Project Orientated Teaching for Industry University Cooperation

M.Sc. B.Eng. Bastian C. Müller

Technische Universität Berlin

Birzeit University – Ramallah, Palestine

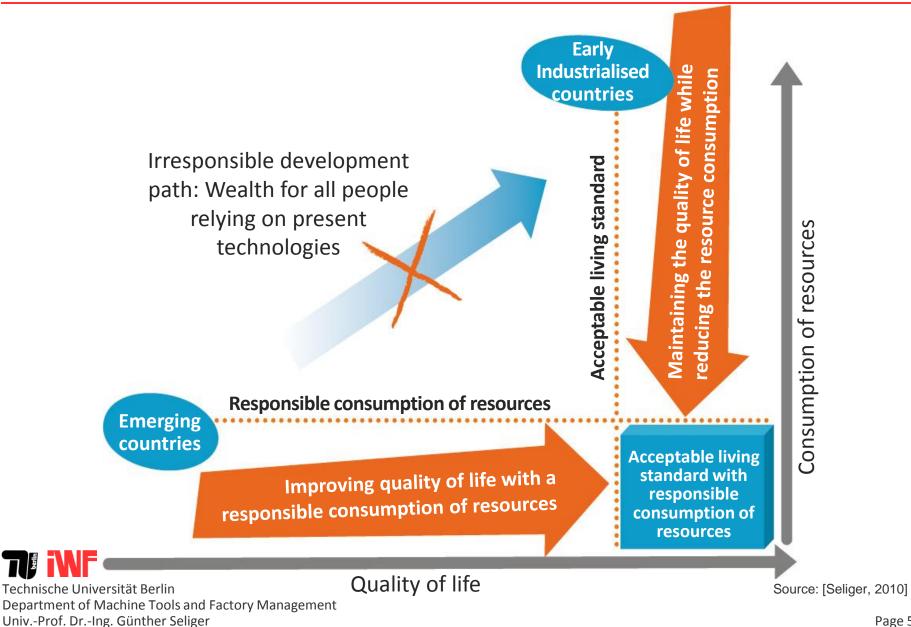
Date: 24th of March 2014

Agenda

- Challenges of value creation
- Qualification as enabler
- International project orientated teaching
- National project orientated teaching

Agenda

Challenges of value creation
Qualification as enabler
International project orientated teaching
National project orientated teaching



Resource challenge

Technische Universität Berlin Department of Machine Tools and Factory Management Univ.-Prof. Dr.-Ing. Günther Seliger Source: [Seliger, 2010]

Quality of life and consumption of resources

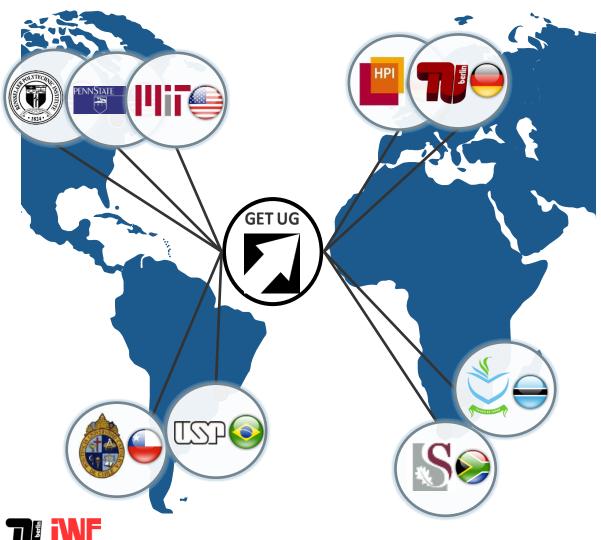
Page 5

Agenda

Challenges of value creation

Qualification as enabler

International project orientated teaching


Global Engineering Teams

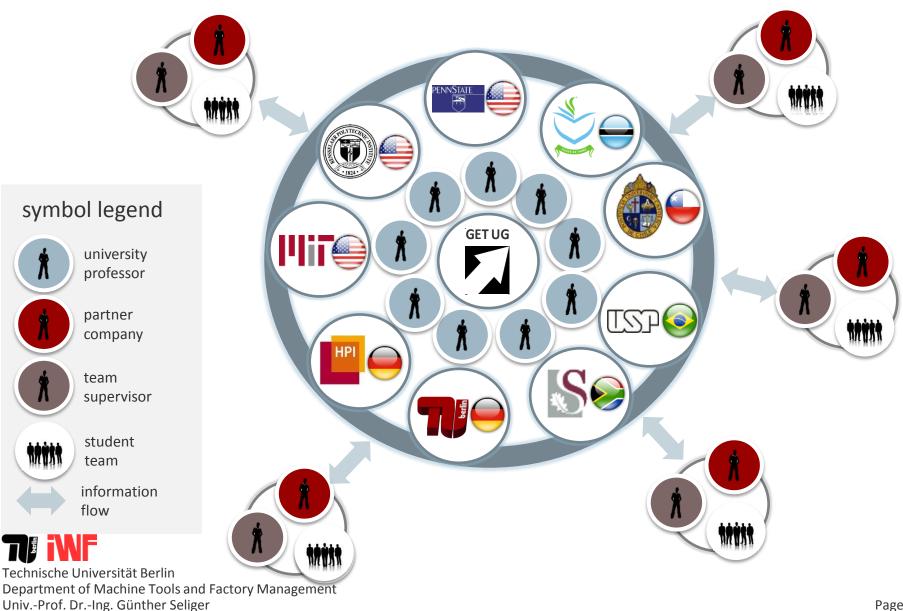
Housing-Manufacturing-Water

National project orientated teaching

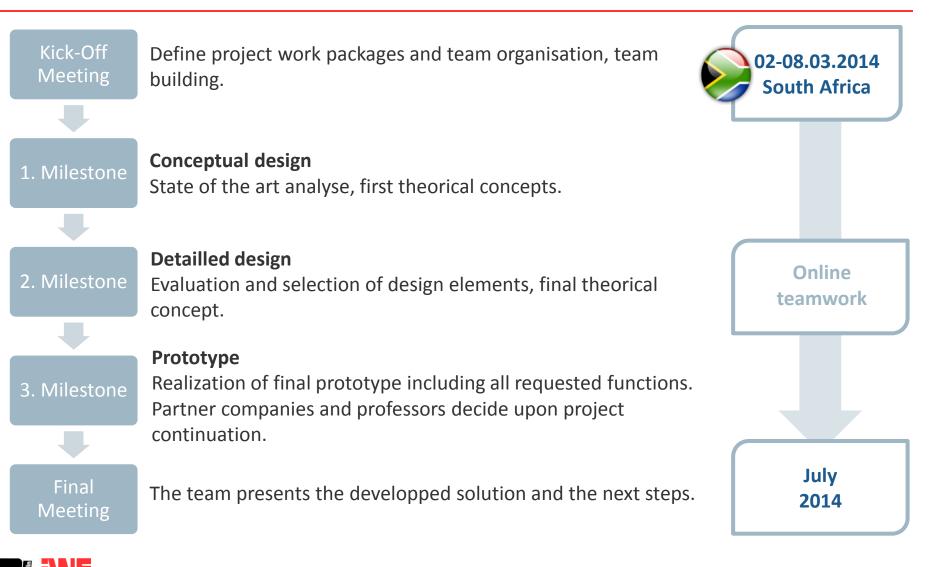
Global Engineering Teams (GET): Partners

Technische Universität Berlin Department of Machine Tools and Factory Management Univ.-Prof. Dr.-Ing. Günther Seliger

Africa

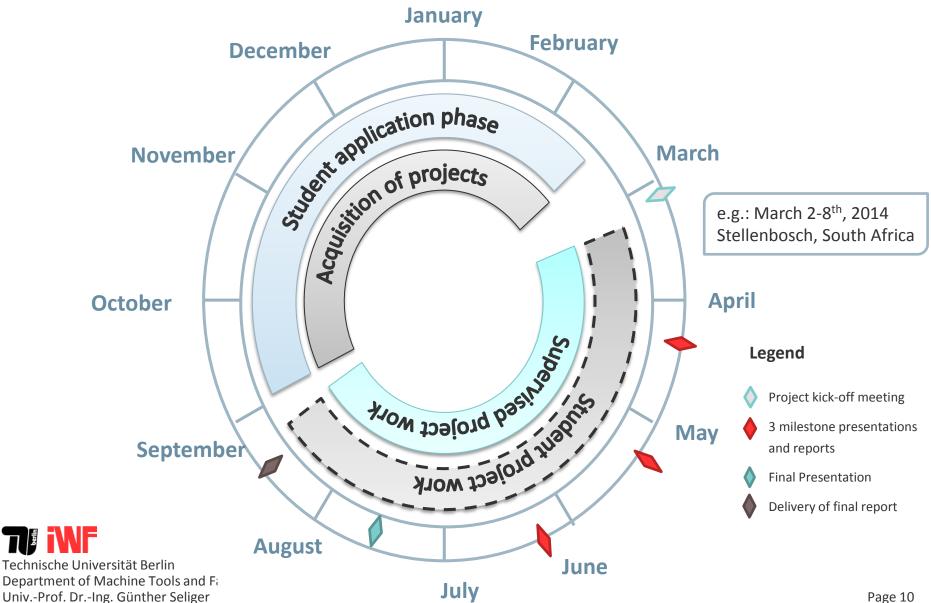

Universiteit Stellenbosch (SA), South Africa; University of Botswana (UOB), Botswana

Europe

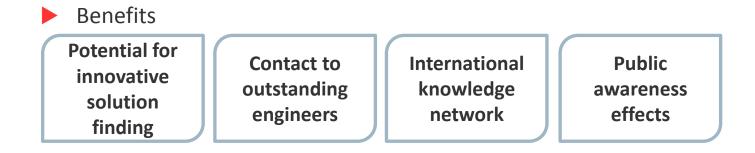

Technische Universität Berlin (TUB), Germany; Hasso-Plattner-Institute (HPI)

- North America Pennsylvania State University (PennState), USA; Massachusetts Institute of Technology (MIT), USA, Renssealaer Polytechnic Institute (RPI), USA
- South America Universidade de São Paulo (USP), Brazil;
 Pontificia Universidad Católica de Chile (PUC), Chile

Main Stakeholders and Communication Scheme



GET Program milestones description


Phases of Global Engineering Teams

Costs of a GET project

- Cost of a GET project is € 30,000 for 4 students
- This cost includes:
 - Travel costs for the students and the supervisor to attend kick off and final presentation,
 - organizational costs for meetings, material and knowledge management,
 - overhead costs for GET UG and the partner universities.

- This cost does not include:
 - Prototype costs
 - Optional travel costs to and from your company and for your company staff.

Agenda

Challenges of value creation

Qualification as enabler

International project orientated teaching

Global Engineering Teams

Housing-Manufacturing-Water

National project orientated teaching

Existing Competence

Improving the living conditions of the urban poor

- Sustainable access to safe drinking water and basic sanitation.
- Reduce by two thirds the under-five mortality rate.

 Improve the lives of slum dwellers.

 Achieve full and productive employment and decent work for all.

Bundling Competence

Provide platform to integrate competences in "Think Tank"

- Central management unit, supported by the President of TU Berlin.
- Competence fields are both mutually interdependent and supportive

"Housing-Manufacturing-Water"-Projekt (HMW)

Motivation

- Achievement of Millennium goals,
- create an interdisciplinary international network,
- responsible for building up an educational structure regarding the housing, manufacturing and water competence fields through:
 - Individual projects,
 - > yearly joint seminar / short course,
 - building of local capacity,
 - development of interdisciplinary global communities

USI

UNIVERSITY

Univ	versida	de de
São	Paulo,	Brazi

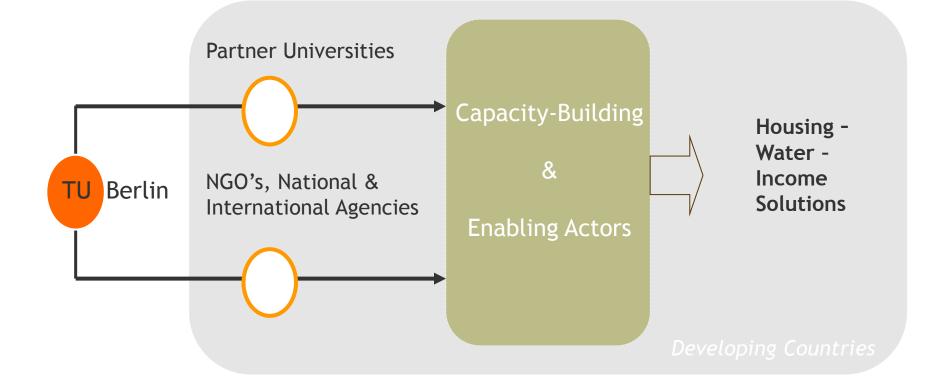
Universidade Federal de Espírito Santo, Brazil

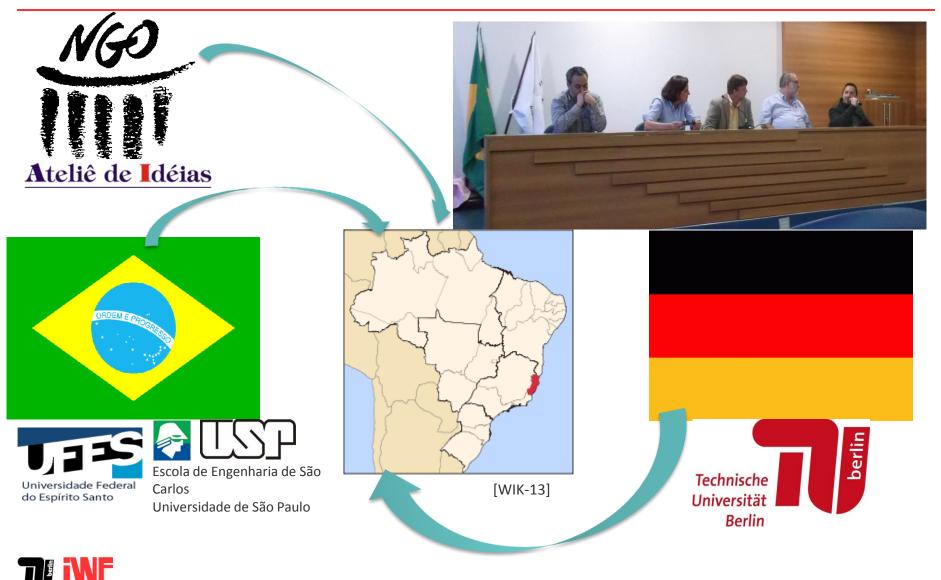
Pontificia Universidad Católica de Chile, Chile

Kamla Raheja Vidyanidhi, Insitute for Architecture and Environmental Studies, India

Botswana

Stellenbosch University, South Africa


University of Botswana,


Housing – Water – Income for the Urban Poor

Enabling actors and capacity building for appropriate technologies

Housing Manufacturing Water: Example (1/5) Kick-off meeting – Vitoria- Brazil March 2013

Housing Manufacturing Water: Example (2/5) Kick-off – Stakeholder meeting

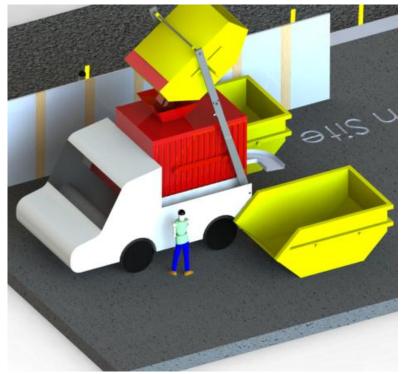
- Participants:
 - German professors and students,
 - brazilian professors and students and a
 - Iocal NGO.
- Goal definition: Factory that produces
 bricks out of recycled aggregates for the brazilian favellas.
- Criteria:
 - Total cost: R \$ 180.000,00
 - Noise restriction: max. 78 dB
 - Eco-friendly, no waste production
 - Size limitations
 - No man work inside the container

The signed project charter

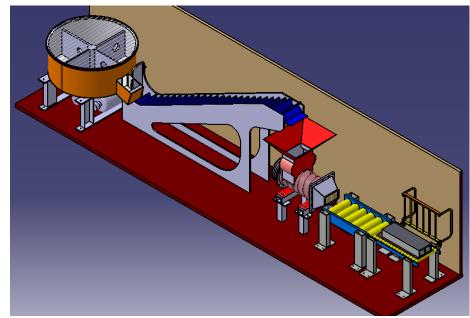
Joint lectures

Housing Manufacturing Water: Example (3/5) Project structure – Team division

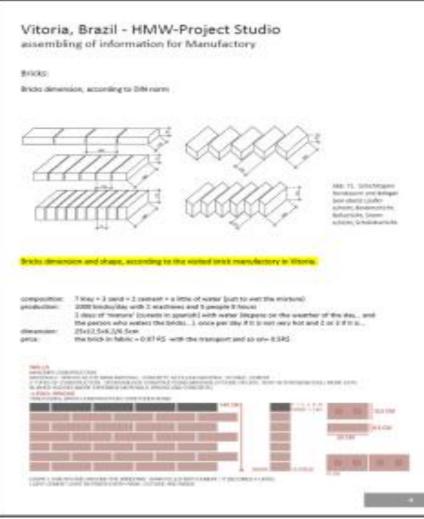
Division into groups:


- Business, Marketing and Law,
- Process, Energy & Layout,
- Design & Development,
- Project Management.
- Project charter as a guideline
- Regular overall meetings in groups

	Team S	Structure	
Rev No.	0		
Date	25-Mar-13		
Project Management	Marketing, Business and Law	Energy Procurement, Process and layout	Design and Development
Monica	Nicholas	Carlos	Roberto
Bernhard	David	Elisa	Sarah
Total Members : 5	Total Members : 5	Total Members : 12	Total Members : 9


Team Structure

Housing Manufacturing Water: Example (4/5) The outcomes (Manufacturing perspective)


Mobile mini factory I for the creation of recycled aggregate

Mobile mini factory II for the creation of bricks

Housing Manufacturing Water: Example (5/5) H & W Integration

TFINF

Example for information exchange between the housing and manufacturing team

Technische Universität Berlin Department of Machine Tools and Factory Management

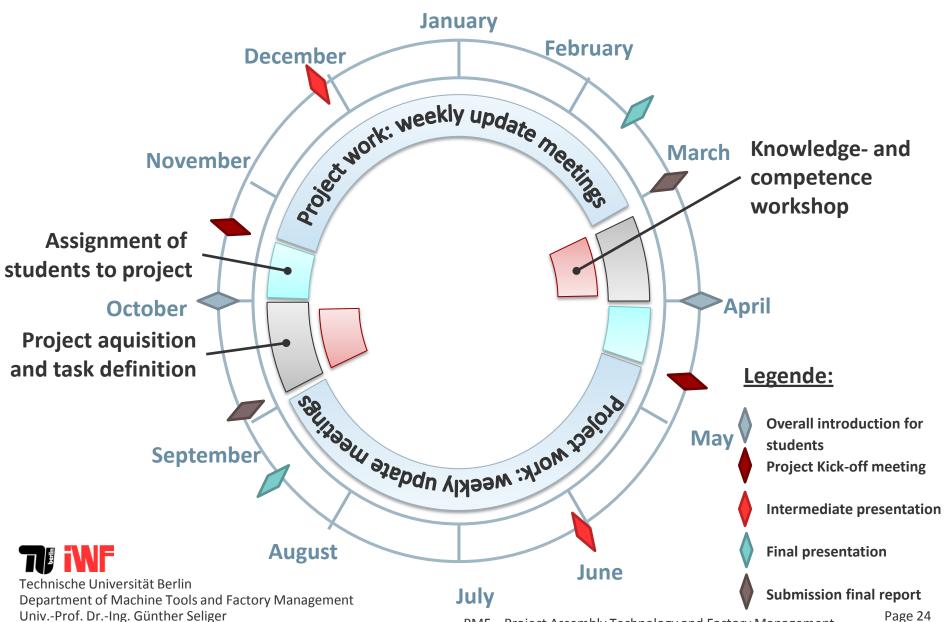
Univ.-Prof. Dr.-Ing. Günther Seliger

- Exchange of information, e.g. construction material market
- Planning steps including each other's needs
 - Housing: Construction material data base
 - Water & Housing: input for product development
- Input to each other
 - Follow up in presentations and meetings
- Design enables markets
 - Construction plans based on the factories output

Agenda

Challenges of value creation
 Qualification as enabler
 International project orientated teaching
 National project orientated teaching

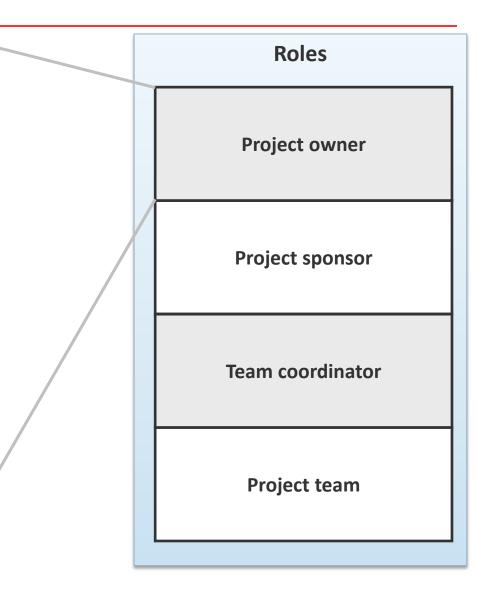
Project orientated teaching at the department of machine tools and factory management – TU Berlin


- The department of Machine Tools and Factory Management offers project oriented courses (PMF).
- These projects are supervised by research assistants, often in collaboration with local industry partners.
 - PMF:
 - Ideal for mini research topics,
 - Teams with 4-6 students,
 - Effective research time: 500 1.000 hours*,
 - Costs for customer: 5.000 €.

* Depending on the group size and the number of credit points.

PMF Phases

PMF = Project Assembly Technology and Factory Management

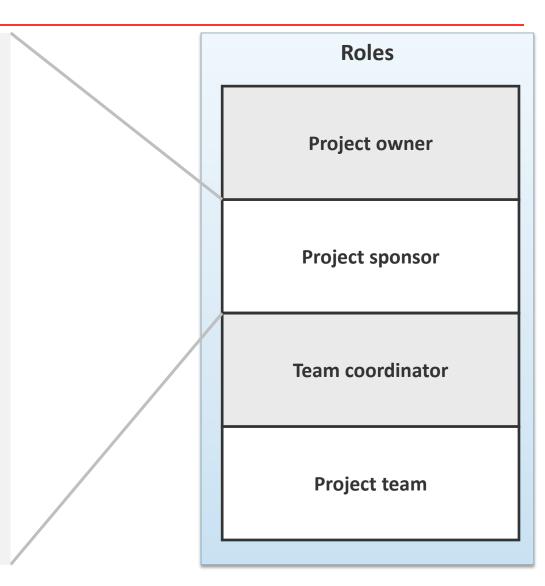

PMF Roles (I/IV)

Who

Department of Machine Tools and Factory Management.

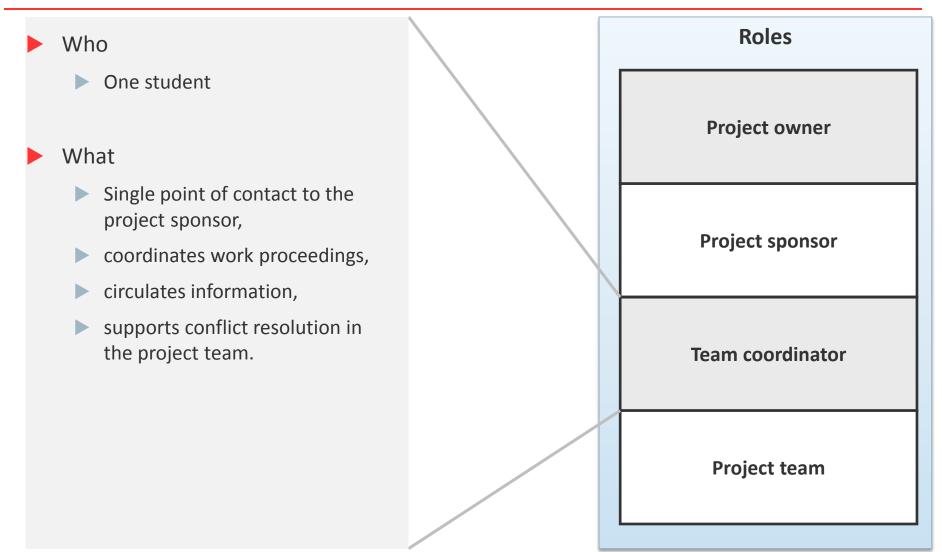
What

Provides rough direction of project goals (according to current research projects).

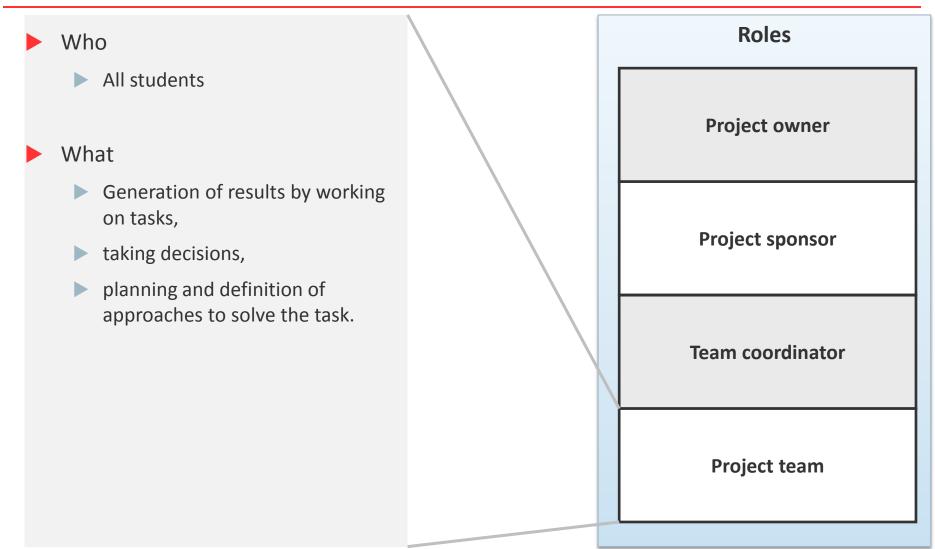

PMF Roles (II/IV)

Who

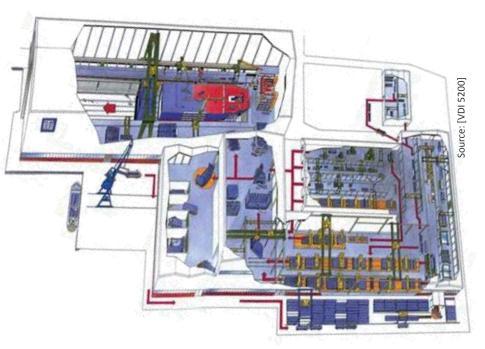
- Research assistant
- Industry partner


What

- Provides the project goal,
- supports team coordinator in organizational and technical issues,
- provides necessary infrastructure (e.g. special literature and rooms),
- evaluates the project results,
- is NOT involved in the project work.



PMF Roles (III/IV)



PMF Roles (IV/IV)

PMF Example (1/4) Greenfield factory planning for a SME in Berlin

A SME is currently located in an industrial park, divided in a lot of separated rooms. The growing SME plans to move in their own building.

Goal

Development and evaluation of three layout alternatives and proposing a recommendation based on the procedure model proposed in the VDI 5200 (guideline for German engineers).

Work content

- Goal definition in close cooperation with the customer,
- data aquisition (e.g. products, estate data, ...),
- concept planning of three layout alternatives and
- concept evaluation and development of a recommendation for the customer.

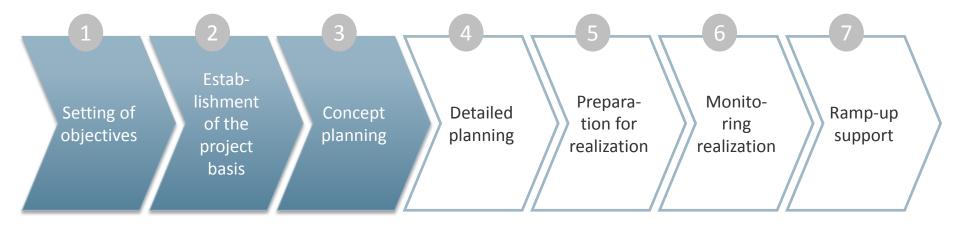
Technische Universität Berlin Department of Machine Tools and Factory Management Univ.-Prof. Dr.-Ing. Günther Seliger

SME = small and medium-sized enterprise

VDI = Vereinigung Deutscher Ingenieure = association of german engineers

PMF Example (2/4) Project team of a PMF Group in the winter semester 2013/2014

Team mit jeweiligem Planungsbereich und Studiengang


Max	Martin	Lukas				
Layout planning	Layout planning	Technical building systems				
Production technology (M.Sc.)	Mechanical engineering(M.Sc.)	Industrial engineering (B.Sc.)				
Vincenz	Moritz	Angelina				
0.7'	Team Coordinator	2				
Layout planning	Team Coordinator Layout planning	Technical building systems				

PMF Example (3/4) Factory planning according to VDI 5200

Seven phases according to VDI 5200.

Project scope: phases 1-3.

Additional focus on technical building systems.

Source: [VDI-5200]

PMF Example (4/4) Gantt-Chart created by the students

				[days]													
				l [da	[%]												
				ation	ress	2013						2014					
Nr.	Work package	Start	End	Duration	Progr	KW 440	KW 45	KW 46	KW 47	KW 48	KW 49	KW 50	KW 51	KW 52	KW 53	KW 2	KW 3
1	Setting of objectives		14.11.2013		100%											_	
1.1	Analysis of corporate objectives and general constraints		31.10.2013						_	_	_	_	_			_	
1.2	Setting the factory and project objectives		14.11.2013		100%				_	_	_	_	_			_	
1.2.1	*******		14.11.2013			_			_	_	_	_	_			_	
1.2.2	*****		07.11.2013					_	_	_	_	_	_			_	
1.3	Itemization of evaluative criteria		07.11.2013						_	_	_	_	_			_	
1.4	Definition of work packages		07.11.2013						_	_	_	_	_			_	
M1	Final goal definition		14.11.2013			_					_	_	_			_	
2	Establishment of the product basis		06.12.2013									_	_			_	
2.1	Procurement of information		06.12.2013									_	_			_	_
2.1.1	*****		07.11.2013						_	_	_	_	_			_	_
2.1.2	*******		12.11.2013			_	_					_	_			_	_
2.1.3	******		06.12.2013			-						_	_			_	
2.2	Evaluation of information		06.12.2013			_						_	_			_	
2.2.1	*****		28.11.2013			_						_	_			_	L
2.2.2	*****		06.12.2013			-		_									
3	Concept planning		07.03.2014			-		_									
3.1	Structure planning		01.12.2013			_	_	_			_	_	_				
3.1.1	*******		24.11.2013			_		_			_	_	_				
3.1.2	****		26.11.2013					_			_	_	_				
3.1.3	*****		29.11.2013			-		_	_			_	_				
3.1.4	*****		01.12.2013			_	_	_	_		_	_	_				
3.2	Dimensioning		12.12.2013			-		_	_				_				
3.2.1	*****		03.12.2013			-		_	_			_	_				
3.2.2	****		05.12.2013			_		_	_	_		_	_			_	
3.2.3	****		10.12.2013			_		_	_	_			_			_	
3.2.4	*****		12.12.2013					_	_	_			_				
3.3	Ideal planning		21.12.2013			-		_	_	_	-		_			-	
M2	Intermediate presentation		17.01.2014	_		_	_	_	_		_	_	_	_	_		
3.4	Real planning		02.03.2014			_		_	_		_						
3.4.1	*****		10.01.2014			_		_	_	_	_	_					
3.4.2	*****		21.02.2014			_		_	_		_	_	_	_	_		
3.4.3	*****		06.01.2014			_		_	_		_						
3.4.4	*****		21.02.2014		100%	_		_	_	_	-	_	_				
3.4.5			02.03.2014			_	_	_	_	_	_	_	_			_	
M3	Final presentation		07.03.2014			_											
4	Documentation		21.03.2014														
M4	Submit documentation	21.03.2014	21.03.2014	1	0%												

Gantt-Chart created by the students in order to structure their group work

References

Abbreviation	Source
[Seliger, 2005]	Seliger, G.; Harms, R.: Efforts on Sustainability in Manufacturing Research and Education. Proceedings of 2nd German-Israel Symposium for Design and Manufacture. 7-8th July, S. 13-23, 2005.
[Seliger, 2010]	Seliger, G.: Emerging Markets bei materiellen Grenzen des Wachstums – Chancen nachhaltiger Wertschöpfung. In: Gausemeier; Wiendahl: Wertschöpfung und Beschäftigung in Deutschland, 2010.
[Seliger, 2012]	Seliger, G.: Internationale projektbasierte Ingenieurausbildung. Lecture at the Hochschuldidaktische Ringvorlesung, November 2012.
[VDI-5200]	Guideline for German engineers 5200: Factory planning, 2011.

