Microsomes and Drug Oxidations (MDO) Stuttgart, Germany

CIRCADIAN GENE EXPRESSION PATTERNS ON THE PERIPHERY DEPEND ON GENOTYPE

Rok Kosir

Center for Functional Genomics and Bio-chips Faculty of Medicine University of Ljubljana Slovenia

THE CIRCADIAN CLOCK AND MOUSE STRAINS

CIRCADIAN CLOCKs

- Evolutionary adaptation
- Affect physiological processes
- Hierarchical structure

o MOUSE STRAINS

- Biomedical models
- Many different strains
- Genetic variability

Are there differences in circadian gene expression between strains.

CIRCADIAN GENE EXPRESSION IN MOUSE STRAINS 129SvPas and C57BL/6

- Sampling of mice every 4h.
- Liver and adrenal glands.
- Measure expression of genes using qPCR.

MAJOR CORE CLOCK AND METABOLIC OUTPUT GENE EXPRESSION DIFFERENCES IN ADRENALS OF $129S\ensuremath{\mathsf{VPas}}$ and C57BL/6

Liver differs in *Bmal1* and *Cry1*.

Genes of interest

Circadian expression profiles

MAJOR CORE CLOCK AND METABOLIC OUTPUT GENE EXPRESSION DIFFERENCES IN ADRENALS OF $129S\ensuremath{\mathsf{VPas}}$ and C57BL/6

Liver differs in *Bmal1* and *Cry1*.

Genes of interest

Circadian expression profiles

DIFFERENCES IN PEAK EXPRESSION (PHASE) ARE MOST PROMINENT FOR METABOLIC GENES

o Adrenal glands, LD

Condition 129Pas - LD C57/BL6 - LD

DIFFERENCES IN PEAK EXPRESSION (PHASE) ARE MOST PROMINENT FOR METABOLIC GENES

• Adrenal glands, LD

COULD DIFFERENCES IN PEAK EXPRESSION BE EXPLAINED BY GENOMIC VARIATION OF 129 AND C57BL/6 ?

• To answer this:

- Data on structural variation of the three available129 strains and comparison to the reference strain C57BL/6
- Database resources: Mouse Genomes Db (SANGER) and dbVar (NCBI)
- Deeper analysis on the subset of genes of interest

COULD DIFFERENCES IN PEAK EXPRESSION BE EXPLAINED BY GENOMIC VARIATION OF 129 AND C57BL/6 ?

• To answer this:

- Data on structural variation of the three available129 strains and comparison to the reference strain C57BL/6
- Database resources: Mouse Genomes Db (SANGER) and dbVar (NCBI)
- Deeper analysis on the subset of genes of interest

COULD DIFFERENCES IN PEAK EXPRESSION BE EXPLAINED BY GENOMIC VARIATION OF 129 AND C57BL/6 ?

• To answer this:

- Data on structural variation of the three available129 strains and comparison to the reference strain C57BL/6
- Database resources: Mouse Genomes Db (SANGER) and dbVar (NCBI)
- Deeper analysis on the subset of genes of interest

6

C57BL6 AND 129 STRAINS DIFFER IN OVER 20.000 SNVS AND OVER 150 STURCTRAL VARIANTS

Z

SEVERAL SNV VARIANTS RESIDE IN CLOCK – DEPENDENT PROMOTERS OF METABOLIC OUTPUT AND CIRCADIAN GENES

DNA VARIATIONS IN GENES THAT SHOWED DIFFERENTIAL CIRCADIAN EXPRESSION IN C57BL/6 AND 129 MICE

Gene	Promoter mutations			Structural variants			SNVs		
129 strain	P2	S1	S5	P2	S1	S5	P2	S1	S5
Per2	7	7	7				63	66	61
RevERBa	1	1	1				8	8	8
Bmal1				4	5	4	183	181	179
Cyp11									1
Cyp17	3	3	3				3	3	3
Cyp51							25	25	25

9

10

10

CONCLUSION

- Circadian expression of many core clock and metabolic output genes differs between 129 and C57BI/6 mouse strains. Most variations were observed in adrenal glands under LD, where several CYPs exhibit crucial differences in peak expression (phase).
- Core clock and metabolic genes that vary in gene expression 129 to C57BI/6 gene expression harbor numerous DNA variants in promoter, intron and coding regions.
- The genomes of the three 129 strains investigated are genetically very similar. Many SNVs and structural variants lie at the same location in the genome.
- These findings are relevant for future chronopharmacology studies since the genotype could crucially affect the circadian expression of drug metabolizing genes.

Acknowledgments

prof. dr. Damjana Rozman

Center for functional genomics and bio-chips Faculty of Medicine

> doc. ddr. Jure Ačimovič dr. Anja Korenčič Institute of Biochemistry Faculty of Medicine

dr. Ursula Prosenc Zmrzljak Institute of Oncology Ljubljana

> **dr. Martina Perše Ksenja Kodra** *Insitute of pathology Faculty of Medicine*

Funding:

P1-0104: Functional genomics and biotechnology for health **J7-4053**: Functional genomics of cholesterol homeostasis: the role of lanosterol 14alpha-demethylase in development of metabolic disorders

Thank you for your attention!

Lake Bohinj, Slovenia

Kosir et al, IUBMB Life 2013