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Matrix Completion

» A€ R"*"is (close to) a symmetric rank-k matrix, with
singular values 01 > 09 > - -+ > 0.
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Matrix Completion

uT Pk

» A€ R"*"is (close to) a symmetric rank-k matrix, with
singular values 01 > 09 > - -+ > 0.

» See m entries, Q C [n] x [n] of A.
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Matrix Completion

uT Pk

» A€ R"*"is (close to) a symmetric rank-k matrix, with
singular values 01 > 09 > - -+ > 0.

» See m entries, Q C [n] x [n] of A.

> Goal(s):
» Recover A so that HA - 2\” <e| A+ |IN]|.
» Recover U, so that sin 9(0, U)<e.

» Would like: m =~ kn, fast algorithm, provable guarantees.
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Algorithms that guarantee recovery

» Convex programming:
[Candes-Recht '09, Candés-Tao '10, Recht et al. '10, Recht '11...].

» Exact recovery
» m = O(nk), Running time= Q(n?).
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Algorithms that guarantee recovery

» Convex programming:
[Candes-Recht '09, Candés-Tao '10, Recht et al. '10, Recht '11...].

» Exact recovery
» m = O(nk), Running time= Q(n?).
» Alternating Minimization:
[Keshavan '12, Jain et al. '13, Hardt '13].
» Approximate (£) recovery

2
» m=Q <nk3 (Z—i) Iog(l/a)), running time = mpoly(k).
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Algorithms that guarantee recovery

» Convex programming:
[Candes-Recht '09, Candés-Tao '10, Recht et al. '10, Recht '11...].

» Exact recovery
» m = O(nk), Running time= Q(n?).
» Alternating Minimization:
[Keshavan '12, Jain et al. '13, Hardt '13].
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Other fast algorithms

> (Online) Frank-Wolfe, (Stochastic) Gradient Descent, ...

[Mazumder et al. '10, Jaggi-Sulovsky '10, Avron et al. '12, Hazan-Kale '12,
Recht-Re '13, Hsieh-Olsen '14]
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Other fast algorithms

> (Online) Frank-Wolfe, (Stochastic) Gradient Descent, ...
[Mazumder et al. '10, Jaggi-Sulovsky '10, Avron et al. '12, Hazan-Kale '12,
Recht-Re '13, Hsieh-Olsen '14]

> Generally guarantee:

> error on observed entries is small: H(A — A)QH <e.

F

» sample/time complexity like 1/ (rather than log(1/¢)).
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Other fast algorithms

> (Online) Frank-Wolfe, (Stochastic) Gradient Descent, ...
[Mazumder et al. '10, Jaggi-Sulovsky '10, Avron et al. '12, Hazan-Kale '12,
Recht-Re '13, Hsieh-Olsen '14]

> Generally guarantee:

» error on observed entries is small: ||[(A— A)q

<e.
F

* Does not imply the sort of reconstruction we're after
» sample/time complexity like 1/ (rather than log(1/¢)).
* |f we want to recover U, this is 1/0%.
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Either slow or ill-conditioned

» Existing work either
is slow: Running time Q(n?)
—57—
depends polynomially on the condition number:

m_9<n.k.(z_i)2>.
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Either slow or ill-conditioned

» Existing work either
is slow: Running time Q(n?)
—57—
depends polynomially on the condition number:

2
m—Q<n-k- <ﬂ> )
Ok
» This work: a variant of Alternating Minimization that
is fast: Running time is O (poly(k)m)

—and-
depends logarithmically on the condition number:

m—é(n-kc-log<#))
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Alternating Minimization

Alternating Minimization:
> Fix U, find V to minimize [|(A— UV T)q|
> Fix V find U to minimize [|(A— UVT)o|
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Alternating Minimization

Alternating Minimization:
> Fix U, find V to minimize [|(A— UV T)q||%
> Fix V find U to minimize [|(A— UVT)g7
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Alternating Minimization

Alternating Minimization:
> Fix U, find V to minimize [|(A— UV T)q||%
> Fix V find U to minimize ||(A — UV T)q||%
Stop after about log(1/¢) steps.
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Why the condition number?
» Typically, AM is initialized by taking the SVD of Agq.
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Why the condition number?
» Typically, AM is initialized by taking the SVD of Agq.

» To prove AM converges, need to start “close enough.”
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Why the condition number?
» Typically, AM is initialized by taking the SVD of Agq.

» To prove AM converges, need to start “close enough.”

» In practice, there is some effect of initialization.
(Although AM does usually eventually converge from a random start.)
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Why the condition number?
» Typically, AM is initialized by taking the SVD of Agq.

» To prove AM converges, need to start “close enough.”

» In practice, there is some effect of initialization.
(Although AM does usually eventually converge from a random start.)

Random Init. vs SVD Init. on random 1000x1000 rank 6 matrix with spectrum [1,1,1,1,1,1]

sine of principal angle

10°4

--Random Initialization
-+-SVD Initialization

107

Random initialization.

(Sine of principal
angle between U and

U over time) SVD initialization.

Iteration
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SVD depends on the condition number

» Suppose o1 > 05.
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SVD depends on the condition number

» Suppose o1 > 05.

2
» To approximate [U;|Us] via SVD, need |Q| = (%) kn samples.

» That depends on the condition number.
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SVD depends on the condition number

» Suppose o1 > 05.

2
» To approximate [U;|Us] via SVD, need |Q| = (%) kn samples.

» That depends on the condition number.

» To approximate U; via SVD, need |Q] < kn samples.
» U, may as well have not been initialized: same problem as before.
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First try: Deflation

Say the spectrum of A is [01, 01,01, 02,02, 02,03, 03,03, ...], with associated subspaces

spanned by Ui, Uz, Us. ..

» Estimate Uy, &1 using SVD-initialized AM (m ~ kn).

» Subtract off U;%; 01T.

Uy

U

Us

>

2>
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Say the spectrum of A is [01, 01,01, 02,02, 02,03, 03,03, ...], with associated subspaces

spanned by Ui, Uz, Us. ..

» Estimate Uy, &1 using SVD-initialized AM (m ~ kn).

P T
» Subtract off UyX1U; .
Y Ul
i T
Us =+ o U,
=
U | Us s Us
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First try: Deflation

Say the spectrum of A is [01, 01,01, 02,02, 02,03, 03,03, ...], with associated subspaces
spanned by Ui, Uz, Us. ..

» Estimate Uy, & using SVD-initialized AM (m = kn).
» Subtract off UsX> UZT.

A

$1 i

3, oy

s ur

Us
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First try: Deflation

Say the spectrum of A is [01, 01,01, 02,02, 02,03, 03,03, ...], with associated subspaces

spanned by Ui, Uz, Us. ..

Etc...
> Ul
= pyes
22 U2
U; +
Us +
¥ LiE
Us g 3
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Deflation doesn't work

Say the spectrum of A 'is [01, 01,01, 02,02,02,03,03,03, . ..], with associated subspaces
spanned by Ui, Uz, Us. ..

What actually happens:
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Deflation doesn't work

Say the spectrum of A is [01, 01,01, 02,02, 02,03, 03,03, ...], with associated subspaces

spanned by Ui, Uz, Us. ..

» Estimate Uy, &1 using SVD-initialized AM (m ~ kn).

PSS .
» Subtract off U;X1U; : error is on the order of 0.

Uy

U

Us

2

u’

uf

Y3

Ui
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Deflation doesn't work
Say the spectrum of A 'is [01, 01,01, 02,02,02,03,03,03, . ..], with associated subspaces
spanned by Ui, Uz, Us. ..

» Estimate Uy, & using SVD-initialized AM (m ~ kn).

P .
» Subtract off U;X1U; : error is on the order of 0.

=

o = = =

= HAR
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Deflation doesn't work

Say the spectrum of A 'is [01, 01,01, 02,02,02,03,03,03, . ..], with associated subspaces
spanned by Ui, Uz, Us. ..
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Instead: Soft Deflation

Say the spectrum of A is [01, 01,01, 02,02, 02,03, 03,03, ...], with associated subspaces
spanned by Ui, Uz, Us. ..

» Use SVD on Ag to form initial guess Ul for Uy.
» Run AM starting from {; to get A; = leleT ~ Uz Uy
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Instead: Soft Deflation

Say the spectrum of A is [01, 01,01, 02,02, 02,03, 03,03, ...], with associated subspaces
spanned by Ui, Uz, Us. ..

» Use SVD on Ag to form initial guess (All for Uy.
» Run AM starting from Ul to get A; = Xl}ileT ~ UiYq UlT.
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Instead: Soft Deflation

Say the spectrum of A is [01, 01,01, 02,02, 02,03, 03,03, ...], with associated subspaces

o1 sin 9(01, Ul) ~ 0'1/10

spanned by Ui, Uz, Us. ..
[01 sin e(X1, U1) ~ 0'2/10

» Use SVD on Ag to form initial guess 01 for Uy.
» Run AM starting from U; to get A; = X;31X” ~ Ut X U] .
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Instead: Soft Deflation

Say the spectrum of A is [01, 01,01, 02,02, 02,03, 03,03, ...], with associated subspaces

o1 sin 9(01, Ul) ~ 0'1/10

spanned by Ui, Uz, Us. ..
[01 sin @(X17 U1) ~ 0'2/10

» Use SVD on Ag to form initial guess lAJl for U;.
» Run AM starting from U; to get A; = X;31X” ~ Ut X U] .

» Use SVD on (A — Aj)q to guess Us for Us.
> Run AM from [X;|0h] to get Ay = Xo30 X, .

] %
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Instead: Soft Deflation

Say the spectrum of A is [01, 01,01, 02,02, 02,03, 03,03, ...], with associated subspaces

spanned by Ui, Uz, Us. .. =
‘ ol ? : O'15in e(Ul,Ul) NO’l/lO
o1 sin e(X1, U1) ~ 0'2/10

» Use SVD on Ag to form initial guess Ul for Uy.
» Run AM starting from {; to get A; = xlilx{ ~ Uz Uy

» Use SVD on (A — A;)q to guess Us for Us.
> Run AM from [X;|0h] to get Ay = Xo30 X, .
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Instead: Soft Deflation

Say the spectrum of A is [01, 01,01, 02,02, 02,03, 03,03, ...], with associated subspaces
spanned by Ui, Uz, Us. .. - S
[0'1 sSin G(Ul, Ul) ~ 0'1/10
» Use SVD on Agq to form initial guess U for U;. e S ek

» Run AM starting from {; to get A; = leleT ~ Uz Uy

» Use SVD on (A — A)q to guess U for Us. [Uz sin©(0h, Uy) ~ 02/10
> Run AM from [X;|(h] to get Ay = Xo3oX,) . (925N O(X, V) ~ 03/10
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Instead: Soft Deflation

Say the spectrum of A is [01, 01,01, 02,02, 02,03, 03,03, ...], with associated subspaces

o1 sin 9(01, Ul) ~ 0'1/10

spanned by Ui, Uz, Us. ..
[0'1 sin @(X1, U1) ~ 0'2/10

» Use SVD on Ag to form initial guess Ul for Uy.
» Run AM starting from {; to get A; = leleT ~ Uz Uy

v

Use SVD on (A — Ay)q to guess Uy for Us. [02 sin©(0h, Uy) ~ 02/10
Run AM from [X;|0h] to get Ay = XoXoX,[. [ o28in©(Xe, Ua) ~ 03/10

v

Use SVD on (A — Az)q to form initial guess Us for Us.
Run AM starting from [X2|U3] to get A3z = X3ZA3X3T.

v

v
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Instead: Soft Deflation

Say the spectrum of A is [01, 01, 01,02,02,02,03,03,03,...], with associated subspaces

o1 sin @(01, Ul) ~ 0'1/10

spanned by Ui, Uz, Us. ..
[01 sin @(X1, U1) ~ 0'2/10

» Use SVD on Ag to form initial guess 01 for U;.
» Run AM starting from U; to get A; = X;31X” ~ Ut X U] .

v

Use SVD on (A — A;)q to guess Uy for Us. [02 sin©(0h, Uy) ~ 02/10
Run AM from [X;|0h] to get Ay = XoXo X, . [ 925in©(Xe, Uz) ~ 05/10

v

v

Use SVD on (A — Az)q to form initial guess U3 for Us.
Run AM starting from [Xz| Us] to get A3 = X333X .

v

P X3

>
Q

X3
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Theorem (Exact)
Suppose

» Each entry in Q is included independently with probability p
> A is incoherent

» A= UVT is exactly rank k.

There is some
o
m < nklog —1
ok + €01

so that if E|Q| = pn® > m, then SoftDeflate returns X, Y so that

A= XY <Al
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Theorem (Noisy)
Suppose

> Each entry in Q is included independently with probability p
> A is incoherent

» A=UVT + N.

There is some
2% o VN2
mf,n(—) Iog( s )<1+< F))
YTk ok t+ €01 €01

so that if E|Q| = pn® > m, then SoftDeflate returns X, Y so that

[A=XY[ <ellAl + (1 + o(1)) [ N]-
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Theorem (Noisy)
Suppose

> Each entry in Q is included independently with probability p
> A is incoherent

» A=UVT + N.

There is some

K\ (o ARY
mf,n(—) Iog( s )<1+< F))
YTk ok t+ €01 €01

so that if E|Q| = pn® > m, then SoftDeflate returns X, Y so that

[A=XY[ <ellAl + (1 + o(1)) [ N]-

,Yk.zl_&: 1 N=0 ]
big [N = ok
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Some pictures
Comparing SOFTDEFLATE to FW, SVD

Comparison of SoftDeflate with FW and SVD: n=10K, k=3, average of 10 trials
Error (Frobenius norm)

D ——
ol © o ° o —
6.

=eSoftDeflate, M=300K, [1
102} [eeSoftDeflate, M=300K, [1
ooSoftDeflate, M=300K, [1
eeFW, eps=0.05, [111]
ooFW, eps=0.05, [1,1,.1]
eeFW, eps=0.05, [1,1,.01]
=eSVD, [1,1,1]
0oSVD, [1,1,.1]
+SVD, [1,1,.01]

10° F

i Meast -

L L L
1.5e6 2e6 2.5e6 3e6
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Some pictures
Comparing SOFTDEFLATE to FW, SVD

Comparison of SoftDeflate with FW and SVD: n=10K, k=3, average of 10 trials
Error (Sine(U, X))

10°- w > -— o o —-———3

107}

=*SoftDeflate, M=300K, [
leeSoftDeflate, M=300K, [
o oSoftDeflate, M=300K, [
oeFW, eps=0.05, [1,1,1]
loeFW, eps=0.05, [1,1,.1]
>eFW, eps=0.05, [1,1, 01
5| [eeSVD, [1,1,1]
10°F fosyD, [11..1]
=+SVD, [1,1,.01]

) Meast m

L L L
1.5e6 2e6 2.5e6 3e6
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Summary

» New “Soft Deflation” variant of Alternating Minimization

> Fast:
runtime linear in n

» Works on ill-conditioned matrices:
sample and time complexity is logarithmic in o1 /0.
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Summary

v

New “Soft Deflation” variant of Alternating Minimization

> Fast:
runtime linear in n

Works on ill-conditioned matrices:
sample and time complexity is logarithmic in o1 /0.

v

v

Open Questions:
» How badly does Alternating Minimization itself actually depend on the
condition number? On a “typical” matrix?
» (How much) can you reduce the power k in our analysis?
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The end

Thanks!
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Under the rug

v

How do we know where the “gaps” are?

» Use a good enough approximation to detect this with the SVD.
The gaps could be pretty small.

» Ifoifoiy1=(1— 1/\/?) then o1 /0y =~ eV is still big.

» This makes us pay extra factor(s) of k.

v

Need to ensure incoherence between the iterations.
» Carefully truncate entry-wise before/after SVD.

v

v

Need to ensure incoherence during Alternating Minimization.

» Borrow from [Hardt'13]: Add some noise to “smooth” AM, and take
some medians to control outliers.

Mary Wootters (UMich — CMU) Fast Matrix Completion COLT 2014 1/7




Is SoftDeflate better than AM in practice?

Plotting all 6 principal angles as the algorithms run

sine of principal angles

Random 1000x1000 matrix with spectrum [1,1,1,.01,.01,.01]
10°¢

107

0

.
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Is SoftDeflate better than AM in practice?

Plotting all 6 principal angles as the algorithms run

sine of principal angles

Random 1000x1000 matrix with spectrum [1,1,1,.01,.01,.01]
10° Gt
10"

106:2

102

--Random Init.
-.SVD Init.

.
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Is SoftDeflate better than AM in practice?

Plotting all 6 principal angles as the algorithms run

Random 1000x1000 matrix with spectrum [1,1,1,.01,.01,.01]
sine of principal angles

10°¢

107

~-Random Init.
+-SVD Init.
-.SoftDeflate
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How does this compare to FW? Or just taking the SVD of
the observations?

Comparison of SoftDeflate with FW and SVD: n=10K, k=3, average of 10 trials

Cnmpansnn of SoftDeflate with FW and SVD: n=10K, k=3, average of 10 trials
Error (Frobenius norm)

Error (SinO(. X))
- S - — 100
wl 8 ) =3

N B

102
[s+SoftDeflate, M=300K, [1,1,1] ¥ [FeSoftDeflate, M=300K, [1,1,1]
107} foeSoftDeflate, M=300K; [1.1,.1] . peSoftDeflate, K, [11,.1]
losSoftDeflate, M=300K, [1,1,.01] oSoftDeflate, K, [11,:01]
FW, eps=0.05, [1,1,1]
. 1]
.01]
le+SVD; ru 1) w?
100} [2SV0. (11,011
15e6 2e6 2.5e6 3e6 " 15e6 2e6 2.5e6 3e6 "
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Does FW/SVD get better with more observations?

Random 1000 x 1000 matrices with spectra (1,1): 10 trials. Random 1000 x 1000 matrices with spectra (1,1,.01): 10 trials.
Error sn(o(u. ) Error sin(e(,X))

4 10°
10

2
10 g
107
104 -
10°

10°
10°
107 10
109} [seSoftDeflate, M=30K [e«SoftDeflate, M=30K
eps=0.01 S| [eFW, eps=0.01
1 10°F leoFW; eps=0.1

107 [esSVD

2P Chag




What about some of the provable guarantees for, say,
Frank-Wolfe?

» Running time depends on ¢ like 1/¢, not like log(1/¢), so if we want
to recover all of U, need ¢ < oy /o1.
» Convergence guarantees are on observed entries, not on whole matrix.

Frank-Wolfe on random 10Kx10K matrices, average of 5 trials
Error (frobenius)

e+Total error:[1,1,1], m=5M

~—Error on samples:[1,1,1], m=5M
eeTotal error:[1,1,0.1], m=5M

107 ~Error on samples:[1,1,0.1], m=5M

L iteration
25 30 35
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Basic proof idea*
» Maintain the inductive hypothesis

Vi, oisin©(Uj, Xe—1[i]) < — 100

* H|d|ng many details.
o Z|= DaCe
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Basic proof idea*

» Maintain the inductive hypothesis Xe—1 =~ [Ur] -+ |Ue-1].
In particular, A— X;—1Y,";
Vi,o;sin ©(U;, X;-1[1]) < 100 is a good approximation of

the leftovers.

* Hiding many details.
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Basic proof idea*
» Maintain the inductive hypothesis

Vi, oisin©(Uj, Xe—1[i]) < — 100

» Then SVD will find U, so that

Ot sin @(Ut, Ut) S ﬁ
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Xt_]_ ~ [U]_l Sodl B |Ut_1].
In particular, A— X;—1Y,";
is a good approximation of
the leftovers.

* Hiding many details.
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Basic proof idea*

» Maintain the inductive hypothesis Xe—1 =~ [Ur] - - |Up-1].
& In particular, A— X;—1Y,";
Vi,oisin®(U;, Xt—1[i]) < 100 is a good approximation of

the leftovers.

1 associated with U; has a flat
=100 spectrum, we don't pay for the
condition number.

Ot sin @(Ut, Ut)

* Hiding many details.
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Basic proof idea*

» Maintain the inductive hypothesis Xe—1 =~ [Ui] -+ |Ue-1).
& In particular, A— X;—1Y,";
Vi, o;sin ©(U;, Xe—1[i]) < 100 is a good approximation of

the leftovers.

1 associated with U; has a flat
ST spectrum, we don't pay for the
100 ..
condition number.

Ot sin @(Ut, Ut)

» Then AM started at [X;_1| U] will find

orsin®([Ui] - [U], Xe) < ?Jol

* Hiding many details.
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Basic proof idea*

» Maintain the inductive hypothesis Xe—1 =~ [Ui] -+ |Ue-1).
& In particular, A— X;—1Y,";
Vi, o;sin ©(U;, Xe—1[i]) < 100 is a good approximation of

the leftovers.

» Then SVD will find U, so that Since the part of A— X,_1 Y,
1 associated with U; has a flat
o sin ©( U, Ut) L= spectrum, we don't pay for the
100 ..
condition number.
» Then AM started at [X;_1| U] will find AM converges until it
X¢ with “hits" the next part of

the spectrum, g¢41

. (X
orsinO([Uy] - |Ue], Xe) < 1*0+01

* Hiding many details.
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How well does this scale?

SoftDeflate vs. AltMin on random 10Kx10K matrix with spectrum [1,1,1,1,.001,.001,.001,.001], 500K samples per iteration
sine of principal angles

ocooo

Iteration
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