

Mammalian physiology is circadian

Cardiovascular system: heartbeat, blood pressure

 How do these clocks affect metabolism, and in particular metabolomics?

 What consequences does circadian metabolic control have for cancer?

Ten percent of mouse genes are expressed in circadian fashion

liver heart

20% of mouse liver proteins are rhythmic

Of a total of 642 soluble liver proteins

And not surprisingly, 20% of the mouse metabolome is also rhythmic...(Minami 2009)

...but how much of this pattern is due to rhythmic food intake or sleep?

The human constant routine protocol:

Overall results

- Plasma
 - -281 metabolites
 - -41 circadian rhythmic

- Saliva
 - 178 metabolites
 - 29 circadian rhythmic

Rhythmic plasma metabolites

Rhythmic plasma metabolites

Rhythmic saliva metabolites

Rhythmic saliva metabolites

The next step:
Metabolic breathylomics
directly in the clinic

Human circadian breath metabolome from 3 subjects

Subject A

Subject B

Subject C

Human circadian breath metabolome from 3 subjects

Human circadian breath metabolome from 3 subjects

Subject A

Subject B

Subject C

Supervised PCA of Breath Metabolome of One Subject during 24 hours

Breathprint predicts time of day ±3hrs

Why is circadian time relevant to medicine?

Most drugs work better under certain conditions.

- Better in some people than in others.
- -Better in conjunction with another drug.
- -Better at a particular time of day.

Why is circadian time relevant to medicine?

Most drugs work better under certain conditions.

- Better in some people than in others.
- -Better in conjunction with another drug.
- -Better at a particular time of day.

Set-up for mouse breath analysis

PK curve for ket and metabolites

Normalized signal intensity for ketamine and its metabolites detected in the breath of a mouse injected with 60 mg/kg of ketamine. Note the different kinetics. Peaking times are: Ketamine Ket= 34.5; Norketamine NK= 46; Hydroketamine HK= 51; Hydronorketamine HNK and Dihydronorketamine DHNK= 77 min.

Dose response for ket and nk

Circadian modulation of ket metabolites

A current challenge in medicine: identifying when timing matters.

Circadian behavior predicts chemotherapy survival in humans.

Dallmann et al. unpublished

Clocks in GBM

Dallmann, Ritz et al. unpublished

Are these differences relevant for cancer progression?

Killing the clock in a cancer cell line

Breaking the clock in C26 in 2 ways

Breaking the clock in C26 in 2 ways

Breaking the clock in C26 in 2 ways

Hypothesis: maybe clock function is being systemically driven here.

In vivo luminometry- principle

(Saini, 2013)

Rhythmic tumor: Bmal-luciferase in vivo

Arrhythmic tumor: Bmal-luciferase in vivo

Conclusions: A four-clock problem?

(CRPP) Sleep and Health

Elzbieta Kowalska