

From Isolation to Involvement:

Adapting Machine Creativity Software to Support Human-Computer Co-Creation

Anna Kantosalo, Jukka Toivanen, Ping Xiao and Hannu Toivonen

Department of Computer Science, and Helsinki Institute for Information Technology, University of Helsinki

"The most ambitious vision of human-computer interaction for creativity involves a real partnership, in which humans and computers work hand in hand" (Lubart, 2005)

Background

Methods

Cases

Results

Our Case

Results

Conclusion

Background

Co-creation

- Between humans (Fischer et al. 2005)
- Mixed-Initiative Co-Creation (Yannakis et al. 2014)
- Shared creative responsibility between a human and a computer
- Support for human creativity studied in
 - Interaction design (e.g. Carroll and Latulipe 2009)
 - Computational creativity (e.g. Yeap et al. 2010)

- An analysis of three case studies
 - STANDUP
 - Scuddle
 - Evolver
- A comparison to our own case study
- Analysis perspectives
 - User-Centered Design Process (ISO/IEC 2010)
 - Wiggins' formalization of creativity as a search (Wiggins, 2006)

The User-Centered Design Process

Wiggins: Creativity as a Search

Criteria for Sample Case Studies

- Based on computational creativity methods
- Interactivity
- Availability of documentation on design process
- Availability of user feedback

Selected Case Studies

- STANDUP A pun generating "language playground" for children with complex communication needs (Ritchie et al. 2007; Waller et al. 2009)
- Scuddle A movement exploration tool for choreographers (Carlson, Shiphorst, and Pasquier 2011)
- Evolver A tool for interior designers for exploring design options (DiPaola et al. 2013)

Overview of the Case Studies

- STANDUP and Evolver are based on existing non-interactive programs
- The level of interaction varies
 - Evolver offers the most extensive interaction possibilities
 - Scuddle is the least interactive
- The design devisions are documented to different extent, but for each case the process used is relatively clear
- User feedback for all systems was positive
 - Evolver was considered a co-creator

Example: Applying Wiggins' formalization to Evolver

Result 1: A Typical Design Process

Comparison to the UCD Process

Result 2: Changes to Computational Creativity Methods

- Changes can be divided into two groups
 - Changes to facilitate interaction
 - Changes enhancing the technical properties to better suit real time use
- The first type of changes actively increases the user's role in the system when viewed through the Wiggins' formalization

Our Case: The Poetry Machine

Our Case: The Poetry Machine

Additional Results from Our Case

- Restrictions to utilizing UCD methods
 - It is challenging to communicate the restrictions of the computational approach to the target users
 - It is difficult to create extensive paper prototypes for user testing

Conclusion

- The design process of creating a successful co-creation tool
 - Shares features with the UCD Process
 - Is iterative
 - Requires changes in the algorithms to increase the user's role
- Further work
 - More studies needed to confirm findings
 - The creation of a more balanced human-computer co-creation is needed

Carlson, K.; Schiphorst, T.; and Pasquier, P. 2011 – Scuddle: Generating movement catalysts for computer-aided choreography. In Proceedings of the Second International Conference on Computational Creativity.

Carroll, E. A, and Latulipe, C. 2009. – The creativity support index. In CHI '09 Extended Abstracts on Human Factors in Computing Systems, CHI EA '09, 4009–4014. New York, NY, USA: ACM.

DiPaola, S., McGraig, G.; Carlson, K.; Salevati, S.; and Sorenson, N. 2013 – Adaptation of an autonomous creative evolutionary system for real-world design application based on creative cognition. In Proceedings of the Fourth International Conference on Computational Creativity, 40.

References

Fischer, G.; Giaccardi, E.; Eden, H.; Sugimoto, M.; and Ye, Y. 2005. – Beyond binary choices: Integrating individual and social creativity. International Journal of Human–Computer Studies 63(4):482–512.

ISO/IEC 2010 - Iso 9241-210 ergonomics of human–system interaction – part 210:

Human-centered design for interactive systems

Ritchie, G.; Manurung, R.; Pain, H.; Waller, A.; Black, R.; and OMara, D. 2007 – A practical application of computational humour. In proceedings of the 4th International Joint Conference on Computational Creativity, 91–98.

Waller, A.; Black, R.; O'Mara, D. A.; Pain, H.; Ritchie, G.; and Manurung, R. 2009 – Evaluating the standup pun generating software with children with cerebral palsy. ACM Trans.Access.Comput. 1(3):16:1-16:27.

Wiggins, G. A. 2006 – Searching for computational creativity. New Generation Computing 24(3):209-222. Yannakakis, G. N.; Liapis, A.; and Alexopoulos, C. 2014. – Mixed–initiative co–creativity. In Proceedings of the ACM Conference on Foundations of Digital Games.

Yeap, W. K.; Opas, T.; and Mayhar, N. 2010. – On two desiderata for creativity support tools. In Proc. of the Intl. Conference on Computational Creativity, 180–189.