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Goals of DILI-sim and Intended
Applications of DILIsym®

DILI-sim Stage 1 goals:

» Develop DILIsym® software to better inform safety decisions Preclinical
within early portion of drug development pipeline @
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Goals of DILI-sim and Intended
Applications of DILIsym®

DILI-sim Stage 1 goals:
» Develop DILIsym® software to better inform safety decisions
within early portion of drug development pipeline
— 3year cycle 2012-2014
— Invitro to in vivo
— Preclinical to first-in-human
— Biomarker interpretation
— Invitro, in vivo, and/or clinical data as inputs

Preclinical

DILI-sim Stage 2 goals: First in Human

» Develop DILIsym® software to better inform safety decisions Clinical Trials K-
extending through late phases of drug development pipeline . 2
— 3year cycle 2015-2017 : Rl e
— Phase Il and Il clinical trials T e

— Biomarker interpretation
— Inter-patient variability (with SimPops™)
— Invitro, in vivo, and clinical data as inputs

Phase I/l
Clinical Trials and
Post-Market
Surveillance
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DILI-sim Stage 1 goals:
» Develop DILIsym® software to better inform safety decisions
within early portion of drug development pipeline
— 3year cycle 2012-2014
— Invitro to in vivo
— Preclinical to first-in-human
— Biomarker interpretation
— Invitro, in vivo, and/or clinical data as inputs

Preclinical

DILI-sim Stage 2 goals: First in Human

« Develop DILIsym® software to better inform safety decisions Clinical Trials K-
extending through late phases of drug development pipeline 3
— 3 year cycle 2015-2017 " et okl e
— Phase Il and Il clinical trials T e

— Biomarker interpretation
— Inter-patient variability (with SimPops™)
— Invitro, in vivo, and clinical data as inputs

Intended applications: | Phase |‘|/|”||
« Predictions of hepatotoxicity risk for humans and preclinical CJinical Trials and

animal models Post-Market
* Enhanced understanding of elements contributing to Surveillance

observed liver signals in clinical trials
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'‘Middle Out' and Multi-Scale

Kuepfer 2010, Molecular Systems Biology
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DILIsym®: 'Middle Out' and Multi-Scale

Cellular life-cycle

Whole-body

Population

Kuepfer 2010, Molecular Systems Biology
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DILIsym®: 'Middle Out' and Multi-Scale

Mitochondrial dysfunction
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DILIsym®: 'Middle Out' and Multi-Scale
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DILIsym®: 'Middle Out' and Multi-Scale

Mitochondrial dysfunction
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DILIsym® Overview

* Multiple species: human,

rat, mouse, and dog
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DILIsym® Overview

* Multiple species: human,
rat, mouse, and dog
- Population variability

e The three primary acinar
zones of liver represented

* Essential processes
represented to multiple
scales in interacting sub-

models

[ Drug Metabolism and Dlstrlbutlon

Unconjugated
Reactive Metabolite

[ GSH Depletion and Recovery ]

|

Mitochondria Dystunction
and Toxicity

v\

DILIsym®

Blomarkers

[ Hepatocyte Life Cycle ]

)

[ Innate Immune Response ]
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Key Areas for DILIsym® Data Inputs and
Simulation Results Comparators
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Key Areas for DILIsym® Data Inputs and
Simulation Results Comparators

Proposed
Hepatotoxicity Biomarkers
Mechanism

Drug Absorption Drug

and Distribution Metabolism

e —

Unconjugated
Reactive Metabolite

[ Drug Metabolism and Distribution

—

[ GSH Depletion and Recovery

BSEP, NTCP, MRP Ki
OCR, A¥m
ROS/RNS increases

Mitochondria Dysftunction

dT - =
Intracellular Bile Acids ana joxic

GSH depletion, adduct
formation

ATP depletion
Apoptosis vs necrosis

[ Hepatocyte Life Cycle ]
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Examples of DILIsym® Applications
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Entolimod (Cleveland BiolLabs)
Project Objectives

« Entolimod (single dose) reduces radiation mortality by 40%

— Satisfies FDA's animal rule for efficacy

Howell, B. A., et al. (2014). A Mechanistic Model of Drug-Induced Liver Injury Aids the Interpretation of Elevated
Liver Transaminase Levels in a Phase | Clinical Trial. CPT Pharmacometrics Syst Pharmacol 3: e98.

e
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Entolimod (Cleveland BiolLabs)
Project Objectives

« Entolimod (single dose) reduces radiation mortality by 40%

— Satisfies FDA's animal rule for efficacy

e Clinical Concern
— ALT/AST elevations observed in human safety study

— Continued development threatened

Howell, B. A., et al. (2014). A Mechanistic Model of Drug-Induced Liver Injury Aids the Interpretation of Elevated
Liver Transaminase Levels in a Phase | Clinical Trial. CPT Pharmacometrics Syst Pharmacol 3: e98.
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Entolimod (Cleveland BioLabs)
Project Objectives

« Entolimod (single dose) reduces radiation mortality by 40%

— Satisfies FDA's animal rule for efficacy

e Clinical Concern
— ALT/AST elevations observed in human safety study

— Continued development threatened

* Primary Objective

— Use DILIsym® to infer the amount of hepatocyte necrosis necessary
to achieve the ALT profiles observed after Entolimod

Howell, B. A., et al. (2014). A Mechanistic Model of Drug-Induced Liver Injury Aids the Interpretation of Elevated
Liver Transaminase Levels in a Phase | Clinical Trial. CPT Pharmacometrics Syst Pharmacol 3: e98.
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DILIsym® Overview

* Multiple species: human,
rat, mouse, and dog
- Population variability

e The three primary acinar
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DILIsym® Overview

* Multiple species: human,
rat, mouse, and dog |
- Population variability i) ‘_/

e The three primary acinar
zones of liver represented

[ Drug Metabolism and Dlstrlbutlon

* Essential processes
. Unconjugated

represented to multiple K‘>—> Remivem.ataboute]
scales in interacting sub- ((GsH Depletion and Recovery ] 1

mo d eI S [ Mitochondria Dystunction

— Hepatocyte life Cvcle [ Intracellular Bile Acids ] and Toxicity

— Biomarkers

[ Hepatocyte Life Cycle ]

e Immune Response ]

= THE UNIVERSITY 10
||| of NORTH CAROLINA
LIRS at CHAPEL HILI




Baseline Human Simulations Indicate
Minimal Hepatocyte Loss with Entolimod
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Baseline Human Simulations Indicate
Minimal Hepatocyte Loss with Entolimod
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Baseline Human Simulations Indicate
Minimal Hepatocyte Loss with Entolimod

e ALT clinical data

— Mostly minor elevations
— Few higher elevations

 Focused on max, 95th
percentile, and median
ALT levels

Clinical Data and
Simulation Results
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Baseline Human Simulations Indicate
Minimal Hepatocyte Loss with Entolimod

e ALT clinical data

— Mostly minor elevations
— Few higher elevations

 Focused on max, 95th
percentile, and median
ALT levels

e Simulations agree with
ALT clinical data by
design

Clinical Data and
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Baseline Human Simulations Indicate
Minimal Hepatocyte Loss with Entolimod

e ALT clinical data

— Mostly minor elevations
— Few higher elevations

 Focused on max, 95th
percentile, and median

ALT levels

e Simulations agree with
ALT clinical data by

design

* Minimal hepatocyte

inferred from ALT

profiles

Clinical Data and
Simulation Results

e

Percent of Hepatocytes Lost
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Max 95th_ Median ALT profiles and hepatocyte
Volunteer Percentile Volunteer loss predictions
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Minimal Range of Hepatocyte Loss Predicted for
Entolimod Using Population Sample
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Minimal Range of Hepatocyte Loss Predicted for
Entolimod Using Population Sample
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Project Summary

Analyses indicate that volunteers with ALT elevations following
Entolimod administration likely incurred hepatocyte losses of <5%

The liver should have completely recovered in 2-9 weeks

Literature review and modeling heparin-induced ALT profiles support
the conclusion that the potential hepatocyte loss occurring in the
Entolimod clinical trial did not represent a serious health threat

DILIsym® simulation results were submitted to the FDA in support of
the safety of Entolimod

13




Examples of DILIsym® Applications
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Modeling for Susceptibility Factors:
The Case Study with Troglitazone
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Troglitazone (TGZ) WOM

%

Troglitazone

» First in thiazolidinedione class; PPARYy agonist
- Reduces hepatic and peripheral insulin resistance
- Approved for the treatment of type Il diabetes
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» First in thiazolidinedione class; PPARYy agonist

- Reduces hepatic and peripheral insulin resistance
- Approved for the treatment of type Il diabetes

» Hepatotoxicity

- Hepatotoxicity was not detected in preclinical studies

- 2% of patients developed ALT elevations >3X ULN in clinical trials
- Withdrawn from the market due to idiosyncratic hepatotoxicity
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Troglitazone (TGZ) m OM

Troglitazone

» First in thiazolidinedione class; PPARYy agonist

- Reduces hepatic and peripheral insulin resistance
- Approved for the treatment of type Il diabetes

» Hepatotoxicity

- Hepatotoxicity was not detected in preclinical studies
- 2% of patients developed ALT elevations >3X ULN in clinical trials
- Withdrawn from the market due to idiosyncratic hepatotoxicity

» Mechanisms of hepatotoxicity remain unclear
Mitochondrial dysfunction

Induction of apoptosis

Formation of reactive metabolite(s)

Impaired bile acid transport




DILIsym® Overview

* Multiple species: human,
rat, mouse, and dog
- Population variability

e The three primary acinar
zones of liver represented

* Essential processes
represented to multiple
scales in interacting sub-

models
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DILIsym® Overview

* Multiple species: human,
rat, mouse, and dog
- Population variability

e The three primary acinar
zones of liver represented

* Essential processes
represented to multiple
scales in interacting sub-
models

— ADME

— Bile acid homeostasis
— Hepatocyte life cycle
— Biomarkers

e

Unconjugated
Reactive Metabolite
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Mechanisms of DILI: Transport Protein-
Mediated Bile Acid-Drug Interaction

Blood flow .
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~ - _J

BSEP (Bile Salt Export Pump); 18
NTCP (Sodium-Taurocholate Cotransporting Polypeptide);

MRP (Multidrug Resistance—Associated Protein);

OST (Organic Solute Transporter)
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MRP (Multidrug Resistance—Associated Protein); . .
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Mechanisms of DILI: Transport Protein-
Mediated Bile Acid-Drug Interaction

Hepatotoxicity f
Bile
Acids

Ry

Blood flow >

N

\—

BSEP (Bile Salt Export Pump);
NTCP (Sodium-Taurocholate Cotransporting Polypeptide);

A
18
; ! : . @ TGZ: troglitazone
MRP (Multidrug Resistance—Associated Protein);

OST (Organic Solute Transporter) TS: troglitazone sulfate
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Construction of Human Sample Population (SimPops™)
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[ Drug PBPK Model ]v- -

\Bile Acid Transport Inhibition
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Bile Acid \
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Cellular ATP Model :II

\ncreased Cell Death Rate /

[Hepatocyte Life Cycle
Model

Yang et al. in preparation; Woodhead et al. CPT:PSP, in revision
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Construction of Human Sample Population (SimPops™)

Model Input
Variation » TGZ intestinal absorption

[ Drug PBPK Model } \/&\ bt

» TGZ sulfate biliary clearance

1 10
\Bile Acid Transport Inhibition

N\
- - Model Input * Bile acid uptake
[ Bile Acid ]‘ Variation \ « Bile acid biliary excretion
. - ‘ { i! \ - Bile acid basolateral efflux
HomeOStaSIS MOdeI - \ \‘ » LCA synthesis in the intestine
» Bile acid amidation
cpeas ) 1
\nhlbltlon of ATP 1 N : * FXR-mediated regulation
N
Vo
Cellular ATP Model :I'
/4
/

Increased Cell Death Rate /

[Hepatocyte Life Cycle
Model

Yang et al. in preparation; Woodhead et al. CPT:PSP, in revision




Bile Acid Transport Inhibition Alone Predicted
TGZ Hepatotoxicity in Human SimPops™

m Simulation Results

30X ULN

3X ULN

Maximum Serum ALT (U/L)

Simulated DILI responses in human SimPop™ (n=331)

administered 200, 400, or 600 mg/day TGZ for 6 months 20
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Bile Acid Transport Inhibition Alone Predicted
TGZ Hepatotoxicity in Human SimPops™

m Simulation Results

Simulations Clinical
Trials
TGZ TGZ TGZ

400 mg 600 mg 200 - 600 mg
(n=331) (n=331) (n=2510)
ALT > 3X ULN (%) " 2.4 4.2 1.9

ALT >5X ULN (%) " 1.2 3.0 1.7

ALT > 8X ULN (%) * 0.9 2.4 0.9

ALT > 30X ULN (%) * 0 0.3 0.2

Bili > 2X (%) 0.9 3.0 N/A
Jaundice (%) N/A N/A 0.08
Hy’s law (%) 0.9 3.0 N/A

*ULN = 34 in the clinical trials
N/A, not available

Maximum Serum ALT (U/L)

Simulation Results &
Clinical Data

Simulated DILI responses in human SimPop™ (n=331)
administered 200, 400, or 600 mg/day TGZ for 6 months 21

Watkins and Whitcomb (1998) NEJM; Yang et al. in preparation
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Bile Acid Transport Inhibition Alone Predicted
TGZ Hepatotoxicity in Human SimPops™

m Simulation Results

Simulations
~ Trials
) TGZ TGZ
5 - 400 mg 200 — 600 mg
£ (n=331) (n=2510)
2.4 - 1.9
: 1.2 3.0 1.7
e 0.9 2.4 0.9
0 0.3 0.2
0.9 3.0 N/A
N/A N/A 0.08
0.9 3.0 N/A
14 individuals with ALT>3X *ULN = 34 in the clinical trials . .
. . . . Simulation Results &
in simulation of 600 mg TGZ N/A, not available Clinical Data
Simulated DILI responses in human SimPop™ (n=331)
administered 200, 400, or 600 mg/day TGZ for 6 months 21

Watkins and Whitcomb (1998) NEJM; Yang et al. in preparation
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Mechanistic Model Reasonably Predicted
Delayed Presentation of TGZ Hepatotoxicity

m Simulation Results

Time to peak ALT
- Simulated: 110 £ 62 days
- Clinical Trials: 147 + 86 days

30X ULN

3X ULN

Serum ALT (U/L)

Serum ALT 22
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Species Difference in TGZ Hepatotoxicity Predicted
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No hepatotoxicity observed
in rat SimPops™
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Species Difference in TGZ Hepatotoxicity Predicted

No hepatotoxicity observed
in rat SimPops™

Maximum Serum ALT (U/L)
Maximum Serum ALT (U/L)

Hepatic TS concentrations
were comparable in
human and rat SimPops™

Maximum Liver TS (mg/g liver)
Maximum Liver TS (mg/g liver)
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Hepatic toxic bile acid
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Conclusions and Perspectives

* Incidence and delayed presentation of TGZ hepatotoxicity
was predicted in humans by TGZ-mediated bile acid
transport inhibition alone

« Mechanistic modeling incorporating species-specific
bile acid and TGZ disposition correctly predicted
species differences in TGZ hepatotoxicity

 Mechanistic modeling incorporating data generated from
human-derived in vitro systems could provide a framework
for more accurate prediction of altered bile acid disposition

and subsequent DILI risk in humans
25
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