrix is
built using the inputs to
the function x.

Covariance Functions
Where did this covariance matrix come from?

Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance
function

k (x, x′) = α exp
(
−
|x − x′|

2`2

)

I Covariance matrix is
built using the inputs to
the function x.

Outline

Health

Regression

Gaussian Processes

Basis Function Representations

Kalman Filter

Conclusions

Simple Markov Chain

I Assume 1-d latent state, a vector over time, x = [x1 . . . xT].
I Markov property,

xi =xi−1 + εi,

εi ∼N (0, α)

=⇒ xi ∼N (xi−1, α)

I Initial state,
x0 ∼ N (0, α0)

I If x0 ∼ N (0, α) we have a Markov chain for the latent states.
I Markov chain it is specified by an initial distribution

(Gaussian) and a transition distribution (Gaussian).

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x0 = 0.000, ε1 = −2.24

x1 = 0.000 − 2.24 = −2.24

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x1 = −2.24, ε2 = 0.457

x2 = −2.24 + 0.457 = −1.78

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x2 = −1.78, ε3 = 0.178

x3 = −1.78 + 0.178 = −1.6

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x3 = −1.6, ε4 = −0.292

x4 = −1.6 − 0.292 = −1.89

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x4 = −1.89, ε5 = −0.501

x5 = −1.89 − 0.501 = −2.39

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x5 = −2.39, ε6 = 1.32

x6 = −2.39 + 1.32 = −1.08

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x6 = −1.08, ε7 = 0.989

x7 = −1.08 + 0.989 = −0.0881

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x7 = −0.0881, ε8 = −0.842

x8 = −0.0881 − 0.842 = −0.93

Gauss Markov Chain

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9

x

t

x0 = 0, εi ∼ N (0, 1)

x8 = −0.93, ε9 = −0.41

x9 = −0.93 − 0.410 = −1.34

Multivariate Gaussian Properties: Reminder

If
z ∼ N

(
µ,C

)
and

x = Wz + b

then
x ∼ N

(
Wµ + b,WCW>

)

Multivariate Gaussian Properties: Reminder

Simplified: If
z ∼ N

(
0, σ2I

)
and

x = Wz

then
x ∼ N

(
0, σ2WW>

)

Matrix Representation of Latent Variables

x1

x2

x3

x4

x5

ε1

ε2

ε3

ε4

ε5

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

×=

x1 = ε1

Matrix Representation of Latent Variables

x1

x2

x3

x4

x5

ε1

ε2

ε3

ε4

ε5

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

×=

x2 = ε1 + ε2

Matrix Representation of Latent Variables

x1

x2

x3

x4

x5

ε1

ε2

ε3

ε4

ε5

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

×=

x3 = ε1 + ε2 + ε3

Matrix Representation of Latent Variables

x1

x2

x3

x4

x5

ε1

ε2

ε3

ε4

ε5

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

×=

x4 = ε1 + ε2 + ε3 + ε4

Matrix Representation of Latent Variables

x1

x2

x3

x4

x5

ε1

ε2

ε3

ε4

ε5

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

×=

x5 = ε1 + ε2 + ε3 + ε4 + ε5

Matrix Representation of Latent Variables

x εL1 ×=

Multivariate Process

I Since x is linearly related to εwe know x is a Gaussian
process.

I Trick: we only need to compute the mean and covariance
of x to determine that Gaussian.

Latent Process Mean

x = L1ε

Latent Process Mean

〈x〉 = 〈L1ε〉

Latent Process Mean

〈x〉 = L1 〈ε〉

Latent Process Mean

〈x〉 = L1 〈ε〉

ε ∼ N (0, αI)

Latent Process Mean

〈x〉 = L10

Latent Process Mean

〈x〉 = 0

Latent Process Covariance

xx> = L1εε>L>1
x> = ε>L>

Latent Process Covariance

〈
xx>

〉
=

〈
L1εε>L>1

〉

Latent Process Covariance

〈
xx>

〉
= L1

〈
εε>

〉
L>1

Latent Process Covariance

〈
xx>

〉
= L1

〈
εε>

〉
L>1

ε ∼ N (0, αI)

Latent Process Covariance

〈
xx>

〉
= αL1L>1

Latent Process

x = L1ε

Latent Process

x = L1ε

ε ∼ N (0, αI)

Latent Process

x = L1ε

ε ∼ N (0, αI)

=⇒

Latent Process

x = L1ε

ε ∼ N (0, αI)

=⇒

x ∼ N
(
0, αL1L>1

)

Covariance for Latent Process II

I Make the variance dependent on time interval.
I Assume variance grows linearly with time.
I Justification: sum of two Gaussian distributed random

variables is distributed as Gaussian with sum of variances.
I If variable’s movement is additive over time (as described)

variance scales linearly with time.

Covariance for Latent Process II

I Given
ε ∼ N (0, αI) =⇒ ε ∼ N

(
0, αL1L>1

)
.

Then
ε ∼ N (0,∆tαI) =⇒ ε ∼ N

(
0,∆tαL1L>1

)
.

where ∆t is the time interval between observations.

Covariance for Latent Process II

ε ∼ N (0, α∆tI) , x ∼ N
(
0, α∆tL1L>1

)

K = α∆tL1L>1

ki, j = α∆tl>:,il:, j

where l:,k is a vector from the kth row of L1: the first k elements
are one, the next T − k are zero.

ki, j = α∆t min(i, j)

define ∆ti = ti so

ki, j = αmin(ti, t j) = k(ti, t j)

Covariance for Latent Process II

ε ∼ N (0, α∆tI) , x ∼ N
(
0, α∆tL1L>1

)
K = α∆tL1L>1

ki, j = α∆tl>:,il:, j

where l:,k is a vector from the kth row of L1: the first k elements
are one, the next T − k are zero.

ki, j = α∆t min(i, j)

define ∆ti = ti so

ki, j = αmin(ti, t j) = k(ti, t j)

Covariance for Latent Process II

ε ∼ N (0, α∆tI) , x ∼ N
(
0, α∆tL1L>1

)
K = α∆tL1L>1

ki, j = α∆tl>:,il:, j

where l:,k is a vector from the kth row of L1: the first k elements
are one, the next T − k are zero.

ki, j = α∆t min(i, j)

define ∆ti = ti so

ki, j = αmin(ti, t j) = k(ti, t j)

Covariance for Latent Process II

ε ∼ N (0, α∆tI) , x ∼ N
(
0, α∆tL1L>1

)
K = α∆tL1L>1

ki, j = α∆tl>:,il:, j

where l:,k is a vector from the kth row of L1: the first k elements
are one, the next T − k are zero.

ki, j = α∆t min(i, j)

define ∆ti = ti so

ki, j = αmin(ti, t j) = k(ti, t j)

Covariance Functions
Where did this covariance matrix come from?

Markov Process

k (t, t′) = αmin(t, t′)

I Covariance matrix is
built using the inputs to
the function t.

Covariance Functions
Where did this covariance matrix come from?

Markov Process

k (t, t′) = αmin(t, t′)

I Covariance matrix is
built using the inputs to
the function t.

-3
-2
-1
0
1
2
3

0 0.5 1 1.5 2

Covariance Functions
Where did this covariance matrix come from?

Markov Process

Visualization of inverse covariance (precision).

I Precision matrix is
sparse: only neighbours
in matrix are non-zero.

I This reflects conditional
independencies in data.

I In this case Markov
structure.

Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x, x′) = α exp

−‖x − x′‖22
2`2

I Covariance matrix is

built using the inputs to
the function x.

I For the example above it
was based on Euclidean
distance.

I The covariance function
is also know as a kernel.

Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared
Exponential, Gaussian)

k (x, x′) = α exp

−‖x − x′‖22
2`2

I Covariance matrix is

built using the inputs to
the function x.

I For the example above it
was based on Euclidean
distance.

I The covariance function
is also know as a kernel.

Covariance Functions
Where did this covariance matrix come from?

Exponentiated Quadratic

Visualization of inverse covariance (precision).

I Precision matrix is not
sparse.

I Each point is dependent
on all the others.

I In this case
non-Markovian.

Covariance Functions
Where did this covariance matrix come from?

Markov Process

Visualization of inverse covariance (precision).

I Precision matrix is
sparse: only neighbours
in matrix are non-zero.

I This reflects conditional
independencies in data.

I In this case Markov
structure.

Simple Kalman Filter I

I We have state vector X =
[
x1 . . . xq

]
∈ RT×q and if each state

evolves independently we have

p(X) =

q∏
i=1

p(x:,i)

p(x:,i) = N
(
x:,i|0,K

)
.

I We want to obtain outputs through:

yi,: = Wxi,:

Stacking and Kronecker Products I

I Represent with a ‘stacked’ system:

p(x) = N (x|0, I ⊗K)

where the stacking is placing each column of X one on top
of another as

x =

x:,1
x:,2
...

x:,q

Kronecker Product

aK bK
cK dK

Ka b

c d
⊗ =

Kronecker Product

⊗ =

Stacking and Kronecker Products I

I Represent with a ‘stacked’ system:

p(x) = N (x|0, I ⊗K)

where the stacking is placing each column of X one on top
of another as

x =

x:,1
x:,2
...

x:,q

Column Stacking

⊗ =

For this stacking the marginal distribution over time is given by
the block diagonals.

For this stacking the marginal distribution over time is given by
the block diagonals.

For this stacking the marginal distribution over time is given by
the block diagonals.

For this stacking the marginal distribution over time is given by
the block diagonals.

For this stacking the marginal distribution over time is given by
the block diagonals.

Two Ways of Stacking

Can also stack each row of X to form column vector:

x =

x1,:
x2,:
...

xT,:

p(x) = N (x|0,K ⊗ I)

Row Stacking

⊗ =

For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.

For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.

For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.

For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.

For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.

Observed Process

The observations are related to the latent points by a linear
mapping matrix,

yi,: = Wxi,: + εi,:

ε ∼ N
(
0, σ2I

)

Mapping from Latent Process to Observed

Wx1,:

Wx2,:

Wx3,:

x1,:

x2,:

x3,:

W 0 0

0 W 0

0 0 W

× =

Output Covariance

This leads to a covariance of the form

(I ⊗W)(K ⊗ I)(I ⊗W>) + Iσ2

Using (A ⊗ B)(C ⊗D) = AC ⊗ BD This leads to

K ⊗WW> + Iσ2

or
y ∼ N

(
0,WW>

⊗K + Iσ2
)

Kernels for Vector Valued Outputs: A Review

Foundations and TrendsR© in
Machine Learning
Vol. 4, No. 3 (2011) 195–266
c© 2012 M. A. Álvarez, L. Rosasco and N. D. Lawrence
DOI: 10.1561/2200000036

Kernels for Vector-Valued
Functions: A Review

By Mauricio A. Álvarez,

Lorenzo Rosasco and Neil D. Lawrence

Contents

1 Introduction 197

2 Learning Scalar Outputs

with Kernel Methods 200

2.1 A Regularization Perspective 200

2.2 A Bayesian Perspective 202

2.3 A Connection Between Bayesian

and Regularization Points of View 205

3 Learning Multiple Outputs with

Kernel Methods 207

3.1 Multi-output Learning 207

3.2 Reproducing Kernel for Vector-Valued Functions 209

3.3 Gaussian Processes for Vector-Valued Functions 211

4 Separable Kernels and Sum of Separable Kernels 213

4.1 Kernels and Regularizers 214

4.2 Coregionalization Models 217

4.3 Extensions 228

Kronecker Structure GPs

I This Kronecker structure leads to several published
models.

(K(x, x′)) j, j′ = k(x, x′)kT(j, j′),

where k has x and kT has i as inputs.
I Can think of multiple output covariance functions as

covariances with augmented input.
I Alongside x we also input the j associated with the output

of interest.

Separable Covariance Functions

I Taking B = WW> we have a matrix expression across
outputs.

K(x, x′) = k(x, x′)B,

where B is a p × p symmetric and positive semi-definite
matrix.

I B is called the coregionalization matrix.
I We call this class of covariance functions separable due to

their product structure.

Sum of Separable Covariance Functions

I In the same spirit a more general class of kernels is given by

K(x, x′) =

q∑
j=1

k j(x, x′)B j.

I This can also be written as

K(X,X) =

q∑
j=1

B j ⊗ k j(X,X),

I This is like several Kalman filter-type models added
together, but each one with a different set of latent
functions.

I We call this class of kernels sum of separable kernels (SoS
kernels).

Geostatistics

I Use of GPs in Geostatistics is called kriging.
I These multi-output GPs pioneered in geostatistics:

prediction over vector-valued output data is known as
cokriging.

I The model in geostatistics is known as the linear model of
coregionalization (LMC, Journel and Huijbregts (1978);
Goovaerts (1997)).

I Most machine learning multitask models can be placed in
the context of the LMC model.

Weighted sum of Latent Functions

I In the linear model of coregionalization (LMC) outputs are
expressed as linear combinations of independent random
functions.

I In the LMC, each component f j is expressed as a linear sum

f j(x) =

q∑
j=1

w j, ju j(x).

where the latent functions are independent and have
covariance functions k j(x, x′).

I The processes { f j(x)}qj=1 are independent for q , j′.

Kalman Filter Special Case

I The Kalman filter is an example of the LMC where
ui(x)→ xi(t).

I I.e. we’ve moved form time input to a more general input
space.

I In matrix notation:
1. Kalman filter

F = WX

2. LMC
F = WU

where the rows of these matrices F, X, U each contain q
samples from their corresponding functions at a different
time (Kalman filter) or spatial location (LMC).

Intrinsic Coregionalization Model

I If one covariance used for latent functions (like in Kalman
filter).

I This is called the intrinsic coregionalization model (ICM,
Goovaerts (1997)).

I The kernel matrix corresponding to a dataset X takes the
form

K(X,X) = B ⊗ k(X,X).

Autokrigeability

I If outputs are noise-free, maximum likelihood is
equivalent to independent fits of B and k(x, x′) (Helterbrand
and Cressie, 1994).

I In geostatistics this is known as autokrigeability
(Wackernagel, 2003).

I In multitask learning its the cancellation of intertask
transfer (Bonilla et al., 2008).

Intrinsic Coregionalization Model

K(X,X) = ww> ⊗ k(X,X).

w =

[
1
5

]
B =

[
1 5
5 25

]

Intrinsic Coregionalization Model

K(X,X) = ww> ⊗ k(X,X).

w =

[
1
5

]
B =

[
1 5
5 25

]

Intrinsic Coregionalization Model

K(X,X) = ww> ⊗ k(X,X).

w =

[
1
5

]
B =

[
1 5
5 25

]

Intrinsic Coregionalization Model

K(X,X) = ww> ⊗ k(X,X).

w =

[
1
5

]
B =

[
1 5
5 25

]

Intrinsic Coregionalization Model

K(X,X) = ww> ⊗ k(X,X).

w =

[
1
5

]
B =

[
1 5
5 25

]

Intrinsic Coregionalization Model

K(X,X) = B ⊗ k(X,X).

B =

[
1 0.5

0.5 1.5

]

Intrinsic Coregionalization Model

K(X,X) = B ⊗ k(X,X).

B =

[
1 0.5

0.5 1.5

]

Intrinsic Coregionalization Model

K(X,X) = B ⊗ k(X,X).

B =

[
1 0.5

0.5 1.5

]

Intrinsic Coregionalization Model

K(X,X) = B ⊗ k(X,X).

B =

[
1 0.5

0.5 1.5

]

Intrinsic Coregionalization Model

K(X,X) = B ⊗ k(X,X).

B =

[
1 0.5

0.5 1.5

]

LMC Samples

K(X,X) = B1 ⊗ k1(X,X) + B2 ⊗ k2(X,X)

B1 =

[
1.4 0.5
0.5 1.2

]
`1 = 1

B2 =

[
1 0.5

0.5 1.3

]
`2 = 0.2

LMC Samples

K(X,X) = B1 ⊗ k1(X,X) + B2 ⊗ k2(X,X)

B1 =

[
1.4 0.5
0.5 1.2

]
`1 = 1

B2 =

[
1 0.5

0.5 1.3

]
`2 = 0.2

LMC Samples

K(X,X) = B1 ⊗ k1(X,X) + B2 ⊗ k2(X,X)

B1 =

[
1.4 0.5
0.5 1.2

]
`1 = 1

B2 =

[
1 0.5

0.5 1.3

]
`2 = 0.2

LMC Samples

K(X,X) = B1 ⊗ k1(X,X) + B2 ⊗ k2(X,X)

B1 =

[
1.4 0.5
0.5 1.2

]
`1 = 1

B2 =

[
1 0.5

0.5 1.3

]
`2 = 0.2

LMC Samples

K(X,X) = B1 ⊗ k1(X,X) + B2 ⊗ k2(X,X)

B1 =

[
1.4 0.5
0.5 1.2

]
`1 = 1

B2 =

[
1 0.5

0.5 1.3

]
`2 = 0.2

LMC in Machine Learning and Statistics

I Used in machine learning for GPs for multivariate
regression and in statistics for computer emulation of
expensive multivariate computer codes.

I Imposes the correlation of the outputs explicitly through
the set of coregionalization matrices.

I Setting B = Ip assumes outputs are conditionally
independent given the parameters θ. (Minka and Picard,
1997; Lawrence and Platt, 2004; Yu et al., 2005).

I More recent approaches for multiple output modeling are
different versions of the linear model of coregionalization.

Semiparametric Latent Factor Model

I Coregionalization matrices are rank 1 Teh et al. (2005).
rewrite equation (??) as

K(X,X) =

q∑
j=1

w:, jw>:, j ⊗ k j(X,X).

I Like the Kalman filter, but each latent function has a
different covariance.

I Authors suggest using an exponentiated quadratic
characteristic length-scale for each input dimension.

Semiparametric Latent Factor Model Samples

K(X,X) = w:,1w>:,1 ⊗ k1(X,X) + w:,2w>:,2 ⊗ k2(X,X)

w1 =

[
0.5
1

]
w2 =

[
1

0.5

]

Semiparametric Latent Factor Model Samples

K(X,X) = w:,1w>:,1 ⊗ k1(X,X) + w:,2w>:,2 ⊗ k2(X,X)

w1 =

[
0.5
1

]
w2 =

[
1

0.5

]

Semiparametric Latent Factor Model Samples

K(X,X) = w:,1w>:,1 ⊗ k1(X,X) + w:,2w>:,2 ⊗ k2(X,X)

w1 =

[
0.5
1

]
w2 =

[
1

0.5

]

Semiparametric Latent Factor Model Samples

K(X,X) = w:,1w>:,1 ⊗ k1(X,X) + w:,2w>:,2 ⊗ k2(X,X)

w1 =

[
0.5
1

]
w2 =

[
1

0.5

]

Semiparametric Latent Factor Model Samples

K(X,X) = w:,1w>:,1 ⊗ k1(X,X) + w:,2w>:,2 ⊗ k2(X,X)

w1 =

[
0.5
1

]
w2 =

[
1

0.5

]

Gaussian processes for Multi-task, Multi-output and
Multi-class

I Bonilla et al. (2008) suggest ICM for multitask learning.
I Use a PPCA form for B: similar to our Kalman filter

example.
I Refer to the autokrigeability effect as the cancellation of

inter-task transfer.
I Also discuss the similarities between the multi-task GP and

the ICM, and its relationship to the SLFM and the LMC.

Multitask Classification

I Mostly restricted to the case where the outputs are
conditionally independent given the hyperparameters φ
(Minka and Picard, 1997; Williams and Barber, 1998; Lawrence
and Platt, 2004; Seeger and Jordan, 2004; Yu et al., 2005;
Rasmussen and Williams, 2006).

I Intrinsic coregionalization model has been used in the
multiclass scenario. Skolidis and Sanguinetti (2011) use the
intrinsic coregionalization model for classification, by
introducing a probit noise model as the likelihood.

I Posterior distribution is no longer analytically tractable:
approximate inference is required.

Computer Emulation

I A statistical model used as a surrogate for a
computationally expensive computer model.

I Higdon et al. (2008) use the linear model of
coregionalization to model images representing the
evolution of the implosion of steel cylinders.

I In Conti and O’Hagan (2009) use the ICM to model a
vegetation model: called the Sheffield Dynamic Global
Vegetation Model (Woodward et al., 1998).

Example: Prediction of Malaria Incidence in Uganda

I Work with John Quinn and Martin Mubaganzi (Makerere
University, Uganda)

I See http://cit.mak.ac.ug/cs/aigroup/.

Malaria Prediction in Uganda

Data SRTM/NASA from http://dds.cr.usgs.gov/srtm/version2_1

29Â°E 31Â°E 33Â°E 35Â°E
2Â°S

0Â°N

2Â°N

4Â°N

Malaria Prediction in Uganda

3
2
1
0
1
2
3
4
5
6 Sentinel - all patients

3
2
1
0
1
2
3
4
5
6 Sentinel - patients with malaria

3
2
1
0
1
2
3
4
5
6 HMIS - all_patients

3
2
1
0
1
2
3
4
5
6 Satellite - rain

1500 2000 2500 3000 35003
2
1
0
1
2
3
4
5
6 W. station - temperature

Nagongera / Tororo (Multiple output model)

Malaria Prediction in Uganda

0 300 600 900 1200 1500 18000

1000

2000

3000

4000

5000

sp
ar

se
 re

gr
es

si
on

in
ci

de
nc

e

0 300 600 900 1200 1500 1800
time (days)

0

1000

2000

3000

4000

5000

m
ul

tip
le

 o
ut

pu
t

in
ci

de
nc

e

Mubende

Mixed Noise Models

0 2 4 6 8

8

10

12

14

16

Output 1: log-Gaussian noise

0 2 4 6 8
0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Output 2: Bernoulli noise

0 2 4 6 8
0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Output 3: Bernoulli noise

http://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html?_r=0

http://www.newyorker.com/online/blogs/newsdesk/2012/11/is-deep-learning-a-revolution-in-artificial-intelligence.html

http://www.seroundtable.com/google-hires-geoffrey-hinton-16499.html

http://www.wired.com/wiredenterprise/2013/03/google_hinton/

https://plus.google.com/u/0/102889418997957626067/posts/GWe4AscQdS7

Structure of Priors

MacKay: NIPS Tutorial 1997 “Have we thrown out the baby
with the bathwater?” (Published as MacKay, 1998) Also noted
by (Wilson et al., 2012)

Deep Models

y1 y2 y3 y4 y5 y6 y7 y8

x1
1 x1

2 x1
3 x1

4 x1
5 x1

6

x2
1 x2

2 x2
3 x2

4 x2
5 x2

6

x3
1 x3

2 x3
3 x3

4

x4
1 x4

2 x4
3 x4

4 Latent layer 4

Latent layer 3

Latent layer 2

Latent layer 1

Data space

Deep Models

y

x1

x2

x3

x4 Latent layer 4

Latent layer 3

Latent layer 2

Latent layer 1

Data space

Deep Models

y

x1

x2

x3

x4 Abstract features

More com-
bination

Combination
of low level

features

Low level
features

Data space

Deep Gaussian Processes

Damianou and Lawrence (2013)

I Deep architectures allow abstraction of features (Bengio, 2009;

Hinton and Osindero, 2006; Salakhutdinov and Murray, 2008).
I We use variational approach to stack GP models.

Deep Health

I1I2

x1
1 x1

2 x1
3 x1

4 x1
5

y2 y3y4

x2
1 x2

2 x2
3 x2

4
y1y5

x3
1 x3

2 x3
3 x3

4

G E EG

latent representation
of disease stratification

survival
analysis

gene ex-
pression

clinical mea-
surements

and treatment

clinical
notes

X-raybiopsy

environment epigenotypegenotype

Deep GPs

I Stacking PPCA still leads to a linear latent variable model.
I To stack latent variable models, need a non-linear model.
I The GP-LVM is a non-linear latent variable model.
I Stacking GP-LVM leads to hierarchical GP-LVM.

Bayesian GP-LVM

I Bayesian GP-LVM allows variational marginalization of X
and W.

Y

W X

σ2

I This leads to a Bayesian model where latent
dimensionality can be learnt.

Modeling Multiple ‘Views’

I Single space to model correlations between two different data
sources, e.g., images & text, image & pose.

I Shared latent spaces: (Shon et al., 2006; Navaratnam et al., 2007; Ek et al.,
2008b)

Y(1)

X

Y(2)

I Effective when the ‘views’ are correlated.

I But not all information is shared between both ‘views’.

I PCA applied to concatenated data vs CCA applied to data.

Shared-Private Factorization

I In real scenarios, the ‘views’ are neither fully independent, nor
fully correlated.

I Shared models
I either allow information relevant to a single view to be

mixed in the shared signal,
I or are unable to model such private information.

I Solution: Model shared and private information (Virtanen et al.,
2011; Ek et al., 2008a; Leen and Fyfe, 2006; Klami and Kaski, 2007, 2008; Tucker,
1958)

Z(1)

Y(1)

X

Y(2)

Z(2)

I Probabilistic CCA is case when dimensionality of Z matches Y(i)

(cf Inter Battery Factor Analysis (Tucker, 1958)).

Manifold Relevance Determination

Damianou et al. (2012)

y1 y2 y3 y4 y5 y6 y7 y8

x1 x2 x3 x4 x5 x6
Latent
space

Data
space

Shared GP-LVM

y(1)
1 y(1)

2 y(1)
3 y(1)

4 y(2)
1 y(2)

2 y(2)
3 y(2)

4

x1 x2 x3 x4 x5 x6
Latent
space

Data
space

Separate ARD parameters for mappings to Y(1) and Y(2).

Motion Capture

I Revisit ’high five’ data.
I This time allow model to learn structure, rather than

imposing it.

Deep hierarchies – motion capture

38 Deep Gaussian processes

Digits Data Set

I Are deep hierarchies justified for small data sets?
I We can lower bound the evidence for different depths.
I For 150 6s, 0s and 1s from MNIST we found at least 5

layers are required.

Deep hierarchies – MNIST

37 Deep Gaussian processes

Summary

I Gaussian models good for missing data.
I Disparate data types handled with EP and Laplace.
I Deep models allow complex abstract representation of

data sets at higher levels.
I Current limitation is on data set size.
I Addressing this through work by James Hensman on

Stochastic Variational Inference for GPs (recent UAI paper).
I Intention is to deploy these models for assimilating a wide

range of data types in personalized health (text, survival
times, images, genotype, phenotype).

I Requires population scale models with millions of features.

References I

Y. Bengio. Learning Deep Architectures for AI. Found. Trends Mach. Learn., 2(1):1–127, Jan. 2009. ISSN 1935-8237.
[DOI].

C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag, 2006. [Google Books] .

E. V. Bonilla, K. M. Chai, and C. K. I. Williams. Multi-task Gaussian process prediction. In J. C. Platt, D. Koller,
Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems, volume 20, Cambridge, MA,
2008. MIT Press.

S. Conti and A. O’Hagan. Bayesian emulation of complex multi-output and dynamic computer models. Journal of
Statistical Planning and Inference, 140(3):640–651, 2009. [DOI].

A. Damianou, C. H. Ek, M. K. Titsias, and N. D. Lawrence. Manifold relevance determination. In Langford and
Pineau (2012). [PDF].

A. Damianou and N. D. Lawrence. Deep Gaussian processes. In C. Carvalho and P. Ravikumar, editors, Proceedings
of the Sixteenth International Workshop on Artificial Intelligence and Statistics, volume 31, AZ, USA, 2013. JMLR
W&CP 31. [PDF].

G. Della Gatta, M. Bansal, A. Ambesi-Impiombato, D. Antonini, C. Missero, and D. di Bernardo. Direct targets of the
trp63 transcription factor revealed by a combination of gene expression profiling and reverse engineering.
Genome Research, 18(6):939–948, Jun 2008. [URL]. [DOI].

C. H. Ek, J. Rihan, P. Torr, G. Rogez, and N. D. Lawrence. Ambiguity modeling in latent spaces. In A. Popescu-Belis
and R. Stiefelhagen, editors, Machine Learning for Multimodal Interaction (MLMI 2008), LNCS, pages 62–73.
Springer-Verlag, 28–30 June 2008a. [PDF].

C. H. Ek, P. H. Torr, and N. D. Lawrence. Gaussian process latent variable models for human pose estimation. In
A. Popescu-Belis, S. Renals, and H. Bourlard, editors, Machine Learning for Multimodal Interaction (MLMI 2007),
volume 4892 of LNCS, pages 132–143, Brno, Czech Republic, 2008b. Springer-Verlag. [PDF].

N. Fusi, C. Lippert, K. Borgwardt, N. D. Lawrence, and O. Stegle. Detecting regulatory gene-environment
interactions with unmeasured environmental factors. Bioinformatics, 2013. [DOI].

N. Fusi, O. Stegle, and N. D. Lawrence. Joint modelling of confounding factors and prominent genetic regulators
provides increased accuracy in genetical genomics studies. PLoS Computat Biol, 8:e1002330, 2012. [URL]. [PDF].
[DOI].

http://dx.doi.org/10.1561/2200000006
http://books.google.com/books?as_isbn=0-387-31073-8
http://dx.doi.org/doi:10.1016/j.jspi.2009.08.006
ftp://ftp.dcs.shef.ac.uk/home/neil/mrdICML2012.pdf
ftp://ftp.dcs.shef.ac.uk/home/neil/deepGPsAISTATS.pdf
http://dx.doi.org/10.1101/gr.073601.107
http://dx.doi.org/10.1101/gr.073601.107
ftp://ftp.dcs.shef.ac.uk/home/neil/mlmi2008.pdf
ftp://ftp.dcs.shef.ac.uk/home/neil/mlmi.pdf
http://dx.doi.org/10.1093/bioinformatics/btt148
http://dx.doi.org/10.1371%2Fjournal.pcbi.1002330
http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1002330
http://dx.doi.org/10.1371/journal.pcbi.1002330

References II
P. Goovaerts. Geostatistics For Natural Resources Evaluation. Oxford University Press, 1997. [Google Books] .

J. D. Helterbrand and N. A. C. Cressie. Universal cokriging under intrinsic coregionalization. Mathematical Geology,
26(2):205–226, 1994.

D. M. Higdon, J. Gattiker, B. Williams, and M. Rightley. Computer model calibration using high dimensional output.
Journal of the American Statistical Association, 103(482):570–583, 2008.

G. E. Hinton and S. Osindero. A fast learning algorithm for deep belief nets. Neural Computation, 18:2006, 2006.

A. G. Journel and C. J. Huijbregts. Mining Geostatistics. Academic Press, London, 1978. [Google Books] .

A. A. Kalaitzis and N. D. Lawrence. A simple approach to ranking differentially expressed gene expression time
courses through Gaussian process regression. BMC Bioinformatics, 12(180), 2011. [DOI].

A. Klami and S. Kaski. Local dependent components analysis. In Z. Ghahramani, editor, Proceedings of the
International Conference in Machine Learning, volume 24. Omnipress, 2007. [Google Books] .

A. Klami and S. Kaski. Probabilistic approach to detecting dependencies between data sets. Neurocomputing, 72:
39–46, 2008.

J. Langford and J. Pineau, editors. Proceedings of the International Conference in Machine Learning, volume 29, San
Francisco, CA, 2012. Morgan Kauffman.

P. S. Laplace. Mémoire sur la probabilité des causes par les évènemens. In Mémoires de mathèmatique et de physique,
presentés à lAcadémie Royale des Sciences, par divers savans, & lù dans ses assemblées 6, pages 621–656, 1774.
Translated in Stigler (1986).

N. D. Lawrence. Gaussian process models for visualisation of high dimensional data. In S. Thrun, L. Saul, and
B. Schölkopf, editors, Advances in Neural Information Processing Systems, volume 16, pages 329–336, Cambridge,
MA, 2004. MIT Press.

N. D. Lawrence. Probabilistic non-linear principal component analysis with Gaussian process latent variable
models. Journal of Machine Learning Research, 6:1783–1816, 11 2005.

N. D. Lawrence and J. C. Platt. Learning to learn with the informative vector machine. In R. Greiner and
D. Schuurmans, editors, Proceedings of the International Conference in Machine Learning, volume 21, pages 512–519.
Omnipress, 2004. [PDF].

G. Leen and C. Fyfe. A Gaussian process latent variable model formulation of canonical correlation analysis. Bruges
(Belgium), 26-28 April 2006 2006.

http://books.google.com/books?as_isbn=0-19-511538-4
http://books.google.com/books?as_isbn=0-12391-050-1
http://dx.doi.org/10.1186/1471-2105-12-180
http://books.google.com/books?as_isbn=1-59593-793-3
ftp://ftp.dcs.shef.ac.uk/home/neil/mtivm.pdf

References III
D. J. C. MacKay. Introduction to Gaussian Processes. In C. M. Bishop, editor, Neural Networks and Machine Learning,

volume 168 of Series F: Computer and Systems Sciences, pages 133–166. Springer-Verlag, Berlin, 1998.

T. P. Minka and R. W. Picard. Learning how to learn is learning with point sets. Available on-line., 1997. [URL].
Revised 1999, available at http://www.stat.cmu.edu/˜{}minka/.

R. Navaratnam, A. Fitzgibbon, and R. Cipolla. The joint manifold model for semi-supervised multi-valued
regression. In IEEE International Conference on Computer Vision (ICCV). IEEE Computer Society Press, 2007.

J. Oakley and A. O’Hagan. Bayesian inference for the uncertainty distribution of computer model outputs.
Biometrika, 89(4):769–784, 2002.

L. Parts, O. Stegle, J. Winn, and R. Durbin. Joint genetic analysis of gene expression data with inferred cellular
phenotypes. PLoS Genet, 7(1):e1001276, 2011. [URL]. [DOI].

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA, 2006.
[Google Books] .

S. Rogers and M. Girolami. A First Course in Machine Learning. CRC Press, 2011. [Google Books] .

R. Salakhutdinov and I. Murray. On the quantitative analysis of deep belief networks. In S. Roweis and
A. McCallum, editors, Proceedings of the International Conference in Machine Learning, volume 25, pages 872–879.
Omnipress, 2008.

M. Seeger and M. I. Jordan. Sparse Gaussian Process Classification With Multiple Classes. Technical Report 661,
Department of Statistics, University of California at Berkeley,

A. P. Shon, K. Grochow, A. Hertzmann, and R. P. N. Rao. Learning shared latent structure for image synthesis and
robotic imitation. In Y. Weiss, B. Schölkopf, and J. C. Platt, editors, Advances in Neural Information Processing
Systems, volume 18, Cambridge, MA, 2006. MIT Press.

G. Skolidis and G. Sanguinetti. Bayesian multitask classification with Gaussian process priors. IEEE Transactions on
Neural Networks, 22(12):2011 – 2021, 2011.

S. M. Stigler. Laplace’s 1774 memoir on inverse probability. Statistical Science, 1:359–378, 1986.

Y. W. Teh, M. Seeger, and M. I. Jordan. Semiparametric latent factor models. In R. G. Cowell and Z. Ghahramani,
editors, Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, pages 333–340,
Barbados, 6-8 January 2005. Society for Artificial Intelligence and Statistics.

http://research.microsoft.com/en-us/um/people/minka/papers/point-sets.html
http://www.stat.cmu.edu/~{ }minka/
http://dx.doi.org/10.1371/journal.pgen.1001276
http://dx.doi.org/10.1371/journal.pgen.1001276
http://books.google.com/books?as_isbn=0-262-18253-X
http://books.google.com/books?as_isbn=978-1-4398-2414-6

References IV

M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. Journal of the Royal Statistical Society, B, 6
(3):611–622, 1999. [PDF]. [DOI].

L. R. Tucker. An inter-battery method of factor analysis. Psychometrika, 23(2):111–136, 1958.

S. Virtanen, A. Klami, and S. Kaski. Bayesian CCA via group sparsity. In L. Getoor and T. Scheffer, editors,
Proceedings of the International Conference in Machine Learning, volume 28, 2011.

H. Wackernagel. Multivariate Geostatistics: An Introduction With Applications. Springer-Verlag, 3rd edition, 2003.
[Google Books] .

C. K. Williams and D. Barber. Bayesian Classification with Gaussian processes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 20(12):1342–1351, 1998.

A. G. Wilson, D. A. Knowles, and Z. Ghahramani. Gaussian process regression networks. In Langford and Pineau
(2012).

I. Woodward, M. R. Lomas, and R. A. Betts. Vegetation-climate feedbacks in a greenhouse world. Philosophical
Transactions: Biological Sciences, 353(1365):29–39, 1998.

K. Yu, V. Tresp, and A. Schwaighofer. Learning Gaussian processes from multiple tasks. In Proceedings of the 22nd
International Conference on Machine Learning (ICML 2005), pages 1012–1019, 2005.

http://www.robots.ox.ac.uk/~cvrg/hilary2006/ppca.pdf
http://dx.doi.org/doi:10.1111/1467-9868.00196
http://books.google.com/books?as_isbn=3-540-44142-5

	Health
	Health
	Missing Data
	Useful Texts

	Regression
	Multivariate Regression
	Basis Functions
	Generalization
	Underdetermined Systems
	Bayesian Regression
	Two Dimensional Gaussian Distribution
	Multivariate Gaussian Properties
	Multivariate Bayesian Linear Regression

	Gaussian Processes
	Distributions over Functions
	Two Point Marginals
	Covariance from Basis Functions

	Basis Function Representations
	An Alternative Analysis

	Kalman Filter
	Deep Learning

	Conclusions
	Summary

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	1.24:
	1.25:
	1.26:
	1.27:
	1.28:
	1.29:
	anm1:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	2.9:
	2.10:
	2.11:
	2.12:
	2.13:
	2.14:
	2.15:
	2.16:
	2.17:
	2.18:
	2.19:
	2.20:
	2.21:
	2.22:
	2.23:
	2.24:
	2.25:
	2.26:
	2.27:
	2.28:
	2.29:
	anm2:
	3.0:
	3.1:
	3.2:
	3.3:
	3.4:
	3.5:
	3.6:
	3.7:
	3.8:
	3.9:
	3.10:
	3.11:
	3.12:
	3.13:
	3.14:
	3.15:
	3.16:
	3.17:
	3.18:
	3.19:
	3.20:
	3.21:
	3.22:
	3.23:
	3.24:
	3.25:
	3.26:
	3.27:
	3.28:
	3.29:
	3.30:
	3.31:
	3.32:
	3.33:
	3.34:
	3.35:
	3.36:
	3.37:
	3.38:
	3.39:
	anm3:
	4.0:
	4.1:
	4.2:
	4.3:
	4.4:
	4.5:
	4.6:
	4.7:
	4.8:
	4.9:
	4.10:
	4.11:
	4.12:
	4.13:
	4.14:
	4.15:
	4.16:
	4.17:
	4.18:
	4.19:
	4.20:
	4.21:
	4.22:
	4.23:
	4.24:
	4.25:
	4.26:
	4.27:
	4.28:
	4.29:
	anm4:
	5.0:
	5.1:
	5.2:
	5.3:
	5.4:
	5.5:
	5.6:
	5.7:
	5.8:
	5.9:
	5.10:
	5.11:
	5.12:
	5.13:
	5.14:
	5.15:
	5.16:
	5.17:
	5.18:
	5.19:
	5.20:
	5.21:
	5.22:
	5.23:
	5.24:
	5.25:
	5.26:
	5.27:
	5.28:
	5.29:
	anm5:

