Automatic Detection of Irony and Humour in Twitter

Francesco Barbieri Horacio Saggion

Presentation Outline

- Introduction
- DataSet / Resources
- Features for irony and humour classification
- Classification Experiments
 - Irony and Humour cross domain classification
 - Creative VS non-creative
- Conclusions and Current Work

Introduction

- Twitter
- Irony and humour
- Automatic detection
- Formal definition

Introduction

#Irony

- Bush sent more troops than Obama to create
 Peace in Afghanistan but Obama got the NOBEL!
- I tell you a secret… I love Christmas!

#Humour

- Computers are like air conditioners. They work fine until you start opening windows.
- What's the difference between government and the mafia? One is organized.

Introduction

- Being able to detect ironic and humorous statements can be useful in many human-computer interaction applications
- As in previous work (Reyes, Rosso and Veale (2013)) we cast the problem as binary classification and use a machine learning algorithm to discriminate ironic from nonironic messages and Humorous

Dataset & Text Processing

- Tweets: Corpus of 40.000 tweets equally divided into four different topics (Reyes et al, 2013)
 #irony, #humour, #education, #politics
- ANC Frequency Data (oral / written) (Ide and Suderman, 2004)
- **TwitlE** (Bontcheva et al., 2013) tokeniser and Part of Speech Tagger.
- WordNet (Miller, 1995)
- SentiWordNet (Esuli and Sebastiani, 2006)
- Potts' Intensity Scores (Potts, 2011)

Features

- 1. Frequency (gap between rare and common words)
- 2. Written-Spoken (written-spoken style uses)
- 3. Intensity (intensity of adverbs and adjectives)
- 4. Structure (length, punctuation, emoticons)
- 5. Sentiments (gap between positive and negative terms)
- 6. Synonyms (common vs. rare synonyms use)
- 7. Ambiguity (measure of possible ambiguities)

Frequency

- Gap between rare and common words, i.e. register inconsistencies in the same tweet as a mark of unexpectedness (Lucariello 1994, Venour 2013)
- We compute the frequency imbalance between words (ANC)

- 1. frequency mean
- 2. rarest frequency
- 3. frequency gap

Written-Spoken

 Unexpectedness created by using spoken style words in a mainly written style tweet or vice versa using ANC spoken and written corpora

- 1. written mean
- 2. spoken mean
- 3. written spoken gap

Intensity

• Intensity scores of Potts (2011): $horrible(-1.9) \rightarrow bad(-1.1) \rightarrow good(0.2) \rightarrow$ $nice(0.3) \rightarrow great(0.8)$

- 1. adj (adv) tot
- 2. adj (adv) mean
- 3. adj (adv) max
- 4. adj (adv) gap

Structure

- Length, punctuation, emoticons
 - 1. Length
 - 2. N. words
 - 3. Word length mean
 - 4. N. verbs, N. nouns, N. adjectives, N. adverbs
 - 5. Verb Ratio, noun R., adjective R., adverb R.
 - 6. Punctuation (?!,; ""*)
 - 7. Laughing (LOL, ...)
 - 8. Emoticon
 - 9. Internet Links

Sentiments

- Gap between positive and negative terms
- SentiWordnet (Esuli and Sebastiani, 2006)
 - 1. positive sum
 - 2. negative sum
 - 3. positive negative mean
 - 4. positive-negative gap
 - 5. positive single gap
 - 6. negative single gap

Model choice of synonym using frequencies from ANC

- W1 ... S1 ... S1 \leftarrow Most frequent
- S1 ... S2 ... Wn
- S2 ... S3 ... S2
- $53 \dots Wi \dots 53$ Least frequent

- W1 ... S1 ... S1
- S1 ... S2 ... Wn
- S2 ... S3 ... S2
- S3 ... Wi ... S3

- 1. syno lower
- 2. syno lower mean
- 3. syno lower gap
- 4. syno greater

- W1 ... S1 ... S1

- S1 ... S2 ... WnS2 ... S3 ... S2S3 ... Wi ... S3

- 1. synolower = 3
- 2. syno lower mean
- 3. syno lower gap
- 4. syno greater

- W1 ... S1 ... S1
- S1 ... S2 ... Wn
- S2 ... S3 ... S2
 - S3 ... <u>Wi</u> ... S

- **1.** syno lower = **3**
- 2. syno lower mean

$$= (3+0+2)/3 = 1.66$$

- 3. syno lower gap
- 4. syno greater

• W1 ... Wi ... Wn

- W1 ... S1 ... S1
- S1 ... S2 ... Wn
- S2 ... S3 ...
- S3 ... <u>Wi</u> ..

- 1. synolower = 3
- 2. syno lower mean

$$= (3+0+2)/3 = 1.66$$

3. syno lower gap

$$= (n1) - (n2) = 1.34$$

4. syno greater

• W1 ... Wi ... Wn

- W1 ... S1 ... S1S1 ... S1S2 ... WnS2 ... S2

- 1. synolower = 3
- 2. syno lower mean

$$= (3+0+2)/3 = 1.66$$

3. syno lower gap

$$= (n1) - (n2) = 1.34$$

4. syno greater = 3

Ambiguity

 Using a word with many meanings allows us to say something meaning something else

- 1. mean of number of synsets
- 2. max num of synsets
- 3. gap max mean

- Irony Cross-domain Classification
 - Training Set:
 - 7500 Irony vs 7500 Education
 - 7500 Irony vs 7500 Politics
 - 7500 Irony vs 7500 Humour
 - Test Set:
 - 2500 Irony vs 2500 Education
 - 2500 Irony vs 2500 Politics
 - 2500 Irony vs 2500 Humour

- Irony Cross-domain Classification
 - Training Set:
 - 7500 Irony vs 7500 Education
 - 7500 Irony vs 7500 Politics
 - 7500 Irony vs 7500 Humour
 - Test Set:
 - 2500 Irony vs 2500 Education
 - 2500 Irony vs 2500 Politics
 - 2500 Irony vs 2500 Humour

Humour Cross-domain Classification

- Training Set:
 - 7500 Humour vs 7500 Education
 - 7500 Humour vs 7500 Politics
 - 7500 Humour vs 7500 Irony
- Test Set:
 - 2500 Humour vs 2500 Education
 - 2500 Humour vs 2500 Politics
 - 2500 Humour vs 2500 Irony

- Irony + Humour = Creative
- Education + Politics = Non-creative

- Creative VS Non-creative classification
 - Training Set:
 - 15000 (Irony + Humour) vs 15000 (Education + Politics)
 - Test Set:
 - 5000 (Irony + Humour) vs 5000 (Education + Politics)

Irony Cross-domain Classification (F1)

Training

Test	Education	Humour	Politics
Education	87	86	86
Humour	77	88	76
Politics	82	82	88

• Humour Cross-domain Classification (F1)

Training

Test	Education	Irony	Politics
Education	78	46	71
Irony	71	88	69
Politics	73	51	80

Creative VS Non-creative classification
 F1 = 0.80

• Best 10 Features (Information Gain)

Irony	Humour	Creative
links questions syno. greater rarest frequency fullstop syno. lower punctuation n. words	syno. greater rarest frequency adv. max link questions syno. lower positive sum adv. total	syno. lower rarest frequency word length mean noun ratio adv. max punctuation syno. greater adv. mean
noun ratio tw.lenght	adv. mean word mean	written spoken gap avgWritten

Conclusion and Current Work

- We presented a model and experiments on binary classification of "ironic" and "non-ironic" tweets and "humorous" and non-humorous.
- The proposed model does not rely on word-based information but on word characteristics
- We are creating our own dataset for sharing / comparing different approaches
- We are currently working on other aspects of language

Conclusion and Current Work

- We presented a model and experiments on binary classification of "ironic" and "non-ironic" tweets and "humorous" and non-humorous.
- The proposed model does not rely on word-based information but on word characteristics
- We are creating our own dataset for sharing / comparing different approaches
- We are currently working on other aspects of language

• Information gain Pearson **Correlation** of information gain values for each feature over different topics when training:

Irony

Model	Education	Humour	Politics
Education	1	0.76	0.96
Humour		1	0.76
Politics			1

Humour

Model	Education	Irony	Politics
Education	1	0.48	0.89
Irony		1	0.36
Politics			1