

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Modeling drug- and chemical-induced hepatotoxicity with systems biology approaches Eret A. Howell, Ph.D. Lead Scientist and Manager, DILI-sim The Hamner-UNC Institute for Drug Safety Sciences

*DILIsym[®] is a registered trademark, and MITOsym[™] a trademark, of The Hamner Institutes for Health Sciences for computer modeling software and for consulting services.

Research Triangle Park, NC

The DILI-sim Initiative Is a Partnership between the Hamner Institutes and Pharmaceutical Companies to Minimize DILI

- **Overall Goals**
 - Improve patient safety
 - Reduce the need for animal testing
 - Reduce the costs and time necessary to develop new drugs

The DILI-sim Team and the SAB

The DILI-sim Team and the SAB

DILI-sim Stage 1 goals:

- Develop DILIsym[®] software to better inform safety decisions within early portion of drug development pipeline
 - 3 year cycle 2012-2014
 - In vitro to in vivo
 - Preclinical to first-in-human
 - Biomarker interpretation
 - In vitro, in vivo, and/or clinical data as inputs

First in Human Clinical Trials

DILI-sim Stage 1 goals:

- Develop DILIsym[®] software to better inform safety decisions within early portion of drug development pipeline
 - 3 year cycle 2012-2014
 - In vitro to in vivo
 - Preclinical to first-in-human
 - Biomarker interpretation
 - In vitro, in vivo, and/or clinical data as inputs

DILI-sim Stage 2 goals:

- Develop DILIsym[®] software to better inform safety decisions extending through late phases of drug development pipeline
 - 3 year cycle 2015-2017
 - Phase II and III clinical trials
 - Biomarker interpretation
 - Inter-patient variability (with SimPops[™])
 - In vitro, in vivo, and clinical data as inputs

DILI-sim Stage 1 goals:

- Develop DILIsym[®] software to better inform safety decisions within early portion of drug development pipeline
 - 3 year cycle 2012-2014
 - In vitro to in vivo
 - Preclinical to first-in-human
 - Biomarker interpretation
 - In vitro, in vivo, and/or clinical data as inputs

DILI-sim Stage 2 goals:

- Develop DILIsym[®] software to better inform safety decisions extending through late phases of drug development pipeline
 - 3 year cycle 2015-2017
 - Phase II and III clinical trials
 - Biomarker interpretation
 - Inter-patient variability (with SimPops[™])
 - In vitro, in vivo, and clinical data as inputs

Intended applications:

- Predictions of hepatotoxicity risk for humans and preclinical Clinical Trials and animal models
 Post-Market
- Enhanced understanding of elements contributing to observed liver signals in clinical trials

Preclinical

First in Human

Clinical Trials

Phase II/III

Surveillance

Kuepfer 2010, Molecular Systems Biology

• Multiple species: human, rat, mouse, and dog

- Population variability

R

- Multiple species: human, rat, mouse, and dog
 - Population variability
- The three primary acinar zones of liver represented

R

- Multiple species: human, rat, mouse, and dog
 - Population variability
- The three primary acinar zones of liver represented
- Essential processes represented to multiple scales in interacting submodels

Institute for Drug Safety Sciences

R

PV

PP

ML

Key Areas for DILIsym[®] Data Inputs and Simulation Results Comparators

Drug Absorption and Distribution

Drug Metabolism Proposed Hepatotoxicity Mechanism

Biomarkers

Key Areas for DILIsym[®] Data Inputs and Simulation Results Comparators

Drug Absorption and Distribution

Drug Metabolism Proposed Hepatotoxicity Mechanism

Biomarkers

Key Areas for DILIsym[®] Data Inputs and Simulation Results Comparators

Drug Absorption and Distribution

Drug Metabolism Proposed Hepatotoxicity Mechanism

Biomarkers

• BSEP, NTCP, MRP Ki

- OCR, $\Delta \Psi m$
- ROS/RNS increases
- GSH depletion, adduct formation
- ATP depletion
- Apoptosis vs necrosis

Examples of DILIsym[®] Applications

Institute for Drug Safety Sciences

8

Examples of DILIsym[®] Applications

Entolimod (Cleveland BioLabs) Project Objectives

- Entolimod (single dose) reduces radiation mortality by 40%
 - Satisfies FDA's animal rule for efficacy

Howell, B. A., et al. (2014). A Mechanistic Model of Drug-Induced Liver Injury Aids the Interpretation of Elevated Liver Transaminase Levels in a Phase I Clinical Trial. CPT Pharmacometrics Syst Pharmacol 3: e98.

Entolimod (Cleveland BioLabs) Project Objectives

- Entolimod (single dose) reduces radiation mortality by 40%
 - Satisfies FDA's animal rule for efficacy
- Clinical Concern
 - ALT/AST elevations observed in human safety study
 - Continued development threatened

Howell, B. A., et al. (2014). A Mechanistic Model of Drug-Induced Liver Injury Aids the Interpretation of Elevated Liver Transaminase Levels in a Phase I Clinical Trial. CPT Pharmacometrics Syst Pharmacol 3: e98.

Entolimod (Cleveland BioLabs) Project Objectives

- Entolimod (single dose) reduces radiation mortality by 40%
 - Satisfies FDA's animal rule for efficacy
- Clinical Concern
 - ALT/AST elevations observed in human safety study
 - Continued development threatened
- Primary Objective
 - Use DILIsym[®] to infer the amount of hepatocyte necrosis necessary to achieve the ALT profiles observed after Entolimod

Howell, B. A., et al. (2014). A Mechanistic Model of Drug-Induced Liver Injury Aids the Interpretation of Elevated Liver Transaminase Levels in a Phase I Clinical Trial. CPT Pharmacometrics Syst Pharmacol 3: e98.

- Multiple species: human, rat, mouse, and dog
 - Population variability
- The three primary acinar zones of liver represented
- Essential processes represented to multiple scales in interacting submodels

Institute for Drug Safety Sciences

R

PV

PP

ML

- Multiple species: human, rat, mouse, and dog
 - Population variability
- The three primary acinar zones of liver represented
- Essential processes represented to multiple scales in interacting submodels
 - Hepatocyte life cycle
 - Biomarkers

PV

PP

Institute for Drug Safety Sciences

DILIsym®

In

ate Immune Response

Biomarkers

Clinical Data and Simulation Results

- ALT clinical data
 - Mostly minor elevations
 - Few higher elevations

Clinical Data and Simulation Results

11

- ALT clinical data
 - Mostly minor elevations
 - Few higher elevations
- Focused on max, 95th percentile, and median ALT levels

Clinical Data and Simulation Results

- ALT clinical data
 - Mostly minor elevations
 - Few higher elevations
- Focused on max, 95th percentile, and median ALT levels
- Simulations agree with ALT clinical data by design

- ALT clinical data
 - Mostly minor elevations
 - Few higher elevations
- Focused on max, 95th percentile, and median ALT levels
- Simulations agree with ALT clinical data by design
- Minimal hepatocyte inferred from ALT profiles

of NORTH CAROLINA

Minimal Range of Hepatocyte Loss Predicted for Entolimod Using Population Sample

Observed Peak ALT range (IU/L)

*Predictions only valid for time courses similar to those observed with Entolimod

Minimal Range of Hepatocyte Loss Predicted for Entolimod Using Population Sample

- Various levels of necrosis simulated for population sample
- Max observed ALT (1001-1100 U/L) corresponds with 2.6-4.6% predicted hepatocyte loss

Observed Peak ALT range (IU/L)

*Predictions only valid for time courses similar to those observed with Entolimod

Project Summary

- Analyses indicate that volunteers with ALT elevations following Entolimod administration likely incurred hepatocyte losses of ≤5%
- The liver should have completely recovered in 2-9 weeks
- Literature review and modeling heparin-induced ALT profiles support the conclusion that the potential hepatocyte loss occurring in the Entolimod clinical trial did not represent a serious health threat
- DILIsym[®] simulation results were submitted to the FDA in support of the safety of Entolimod

Examples of DILIsym[®] Applications

Modeling for Susceptibility Factors: The Case Study with Troglitazone

Kyunghee Yang Division of Pharmacotherapy and Experimental Therapeutics UNC Eshelman School of Pharmacy The University of North Carolina at Chapel Hill

ESHELMAN SCHOOL OF PHARMACY

Troglitazone (TGZ)

- First in thiazolidinedione class; PPARγ agonist
 - Reduces hepatic and peripheral insulin resistance
 - Approved for the treatment of type II diabetes

Troglitazone (TGZ)

- First in thiazolidinedione class; PPARγ agonist
 - Reduces hepatic and peripheral insulin resistance
 - Approved for the treatment of type II diabetes

Hepatotoxicity

- Hepatotoxicity was not detected in preclinical studies
- 2% of patients developed ALT elevations >3X ULN in clinical trials
- Withdrawn from the market due to idiosyncratic hepatotoxicity

Troglitazone (TGZ)

- First in thiazolidinedione class; PPARγ agonist
 - Reduces hepatic and peripheral insulin resistance
 - Approved for the treatment of type II diabetes

Hepatotoxicity

- Hepatotoxicity was not detected in preclinical studies
- 2% of patients developed ALT elevations >3X ULN in clinical trials
- Withdrawn from the market due to idiosyncratic hepatotoxicity
- Mechanisms of hepatotoxicity remain unclear
 - Mitochondrial dysfunction
 - Induction of apoptosis
 - Formation of reactive metabolite(s)
 - Impaired bile acid transport

- Multiple species: human, rat, mouse, and dog
 - Population variability
- The three primary acinar zones of liver represented
- Essential processes represented to multiple scales in interacting submodels

PV

PP

ML

- Multiple species: human, rat, mouse, and dog
 - Population variability
- The three primary acinar zones of liver represented
- Essential processes represented to multiple scales in interacting submodels
 - <u>ADME</u>
 - Bile acid homeostasis
 - Hepatocyte life cycle
 - Biomarkers

BSEP (Bile Salt Export Pump);

NTCP (Sodium-Taurocholate Cotransporting Polypeptide);

MRP (Multidrug Resistance–Associated Protein);

OST (Organic Solute Transporter)

Construction of Human Sample Population (SimPops™)

Construction of Human Sample Population (SimPops[™])

PHARMACY

19

Bile Acid Transport Inhibition Alone Predicted TGZ Hepatotoxicity in Human SimPops[™]

HUMAN	Simulation Results	
	J/L)	
	С Г Т	
	∢ E	30X ULN
) e ru	
	E	3X ULN
	×.	
	A	

Simulated DILI responses in human SimPop[™] (n=331) administered 200, 400, or 600 mg/day TGZ for 6 months

Bile Acid Transport Inhibition Alone Predicted TGZ Hepatotoxicity in Human SimPops[™]

HUMAN

Simulation Results

	Simul	Clinical Trials	
	TGZ	TGZ	TGZ
	400 mg	600 mg	200 – 600 mg
	(n=331)	(n=331)	(n=2510)
ALT > 3X ULN (%) *	2.4	4.2	1.9
ALT > 5X ULN (%) *	1.2	3.0	1.7
ALT > 8X ULN (%) *	0.9	2.4	0.9
ALT > 30X ULN (%) *	0	0.3	0.2
Bili > 2X (%)	0.9	3.0	N/A
Jaundice (%)	N/A	N/A	0.08
Hy's law (%)	0.9	3.0	N/A

*ULN = 34 in the clinical trials N/A, not available

Simulation Results & Clinical Data

21

Simulated DILI responses in human SimPop[™] (n=331) administered 200, 400, or 600 mg/day TGZ for 6 months

Watkins and Whitcomb (1998) NEJM; Yang et al. in preparation

Bile Acid Transport Inhibition Alone Predicted TGZ Hepatotoxicity in Human SimPops[™]

HUMAN Simulation Results **Simulations** Clinical **Trials** TGZ TGZ TGZ 400 mg 600 ma 200 - 600 mg(n=331) (n=331)(n=2510) ALT > 3X ULN (%) * 2.4 4.2 1.9 ALT > 5X ULN (%) * 1.2 3.0 1.7 ALT > 8X ULN (%) * 0.9 2.4 0.9 $ALT > 30X ULN (\%)^*$ 0.3 0.2 0 Bili > 2X (%) 0.9 3.0 N/A **Jaundice (%)** N/A N/A 0.08 Hy's law (%) 0.9 N/A 3.0 14 individuals with ALT>3X *ULN = 34 in the clinical trials Simulation Results & in simulation of 600 mg TGZ N/A, not available Clinical Data

Simulated DILI responses in human SimPopTM (n=331) administered 200, 400, or 600 mg/day TGZ for 6 months

21

Watkins and Whitcomb (1998) NEJM; Yang et al. in preparation

CHOOL OF PHARMACY

Mechanistic Model Reasonably Predicted Delayed Presentation of TGZ Hepatotoxicity

HUMAN

Simulation Results

30X ULN

3X ULN

Yang et al. in preparation

Mechanistic Model Reasonably Predicted Delayed Presentation of TGZ Hepatotoxicity

HUMAN

Simulation Results

Time to peak ALT

- Simulated: 110 ± 62 days
- Clinical Trials: 147 ± 86 days

30X ULN

3X ULN

Serum ALT

22

Yang et al. in preparation

TGZ absorption **TGZ** hepatic uptake **TGZ** metabolism **TS** biliary clearance Bile acid biliary excretion Bile acid basolateral efflux **Bile acid hepatic uptake Bile acid amidation Bile acid sulfation FXR-mediated** feedback regulation Body weight ↑ LCA synthesis in the intestinal lumen

TGZ absorption **TGZ** hepatic uptake **TGZ** metabolism **TS biliary clearance** Bile acid biliary excretion Bile acid basolateral efflux **Bile acid hepatic uptake Bile acid amidation Bile acid sulfation FXR-mediated** feedback regulation Body weight ↑ LCA synthesis in the intestinal lumen

TGZ absorption **TGZ** hepatic uptake **TGZ** metabolism **TS** biliary clearance Bile acid biliary excretion Bile acid basolateral efflux **Bile acid hepatic uptake Bile acid amidation Bile acid sulfation FXR-mediated** feedback regulation Body weight LCA synthesis in the intestinal lumen

23

Species Difference in TGZ Hepatotoxicity Predicted

HUMAN

SCHOOL OF PHARMACY

RAT

ALT (U/L)

Serum

Maximum

т (U/L)			
Serum AL			
Maximum			
liver)			
r TS (mg/g			
um Live			
laxim			

CHOOL OF PHARMACY

HUMAN

Maximum Liver TS (mg/g liver)

No hepatotoxicity observed in rat SimPops[™]

Hepatic TS concentrations were comparable in human and rat SimPops[™]

RAT

CDCA and LCA (μ M)

Maximum Serum ALT (U/L)		Maximum Serum ALT (U/L)
Maximum Hepatic CDCA and LCA (µM)		Maximum Hepatic

CHOOL OF PHARMACY

HUMAN

No hepatotoxicity observed in rat SimPops[™]

Hepatic toxic bile acid concentrations were lower in rat compared to human SimPops™

24

Conclusions and Perspectives

- Incidence and delayed presentation of TGZ hepatotoxicity was predicted in humans by TGZ-mediated bile acid transport inhibition alone
- Mechanistic modeling incorporating species-specific bile acid and TGZ disposition correctly predicted species differences in TGZ hepatotoxicity
- Mechanistic modeling incorporating data generated from human-derived *in vitro* systems could provide a framework for more accurate prediction of altered bile acid disposition and subsequent DILI risk in humans

Acknowledgements

Cleveland BioLabs The Hamner Institutes for Health Sciences Sponsored work on Entolimod AMGEN Allowed the ____ GILEAD MERCK presentation of the materials Mitsubishi Tanabe Pharma AstraZeneca gs **DILI-sim members** janssen 🗾 DILIsym® **Bristol-Myers Squibb** Dr. Kim Brouwer and Otsuka SANOFI Dr. Kyunghee Yang abbvie Takeda

(UNC)

Be well

GlaxoSmithKline