Computationa
Creativity Group

Assessing Progress In Buillding
Autonomously Creative Systems

Simon Colton, Alison Pease*, Joseph Corneli,
Michael Cook and Maria Teresa Llano

Computational Creativity Group
Department of Computing

D

A Philosophical Perspective

* One overall aim of Computational Creativity research is to see creative software
ubiquitously embedded in society, one day

» Creativity in people/software is a secondary quality

* We project this adjective onto people/software as a short-hand for describing their
behaviours

* The notion of creativity in people/software is essentially contested (sois “art”)

Strong and Weak
Computational Creativity Aims

* Weak objectives in projects:

* To produce artefacts of wonder with computational help

e Strong objectives in projects:

Progress in Building Systems

« We want to have more formalism in describing how creative systems are built; how they operate at run-
time; and the value of the artefacts they produce

e S0 that we can use a more scientific approach to assessing progress in various Computational
Creativity senses, as the engineering of a system progresses

« Ultimately, artefact-based assessment relies on the assumption that if a system is producing higher
quality artefacts, then it must be getting more creative

* This is sometimes a false assumption, and doesn’t capture all notions of progress

Responsibllities

e Progress can also be measured in terms of the perceived
creative autonomy that software systems have

 And in general: in terms of how people perceive software
behaviours with respect to issues of creativity, intelligence and
autonomy

* Itis Time for Computational Creativity Researchers to Grow Up

Responsiblilities, Responsibilities, Responsibilities

o Software isn’t another (human) jazz musician you play along with, it is actively and decisively
programmed by us and others

e This naturally changes the perception people have of software autonomy

e 50, we have to do more to address what software actually does, not just celebrate the fact
that the ‘system’ came up with some brilliant creation

. We re in a game of perceptlons and |t doesnt help to talk about d/ffuse responS/b///t/es ol

Overview of Approach

« We start with a simplitying assumption of a person/team building a single
artefact generating system in a particular application domain, occasionally
releasing a version, and/or producing output for a major milestone

« We've introduced a graphical formalism which helps to capture the creative
acts which go into building and executing a system

e This captures various timelines and enables visual comparison of systems,
the effort that went into building them and their run-time behaviours

Backgrounad

Please see the paper for some background in how researchers have historically assessed progress in
Computational Creativity

» We build on the FACE model we introduced in earlier papers:

e Creative acts are represented as tuples of generative acts, producing artefacts of the following forms:
(F)raming information, (A)esthetic considerations, (C)oncepts, (E)xamples

« We found this wasn't sufficient to capture software (+development) such as ANGELINA

. We also bund on an enhanced verS|0h of the Creat|V|ty trlpod to (more eaS|Iy) av0|d the Iabel of

FACE Tuples

« We've extended the FACE model a little:
e To include administrative acts as well as generative acts

e Using [square brackets] and <pointy brackets>

« Administration includes: (S)election of artefacts and (T)ranslation routines

Timelines

* We want to (start to) separate the creative
responsibilities of the programmer(s) from those of the
software, by looking at the creative acts performed

* There are four fairly obvious timelines:

Capturing Timelines

Poetry (Generation Example

* Both programs operate

in two stages P1
<Cg > g >

* In P1, the programmer employs
his/her aesthetic to choose

from the output of the system

* In P2, the programmer has

translated this aesthetic into
code, so that the software can | [S (@g(ey))]

do the choosing for them

Methodology: Usage of Diagrams
from Version v1 to v2 of software

* During development by programmer

* Compare diagrams informally to see if the creative acts by software have changed for the better,
based on (i) the removal of bars and (ii) introduction of novel types of generative acts

* During audience evaluations

* Work out in advance whether you primarily have strong or weak objectives in going from v1 to v2

* Tell audience members about how v1 and v2 were developed and what they do at run-time. Show the
users the diagrams to clarify things if needed

Guidelines

Product change Process change Weak Strong

OP OP
PP PR
OP PP
PR PP
OR OR
OR PR
PP OP
PR OR
PP PP

Table 1: Guidelines for using change in evaluation of
product and process in gauging (O)bvious or (P)otential
(P)rogress or (R)egress, in both weak and strong agendas.

A Case Study in Evolutionary Art

(Please see paper for more details)

<A, >

<Ag > , <Ag>

[S (@g(e,))] <Gy, S (ag(eg))]

<Ag>

[S (@g(ep))]

- -

Y
<A;> <Ap,>

<Ag >

[T @g)] [T(a,)] <A >

- (IS @glee))]) [S (ag(e,))] [S (ag(e))]

<Ag > <A,>

[S @geg))] <A >
Y ’ [S (ag(eg))]

<Ag > , \
[T (ap))

<Fp>

[S (ag(eg))]

<Fg>

Y

<CE>| | <>

< Cg, Eg >™ | [S (@y(e))]
<A, >

<C,E,> [T (@)

< Cg, Eg >* (IS (@gle)]] 1~

— — 1
pEp >
< Cg, Eg > > P
|
SICYE <Ag >
< Cg Eg >" > [S(ag(e)]
152 <Cy,Ey >< Cy, Ep >
Simple repetition means that the software has more skill,
N and the introduction of independent user selection shouldn’t
— change perceptions about autonomy.
<A, > —
— — 25385 ->S§
<CpkE,> [T (ag)] By reducing user intervention in choosing images, the
. — software should appear to have more skill and autonomy.
< CpE, > | [[s (ag(eg))]j R
ID Event Explanation
1.1.1 5,, The programmer invents the idea of crossing over two sets of mathematical functions to produce a new set of

mathematical functions.

1.1.1 Ep The programmer implements a wrapper method that takes a set of mathematical functions and applies them to
each (x,y) co-ordinate in an image to produce an RGB colour.

1.1.2 C, The software generates a new set of functions by crossing over two pairs of functions.

1.1.2 E, The software applies these functions to the (x, y) co-ordinates of an image, to produce a piece of abstract art.

2.2.1 A_g The programmer had in mind a particular aesthetic (symmetry) for the images.

2.2.2 §(a_g(eg)) The programmer uses his/her aesthetic to select a preferred image for printing.

322 T(ap)

The programmer took their aesthetic and turned it into code that can calculate a value for images.

3.2.3 (S (aq(e,))) The software applies the aesthetic to select one of a set of images produced by crossover and the wrapper.

<Ag>

[S (@g(e))]

<Ag>

<CpE,>

[S (@g(e))]

*
<CqE; >

Y

Y

<Ag>

[T(ay,)]

[S (ag

(eg))]

\4
o

< Cp,

|| 5

m >

<FE

B

<Ag>

[S (@g(eg))]

Y

<Ag >

[T (ag)]

[S (ag(eg))]

1 — 4: Introduction of A, and S (a,(e,)) acts

Machine learning enables the generation of novel aesthetics
(albeit derived from human choices), which should in-
crease perception of innovation, appreciation and learning,
involving more varied creative acts.

4 — 5: Introduction of an E, act, T — T

Wrapper generation increases variety of creative acts, and
may increase perception of skill and imagination.

The software uses machine learning techniques to approximage the programmer’s aesthetic.
The programmer hand-translates the machine learned aesthetic into code.
4.3.3 S(ag(e,)) The software applies the new aesthetic to choosing the best image from those produced.

431 A,
432 T(a,)
512 Cn
512 E,
513 E,

The programmer has the idea of getting the software to search through a space of wrapper routines.
The programmer implements this idea.

The software invents a new wrapper.

54.2 The software translates the machine-learned aesthetic itself into code.

>
>

A
,uﬂﬁ

<Ap>

<CuE,> <Ag >

< CgEg > —+ [S(ag(ep))] [~ P
1 — 6: Introduction of A, and S (a,(e,)) acts
~ The software has more variety of creative acts, and the
<C B > B 7 invention and deployment of its own aesthetic — this time,
— P without any programmer intervention — should increase
<Cp-Ep> e perception of intentionality in the software.
< Cg, Eg >* —{[S(ag(er))] —(P :
- - 6 — 7: Introduction of a C,, act
d Changes in the evolutionary processes should increase
" perceptions of innovation and autonomy.
<4 > 5,7 — 8: Introduction of an F, act
<A, > : : : :
<CoE,> s Framing its work should increase perceptions of account-
— LS (a5(es))] ability and reflection.
<CmEn >
<Cp,> < Co By >* \
<E,> <F,>
<Fg>

The programmer has the idea of getting the software to invent a mathematical fitness function.
6.2.2 A, The software invents a novel aesthetic function.
The software selects the best artefact according to its aesthetic function.

The programmer has the idea of getting the software to invent and utilise novel combination techniques for sets
of functions, generalising crossover.

7.1.1 The programmer implements this idea so that the software can invent new combination techniques.

The software invents a novel combination technique.

» The programmer has the idea of getting the software to produce a commentary on its process and artwork by
describing its invention of a new aesthetic, combination method and wrapper.

The software produces a commentary about its process and product.

Application of Formalism

« We've applied this formalism, largely successfully to:
e Compare/contrast versions of the HR system and the AM/Eurisko systems

* The full-FACE poetry generation systems, and other poetry systems

e Aspects of The Painting Fool’s development

Future Work

 |t's time to tie up this framework with those of others:

« Wiggins’ creative systems framework, particularly for being more precise about the kind of
search that systems undertake, and the search spaces they explore

 Ritchie’s criteria for evaluating artefacts, particularly for improving acuity of the audience
evaluation aspects

e Our IDEA model of an ideal audience, cognitive expenditure and change in well-being

o Wrap Up...

* The framework can successfully capture aspects of the
development, processing and output of (abstracted versions
of creative systems in various application domains

e But it still has a number of limitations and fudge factors

e St

o Q4 ') & . ; S e o : ’ > .'\”‘ ; i R i 7 i V o 2 : g ; b A g ! : R I ¥ ; o : o » v & S s
R 5 b i & sy 2T N ot
« s ; 2 XEr S deSh “' ;

