Fast Matrix Completion without the condition number

Moritz Hardt and Mary Wootters

IBM Almaden and University of Michigan -> Carnegie Mellon

COLT 2014

Low rank structure

Of interest:

- ► The original matrix
- ▶ *U*, *V*

▶ $A \in \mathbb{R}^{n \times n}$ is (close to) a symmetric rank-k matrix, with singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_k$.

▶ $A \in \mathbb{R}^{n \times n}$ is (close to) a symmetric rank-k matrix, with singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_k$.

- ▶ $A \in \mathbb{R}^{n \times n}$ is (close to) a symmetric rank-k matrix, with singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_k$.
- ▶ See m entries, $\Omega \subset [n] \times [n]$ of A.

- ▶ $A \in \mathbb{R}^{n \times n}$ is (close to) a symmetric rank-k matrix, with singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_k$.
- ▶ See m entries, $\Omega \subset [n] \times [n]$ of A.
- ► Goal(s):
 - ▶ Recover \hat{A} so that $||A \hat{A}|| \le \varepsilon ||A|| + ||N||$.
 - Recover \hat{U} , so that $\sin \theta(\hat{U}, U) \leq \varepsilon$.
- ▶ Would like: $m \approx kn$, fast algorithm, provable guarantees.

Algorithms that guarantee recovery

► Convex programming:

```
[Candès-Recht '09, Candès-Tao '10, Recht et al. '10, Recht '11...].
```

- Exact recovery
- $m = \tilde{O}(nk)$, Running time= $\Omega(n^2)$.

Algorithms that guarantee recovery

► Convex programming:

[Candès-Recht '09, Candès-Tao '10, Recht et al. '10, Recht '11...].

- ► Exact recovery
- $m = \tilde{O}(nk)$, Running time= $\Omega(n^2)$.

► Alternating Minimization:

[Keshavan '12, Jain et al. '13, Hardt '13].

- Approximate (ε) recovery
- $m = \Omega\left(nk^3\left(\frac{\sigma_1}{\sigma_k}\right)^2\log(1/\varepsilon)\right)$, running time = mpoly(k).

Algorithms that guarantee recovery

► Convex programming:

[Candès-Recht '09, Candès-Tao '10, Recht et al. '10, Recht '11...].

- ► Exact recovery
- $m = \tilde{O}(nk)$, Running time= $\Omega(n^2)$.
- ► Alternating Minimization:

[Keshavan '12, Jain et al. '13, Hardt '13].

- ▶ Approximate (ε) recovery
- $m = \Omega\left(nk^3\left(\frac{\sigma_1}{\sigma_k}\right)^2\log(1/\varepsilon)\right)$, running time = mpoly(k).

► (Online) Frank-Wolfe, (Stochastic) Gradient Descent, ...
[Mazumder et al. '10, Jaggi-Sulovský '10, Avron et al. '12, Hazan-Kale '12, Recht-Re '13, Hsieh-Olsen '14]

► (Online) Frank-Wolfe, (Stochastic) Gradient Descent, ... [Mazumder et al. '10, Jaggi-Sulovský '10, Avron et al. '12, Hazan-Kale '12, Recht-Re '13, Hsieh-Olsen '14]

- ► Generally guarantee:
 - lacktriangledown error on observed entries is small: $\left\|(A-\hat{A})_{\Omega}\right\|_{F}\leq \varepsilon.$
 - sample/time complexity like $1/\varepsilon$ (rather than $\log(1/\varepsilon)$).

- (Online) Frank-Wolfe, (Stochastic) Gradient Descent, ...
 [Mazumder et al. '10, Jaggi-Sulovský '10, Avron et al. '12, Hazan-Kale '12, Recht-Re '13, Hsieh-Olsen '14]
- ► Generally guarantee:
 - error on observed entries is small: $\left\| (A \hat{A})_{\Omega} \right\|_{F} \leq \varepsilon$.
 - ★ Does not imply the sort of reconstruction we're after
 - sample/time complexity like $1/\varepsilon$ (rather than $\log(1/\varepsilon)$).

- (Online) Frank-Wolfe, (Stochastic) Gradient Descent, ...
 [Mazumder et al. '10, Jaggi-Sulovský '10, Avron et al. '12, Hazan-Kale '12, Recht-Re '13, Hsieh-Olsen '14]
- ► Generally guarantee:
 - error on observed entries is small: $\|(A \hat{A})_{\Omega}\|_{F} \leq \varepsilon$.
 - ★ Does not imply the sort of reconstruction we're after
 - ▶ sample/time complexity like $1/\varepsilon$ (rather than $\log(1/\varepsilon)$).
 - ★ If we want to recover U, this is $1/\sigma_k$.

Either slow or ill-conditioned

Existing work either

is slow: Running time
$$\Omega(n^2)$$

-or-

depends polynomially on the condition number:

$$m = \Omega\left(n \cdot k \cdot \left(\frac{\sigma_1}{\sigma_k}\right)^2\right).$$

Either slow or ill-conditioned

Existing work either

is slow: Running time $\Omega(n^2)$

-or-

depends polynomially on the condition number:

$$m = \Omega\left(n \cdot k \cdot \left(\frac{\sigma_1}{\sigma_k}\right)^2\right).$$

► This work: a variant of Alternating Minimization that is fast: Running time is Õ (poly(k)m)

-and-

depends logarithmically on the condition number:

$$m = \tilde{O}\left(n \cdot k^c \cdot \log\left(\frac{\sigma_1}{\sigma_k + \varepsilon \sigma_1}\right)\right)$$

- ► Fix *U*, find *V* to minimize $\|(A UV^T)_{\Omega}\|_F^2$
- ► Fix V find U to minimize $\|(A UV^T)_{\Omega}\|_F^2$

- ► Fix U, find V to minimize $\|(A UV^T)_{\Omega}\|_F^2$
- ► Fix V find U to minimize $\|(A UV^T)_{\Omega}\|_F^2$

- ► Fix U, find V to minimize $\|(A UV^T)_{\Omega}\|_F^2$
- ► Fix V find U to minimize $\|(A UV^T)_{\Omega}\|_F^2$

- ► Fix U, find V to minimize $\|(A UV^T)_{\Omega}\|_F^2$
- ► Fix V find U to minimize $\|(A UV^T)_{\Omega}\|_F^2$

- ► Fix U, find V to minimize $\|(A UV^T)_{\Omega}\|_F^2$
- ► Fix V find U to minimize $\|(A UV^T)_{\Omega}\|_F^2$

- ► Fix U, find V to minimize $\|(A UV^T)_{\Omega}\|_F^2$
- ► Fix V find U to minimize $\|(A UV^T)_{\Omega}\|_F^2$

- ► Fix U, find V to minimize $\|(A UV^T)_{\Omega}\|_F^2$
- ► Fix V find U to minimize $\|(A UV^T)_{\Omega}\|_F^2$

- ► Fix U, find V to minimize $\|(A UV^T)_{\Omega}\|_F^2$
- ► Fix V find U to minimize $\|(A UV^T)_{\Omega}\|_F^2$

- ► Fix U, find V to minimize $\|(A UV^T)_{\Omega}\|_F^2$
- ► Fix V find U to minimize $\|(A UV^T)_{\Omega}\|_F^2$

- ► Fix U, find V to minimize $\|(A UV^T)_{\Omega}\|_F^2$
- ► Fix V find U to minimize $\|(A UV^T)_{\Omega}\|_F^2$

Alternating Minimization:

- ► Fix *U*, find *V* to minimize $\|(A UV^T)_{\Omega}\|_F^2$
- ► Fix V find U to minimize $\|(A UV^T)_{\Omega}\|_F^2$

Stop after about $\log(1/\varepsilon)$ steps.

▶ Typically, AM is initialized by taking the SVD of A_{Ω} .

- ▶ Typically, AM is initialized by taking the SVD of A_{Ω} .
 - ► To prove AM converges, need to start "close enough."

- ▶ Typically, AM is initialized by taking the SVD of A_{Ω} .
 - ▶ To prove AM converges, need to start "close enough."
 - ► In practice, there is some effect of initialization.

 (Although AM does usually eventually converge from a random start.)

- ▶ Typically, AM is initialized by taking the SVD of A_{Ω} .
 - ▶ To prove AM converges, need to start "close enough."
 - ► In practice, there is some effect of initialization.

 (Although AM does usually eventually converge from a random start.)

SVD depends on the condition number

▶ Suppose $\sigma_1 \gg \sigma_2$.

SVD depends on the condition number

▶ Suppose $\sigma_1 \gg \sigma_2$.

- lacksquare To approximate $[U_1|U_2]$ via SVD, need $|\Omega| \eqsim \left(rac{\sigma_1}{\sigma_2}
 ight)^2 kn$ samples.
 - ► That depends on the condition number.

SVD depends on the condition number

▶ Suppose $\sigma_1 \gg \sigma_2$.

- lacktriangle To approximate $[U_1|U_2]$ via SVD, need $|\Omega| \eqsim \left(rac{\sigma_1}{\sigma_2}
 ight)^2 kn$ samples.
 - ► That depends on the condition number.
- ▶ To approximate U_1 via SVD, need $|\Omega| \eqsim kn$ samples.
 - $ightharpoonup U_2$ may as well have not been initialized: same problem as before.

First try: Deflation

Say the spectrum of A is $[\sigma_1, \sigma_1, \sigma_1, \sigma_2, \sigma_2, \sigma_2, \sigma_3, \sigma_3, \sigma_3, \ldots]$, with associated subspaces spanned by $U_1, U_2, U_3 \ldots$

- ▶ Estimate $\hat{U}_1, \hat{\sigma_1}$ using SVD-initialized AM ($m \approx kn$).
- ► Subtract off $\hat{U}_1\hat{\Sigma}_1\hat{U}_1^T$.

First try: Deflation

Say the spectrum of A is $[\sigma_1, \sigma_1, \sigma_1, \sigma_2, \sigma_2, \sigma_2, \sigma_3, \sigma_3, \sigma_3, \dots]$, with associated subspaces spanned by $U_1, U_2, U_3 \dots$

- ▶ Estimate $\hat{U}_1, \hat{\sigma}_1$ using SVD-initialized AM ($m \approx kn$).
- ► Subtract off $\hat{U}_1\hat{\Sigma}_1\hat{U}_1^T$.

First try: Deflation

Say the spectrum of A is $[\sigma_1, \sigma_1, \sigma_1, \sigma_2, \sigma_2, \sigma_2, \sigma_3, \sigma_3, \sigma_3, \ldots]$, with associated subspaces spanned by $U_1, U_2, U_3 \ldots$

- ▶ Estimate \hat{U}_2 , $\hat{\sigma}_2$ using SVD-initialized AM ($m \approx kn$).
- ► Subtract off $\hat{U}_2\hat{\Sigma}_2\hat{U}_2^T$.

First try: Deflation

Say the spectrum of A is $[\sigma_1, \sigma_1, \sigma_1, \sigma_2, \sigma_2, \sigma_2, \sigma_3, \sigma_3, \sigma_3, \dots]$, with associated subspaces spanned by $U_1, U_2, U_3 \dots$

Etc... \hat{U}_{2}^{T} Σ_3 U_3

Say the spectrum of A is $[\sigma_1, \sigma_1, \sigma_1, \sigma_2, \sigma_2, \sigma_2, \sigma_3, \sigma_3, \sigma_3, \dots]$, with associated subspaces spanned by $U_1, U_2, U_3 \dots$

What actually happens:

- ▶ Estimate $\hat{U}_1, \hat{\sigma_1}$ using SVD-initialized AM $(m \approx kn)$.
- ▶ Subtract off $\hat{U}_1\hat{\Sigma}_1\hat{U}_1^T$: error is on the order of σ_2 .

- ▶ Estimate \hat{U}_1 , $\hat{\sigma}_1$ using SVD-initialized AM ($m \approx kn$).
- ▶ Subtract off $\hat{U}_1\hat{\Sigma}_1\hat{U}_1^T$: error is on the order of σ_2 .

- **E**stimate the stuff of magnitude σ_2 using SVD-initialized AM.
- But now the rank is much bigger :(

- Use SVD on A_{Ω} to form initial guess \hat{U}_1 for U_1 .
- ▶ Run AM starting from \hat{U}_1 to get $A_1 = X_1 \hat{\Sigma}_1 X_1^T \approx U_1 \Sigma_1 U_1^T$.

- Use SVD on A_{Ω} to form initial guess \hat{U}_1 for U_1 .
- ▶ Run AM starting from \hat{U}_1 to get $A_1 = X_1 \hat{\Sigma}_1 X_1^T \approx U_1 \Sigma_1 U_1^T$.

- ► Use SVD on A_{Ω} to form initial guess \hat{U}_1 for U_1 . $\frac{\sigma_1 \sin \Theta(\hat{U}_1, U_1) \approx \sigma_1/10}{\sigma_1 \sin \Theta(X_1, U_1) \approx \sigma_2/10}$
- ▶ Run AM starting from \hat{U}_1 to get $A_1 = X_1 \hat{\Sigma}_1 X_1^T \approx U_1 \Sigma_1 U_1^T$.

- ▶ Use SVD on A_{Ω} to form initial guess \hat{U}_1 for U_1 . $\frac{\sigma_1 \sin \Theta(\hat{U}_1, U_1) \approx \sigma_1/10}{\sigma_1 \sin \Theta(X_1, U_1) \approx \sigma_2/10}$
- ▶ Run AM starting from \hat{U}_1 to get $A_1 = X_1 \hat{\Sigma}_1 X_1^T \approx U_1 \Sigma_1 U_1^T$.
- Use SVD on $(A A_1)_{\Omega}$ to guess \hat{U}_2 for U_2 .
- ► Run AM from $[X_1|\hat{U}_2]$ to get $A_2 = X_2\hat{\Sigma}_2X_2^T$.

- ▶ Use SVD on A_{Ω} to form initial guess \hat{U}_1 for U_1 . $\frac{\sigma_1 \sin \Theta(\hat{U}_1, U_1) \approx \sigma_1/10}{\sigma_1 \sin \Theta(X_1, U_1) \approx \sigma_2/10}$
- ▶ Run AM starting from \hat{U}_1 to get $A_1 = X_1 \hat{\Sigma}_1 X_1^T \approx U_1 \Sigma_1 U_1^T$.
- Use SVD on $(A A_1)_{\Omega}$ to guess \hat{U}_2 for U_2 .
- ► Run AM from $[X_1|\hat{U}_2]$ to get $A_2 = X_2\hat{\Sigma}_2X_2^T$.

Say the spectrum of A is $[\sigma_1, \sigma_1, \sigma_1, \sigma_2, \sigma_2, \sigma_3, \sigma_3, \sigma_3, \sigma_3, \dots]$, with associated subspaces spanned by $U_1, U_2, U_3 \dots$

- ▶ Use SVD on A_{Ω} to form initial guess \hat{U}_1 for U_1 . $\frac{\sigma_1 \sin \Theta(\hat{U}_1, U_1) \approx \sigma_1/10}{\sigma_1 \sin \Theta(X_1, U_1) \approx \sigma_2/10}$
- ▶ Run AM starting from \hat{U}_1 to get $A_1 = X_1 \hat{\Sigma}_1 X_1^T \approx U_1 \Sigma_1 U_1^T$.
- ▶ Use SVD on $(A A_1)_{\Omega}$ to guess \hat{U}_2 for U_2 .
- ► Run AM from $[X_1|\hat{U}_2]$ to get $A_2 = X_2\hat{\Sigma_2}X_2^T$.

 $\sigma_2 \sin\Theta(\hat{U}_2,U_2) pprox \sigma_2/10 \ \sigma_2 \sin\Theta(X_2,U_2) pprox \sigma_3/10$

- ► Use SVD on A_{Ω} to form initial guess \hat{U}_1 for U_1 . $\frac{\sigma_1 \sin \Theta(\hat{U}_1, U_1) \approx \sigma_1/10}{\sigma_1 \sin \Theta(X_1, U_1) \approx \sigma_2/10}$
- ▶ Run AM starting from \hat{U}_1 to get $A_1 = X_1 \hat{\Sigma}_1 X_1^T \approx U_1 \Sigma_1 U_1^T$.
- ▶ Use SVD on $(A A_1)_{\Omega}$ to guess \hat{U}_2 for U_2 .
- ► Run AM from $[X_1|\hat{U}_2]$ to get $A_2 = X_2\hat{\Sigma}_2X_2^T$.
- $\sigma_2 \sin \Theta(\hat{U}_2, U_2) \approx \sigma_2/10$ $\sigma_2 \sin \Theta(X_2, U_2) \approx \sigma_3/10$
- ▶ Use SVD on $(A A_2)_{\Omega}$ to form initial guess \hat{U}_3 for U_3 .
- ▶ Run AM starting from $[X_2|\hat{U}_3]$ to get $A_3 = X_3\hat{\Sigma_3}X_3^T$.

- ► Use SVD on A_{Ω} to form initial guess \hat{U}_1 for U_1 . $\frac{\sigma_1 \sin \Theta(\hat{U}_1, U_1) \approx \sigma_1/10}{\sigma_1 \sin \Theta(X_1, U_1) \approx \sigma_2/10}$
- ▶ Run AM starting from \hat{U}_1 to get $A_1 = X_1 \hat{\Sigma}_1 X_1^T \approx U_1 \Sigma_1 U_1^T$.
- ▶ Use SVD on $(A A_1)_{\Omega}$ to guess \hat{U}_2 for U_2 .
- ► Run AM from $[X_1|\hat{U}_2]$ to get $A_2 = X_2\hat{\Sigma_2}X_2^T$.
- $\sigma_2 \sin \Theta(\hat{U}_2, U_2) \approx \sigma_2/10$ $\sigma_2 \sin \Theta(X_2, U_2) \approx \sigma_3/10$
- ▶ Use SVD on $(A A_2)_{\Omega}$ to form initial guess \hat{U}_3 for U_3 .
- ▶ Run AM starting from $[X_2|\hat{U}_3]$ to get $A_3 = X_3\hat{\Sigma_3}X_3^T$.

Theorem (Exact)

Suppose

- ightharpoonup Each entry in Ω is included independently with probability p
- ► A is incoherent
- $ightharpoonup A = UV^T$ is exactly rank k.

There is some

$$m \lesssim nk^c \log \left(\frac{\sigma_1}{\sigma_k + \varepsilon \sigma_1} \right)$$

so that if $\mathbb{E}|\Omega| = pn^2 \ge m$, then SoftDeflate returns X, Y so that

$$||A - XY|| \le \varepsilon ||A||$$

Theorem (Noisy)

Suppose

- \triangleright Each entry in Ω is included independently with probability p
- ► A is incoherent
- $\rightarrow A = UV^T + N$.

There is some

$$m \lesssim n \left(\frac{k}{\gamma_k}\right)^c \log\left(\frac{\sigma_1}{\sigma_k + \varepsilon \sigma_1}\right) \left(1 + \left(\frac{\|N\|_F}{\varepsilon \sigma_1}\right)^2\right)^2$$

so that if $\mathbb{E}|\Omega|=pn^2\geq m$, then SoftDeflate returns X,Y so that

$$||A - XY|| \le \varepsilon ||A|| + (1 + o(1)) ||N||.$$

Theorem (Noisy)

Suppose

- \triangleright Each entry in Ω is included independently with probability p
- ► A is incoherent
- $\rightarrow A = UV^T + N$.

There is some

$$m \lesssim n \left(\frac{k}{\gamma_k}\right)^c \log\left(\frac{\sigma_1}{\sigma_k + \varepsilon \sigma_1}\right) \left(1 + \left(\frac{\|N\|_F}{\varepsilon \sigma_1}\right)^2\right)^2$$

so that if $\mathbb{E}|\Omega|=pn^2\geq m$, then SoftDeflate returns X,Y so that

$$||A - XY|| \le \varepsilon ||A|| + (1 + o(1)) ||N||.$$

$$\left\{ egin{aligned} \gamma_k := 1 - rac{\sigma_k}{\sigma_{k+1}} = egin{cases} 1 & {\it N} = 0 \ {
m big} & \|{\it N}\| pprox \sigma_k \end{cases}
ight.$$

Some pictures

Comparing SOFTDEFLATE to FW, SVD

Comparison of SoftDeflate with FW and SVD: n=10K, k=3, average of 10 trials Error (Frobenius norm)

Some pictures

Comparing SOFTDEFLATE to FW, SVD

Summary

- ▶ New "Soft Deflation" variant of Alternating Minimization
- Fast:

runtime linear in n

▶ Works on ill-conditioned matrices: sample and time complexity is logarithmic in σ_1/σ_k .

Summary

- ▶ New "Soft Deflation" variant of Alternating Minimization
- Fast:

runtime linear in n

▶ Works on ill-conditioned matrices: sample and time complexity is logarithmic in σ_1/σ_k .

- Open Questions:
 - How badly does Alternating Minimization itself actually depend on the condition number? On a "typical" matrix?
 - ▶ (How much) can you reduce the power *k* in our analysis?

The end

Thanks!

Under the rug

- ▶ How do we know where the "gaps" are?
 - ▶ Use a good enough approximation to detect this with the SVD.
- ▶ The gaps could be pretty small.
 - ▶ If $\sigma_i/\sigma_{i+1} = (1 1/\sqrt{k})$, then $\sigma_1/\sigma_k \approx e^{\sqrt{k}}$ is still big.
 - ▶ This makes us pay extra factor(s) of k.
- ▶ Need to ensure incoherence between the iterations.
 - ► Carefully truncate entry-wise before/after SVD.
- ▶ Need to ensure incoherence during Alternating Minimization.
 - Borrow from [Hardt'13]: Add some noise to "smooth" AM, and take some medians to control outliers.

Is SoftDeflate better than AM in practice?

Plotting all 6 principal angles as the algorithms run

Is SoftDeflate better than AM in practice?

Plotting all 6 principal angles as the algorithms run

Is SoftDeflate better than AM in practice?

Plotting all 6 principal angles as the algorithms run

How does this compare to FW? Or just taking the SVD of the observations?

Does FW/SVD get better with more observations?

What about some of the provable guarantees for, say, Frank-Wolfe?

- ▶ Running time depends on ε like $1/\varepsilon$, not like $\log(1/\varepsilon)$, so if we want to recover all of U, need $\varepsilon < \sigma_k/\sigma_1$.
- Convergence guarantees are on observed entries, not on whole matrix.

Maintain the inductive hypothesis

$$\forall i, \sigma_i \sin \Theta(U_i, X_{t-1}[i]) \leq \frac{\sigma_t}{100}$$

Maintain the inductive hypothesis

$$\forall i, \sigma_i \sin \Theta(U_i, X_{t-1}[i]) \leq \frac{\sigma_t}{100}$$

 $X_{t-1} pprox [U_1|\cdots|U_{t-1}].$ In particular, $A-X_{t-1}Y_{t-1}^T$ is a good approximation of the leftovers.

Maintain the inductive hypothesis

$$\forall i, \sigma_i \sin \Theta(U_i, X_{t-1}[i]) \leq \frac{\sigma_t}{100}$$

▶ Then SVD will find \hat{U}_t so that

$$\sigma_t \sin \Theta(U_t, \hat{U}_t) \leq \frac{1}{100}$$

 $X_{t-1} pprox [U_1|\cdots|U_{t-1}].$ In particular, $A-X_{t-1}Y_{t-1}^T$ is a good approximation of the leftovers.

Maintain the inductive hypothesis

$$\forall i, \sigma_i \sin \Theta(U_i, X_{t-1}[i]) \leq \frac{\sigma_t}{100}$$

▶ Then SVD will find \hat{U}_t so that

$$\sigma_t \sin \Theta(U_t, \hat{U}_t) \leq \frac{1}{100}$$

 $X_{t-1} \approx [U_1|\cdots|U_{t-1}].$ In particular, $A - X_{t-1}Y_{t-1}^T$ is a good approximation of the leftovers.

Since the part of $A - X_{t-1} Y_{t-1}^T$ associated with U_t has a flat spectrum, we don't pay for the condition number.

Maintain the inductive hypothesis

$$\forall i, \sigma_i \sin \Theta(U_i, X_{t-1}[i]) \leq \frac{\sigma_t}{100}$$

 $X_{t-1} \approx [U_1|\cdots|U_{t-1}].$ In particular, $A - X_{t-1}Y_{t-1}^T$ is a good approximation of the leftovers.

▶ Then SVD will find \hat{U}_t so that

$$\sigma_t \sin \Theta(U_t, \hat{U}_t) \leq \frac{1}{100}$$

Since the part of $A - X_{t-1} Y_{t-1}^T$ associated with U_t has a flat spectrum, we don't pay for the condition number.

▶ Then AM started at $[X_{t-1}|\hat{U}_t]$ will find X_t with

$$\sigma_t \sin \Theta([U_1|\cdots|U_t],X_t) \leq \frac{\sigma_{t+1}}{100}$$

Hiding many details.

Maintain the inductive hypothesis

$$\forall i, \sigma_i \sin \Theta(U_i, X_{t-1}[i]) \leq \frac{\sigma_t}{100}$$

 $X_{t-1} \approx [U_1|\cdots|U_{t-1}].$ In particular, $A - X_{t-1}Y_{t-1}^T$ is a good approximation of the leftovers.

▶ Then SVD will find \hat{U}_t so that

$$\sigma_t \sin \Theta(U_t, \hat{U}_t) \leq \frac{1}{100}$$

Since the part of $A - X_{t-1} Y_{t-1}^T$ associated with U_t has a flat spectrum, we don't pay for the condition number.

▶ Then AM started at $[X_{t-1}|\hat{U}_t]$ will find X_t with

$$\sigma_t \sin \Theta([U_1|\cdots|U_t], X_t) \le \frac{\sigma_{t+1}}{100}$$

AM converges until it "hits" the next part of the spectrum, σ_{t+1}

* Hiding many details.

How well does this scale?

SoftDeflate vs. AltMin on random 10Kx10K matrix with spectrum [1,1,1,1,001,001,001,001], 500K samples per iteration sine of principal angles

