
Generating Synthetic RDF Data with Connected

Blank Nodes for Benchmarking

Christina Lantzaki, Thanos Yannakis, Yannis Tzitzikas, and Anastasia Analyti

Computer Science Department, University of Crete,
Institute of Computer Science, FORTH-ICS, GREECE
{kristi,yannakis,tzitzik,analyti}@ics.forth.gr

Abstract. Generators for synthetic RDF datasets are very important
for testing and benchmarking various semantic data management tasks
(e.g. querying, storage, update, compare, integrate). However, the cur-
rent generators do not support sufficiently (or totally ignore) blank node
connectivity issues. Blank nodes are used for various purposes (e.g. for
describing complex attributes), and a significant percentage of resources
is currently represented with blank nodes. Moreover, several semantic
data management tasks, like isomorphism checking (useful for checking
equivalence), and blank node matching (useful in comparison, version-
ing, synchronization, and in semantic similarity functions), not only have
to deal with blank nodes, but their complexity and optimality depends
on the connectivity of blank nodes. To enable the comparative evalua-
tion of the various techniques for carrying out these tasks, in this paper
we present the design and implementation of a generator, called BGen,
which allows building datasets containing blank nodes with the desired
complexity, controllable through various features (morphology, size, di-
ameter, density and clustering coefficient). Finally, the paper reports
experimental results concerning the efficiency of the generator, as well
as results from using the generated datasets, that demonstrate the value
of the generator.

Keywords: #eswc2014Lantzaki

1 Introduction

Several works (e.g. [10]) have demonstrated the usefulness of blank nodes for
the representation of the Semantic Web data. In a nutshell, from a theoretical
perspective blank nodes play the role of the existential variables and from a
technical perspective, as gathered in [2], they give the capability to (a) describe
multi-component structures, like the RDF containers, (b) apply reification (i.e.
provenance information), (c) represent complex attributes without having to
name explicitly the auxiliary node (e.g. the address of a person consisting of
the street, the number, the postal code and the city) and (d) offer protection of
the inner information (e.g. protecting the sensitive information of the customers
from the browsers). In [10] the authors survey the treatment of blank nodes in
RDF data and prove the relatively high percentages of their usage. Indicatively,

Authors Suppressed Due to Excessive Length

and according to their results, the data fetched from the ‘rdfabout.com’ domain
and the ‘opencalais.com’ domain, both of them parts of the LOD (Linked Open
Data) cloud, consist of 41.7% and 44.9% of blank nodes, respectively.

However, their existence requires special treatment in various tasks. For in-
stance, [10] states that the inability to match blank nodes increases the delta size
(the number of triples that need to be deleted and added in order to transform
one graph to another) and does not assist in detecting the changes between sub-
sequent versions of a Knowledge Base, while [15] proves that building a mapping
between the blank nodes of two compared Knowledge Bases that minimizes the
delta size is NP-Hard in the general case. In [6] it is proved that (a) deciding
simple or RDF/S entailment of RDF graphs is NP-Complete, and (b) deciding
equivalence of simple RDF graphs is Isomorphism-Complete. In [8], a tutorial
on how to publish Linked Data, the authors state that it becomes much more
difficult to merge data from different sources when blank nodes are used, as there
is no URI to serve as a common key. However we should note that the above
tasks become tractable for the cases of non-directly connected blank nodes. Still,
more complex blank node structures (i.e. cyclic) occur in practice. Indicatively,
in [10] 1.6% of the structures are cyclic, while when querying the LOD Cloud
Cache endpoint1 we found out that it contains around 19 millions of blank nodes
and almost 30 thousands of them participate in cyclic blank node structures.

In the face of strong identification needs, skolemization2 is suggested, that
replaces (some or all of) the anonymous resources with globally unique URIs.
However, we will never “escape” from blank nodes. Even if we assign to all blank
nodes URIs, we are obliged to treat them as unnamed elements when comparing
or integrating data. For example, suppose that we want to integrate personal
data from two or more sources where URIs are used for addresses (an address
groups a street, a number, a city, etc). If we do not treat addresses as blank
nodes, then we will treat all addresses as different, and thus we will end up with
very poor information integration. We should also note that blank nodes is not an
idiosyncratic feature of RDF. They occur everywhere; consider for instance the
world of relational databases, and suppose that the same information is stored
in two different relational databases, each supporting two different policies for
autokeys. If we compare these databases then we would like to conclude that they
are identical, but without treating the autokeys as blank nodes this is obviously
impossible.

As regards the tasks in which blank nodes require special treatment, studies
are oriented towards either finding special cases where the problems become
tractable, or constructing algorithms that approximate the optimal solutions.
Indicatively, [15] elaborates on a special case (i.e. RDF graphs with no directly
connected blank nodes) where the problem of finding the optimal blank nodes
mapping is solved in polynomial time, and provides two polynomial algorithms
that approximate this mapping and can be used in the general case. One of them
can map 150 thousands of bnodes in around 10 seconds. Another notable instance

1 http://lod.openlinksw.com/sparql/
2 http://www.w3.org/TR/rdf11-concepts/#section-skolemization

Title Suppressed Due to Excessive Length

is [14], where the authors introduce the concept of bounded treewidth to prove
that entailment checking can be efficient for RDF blank node structures that
have bounded treewidth. Other works avoid matching blank nodes and instead
make some quite simplistic assumptions (e.g. [9] for studying the dynamics of
Linked Data).

In any of the above cases, an integrated benchmark would be really useful in
order to create a common way to evaluate and compare these (and forthcoming)
works. To fill this gap, in this paper we present the design and implementation
of a generator, called BGen, which allows building big datasets containing blank
nodes satisfying particular connectivity requirements. BGen is not the first RDF
generator; there are several examples of RDF generators (described in Section 2).
However, none of them deals sufficiently with the issue of benchmarking meth-
ods that become hard in the presence of blank nodes. The main objective of this
generator is to create datasets with blank nodes of variable complexity. Key ele-
ment for controlling the complexity of blank nodes is the notion of BComponent

which is essentially a maximal sub-graph of blank nodes that is part of the whole
graph. Having isolated this component we can control its complexity, through
features like the size, the diameter, the density and the clustering coefficient.

The key contribution of this work is that we provide a method to produce
variable in size and in complexity blank node components supporting a plethora
of configuration parameters; including diameter, density, clustering coefficient,
as well as a parameter for controlling the similarity of the named resources con-
nected to the blank nodes. With the introduced method we can produce big
graphs in size under a plausible time and without main memory problems. We
also provide evidence that the selected features succeed in capturing the com-
plexity that is crucial for the intended tasks, by reporting experimental results
of blank node matching over the produced datasets.

The rest of this paper is organized as follows. Section 2 describes related
generators and introduces the basic requirements of BGen. Section 3 describes
the generator, i.e. its schema, parameters and phases. Section 4 reports exper-
imental results regarding time and space, as the generated datasets are scaled
up, and uses the generated datasets to evaluate an approximation task. Finally,
Section 5 concludes the paper and identifies issues for further research. More
information is available in the Web3.

2 Related Work

Benchmarking in RDF is focused on the performance evaluation of the Semantic
Web repositories. Some notable benchmark tools and works follow. The Lehigh
University Benchmark (LUBM) [5, 4] aims at benchmarking systems with respect
to use in OWL applications with large repositories. For data generation, they
have built the UBA (Univ-Bench Artificial) data generator, that features random
and repeatable data generation. The minimum unit of data generation is the

3 http://www.ics.forth.gr/isl/bnodeland

Authors Suppressed Due to Excessive Length

university and for each university a set of OWL files describing its departments
(e.g. courses, students, professors) are generated.

The BSBM benchmark [1] is built around an e-commerce use case, and its
data generator supports the creation of arbitrarily large datasets using the num-
ber of products as scale factor.

The Social Intelligence BenchMark (SIB) [11] is an RDF benchmark that
introduces the S3G2 (Scalable Structure-correlated Social Graph Generator) for
generating social graphs that contain certain structural correlations. Regarding
qualitative evaluation, they evaluate the ability to have some plausible corre-
lation in the data, while regarding quantitative evaluation, they evaluate scal-
ability in terms of various parameters like clustering coefficient, average path
length and number of the users. Even though S3G2 offers correlation between
the graph structure and the generated data, it does not handle blank nodes and
their connectivity issues.

A slightly adjusted version of the UBA generator was used to generate syn-
thetic data with blank nodes in [15]. However, that version supports a limited
set of control parameters (e.g. it does not support control over cycles, clustering
coefficient etc); consequently it is not convenient for benchmarking.

To the best of our knowledge there is no generator in the literature that
deals with the generation of blank nodes adequately. Although there is not any
particular difficulty in adjusting an already existing generator to produce blank
nodes, the difficulty arises when the blank nodes should be connected under
particular connectivity patterns. These patterns differentiate from the previous,
as the performance criteria of the evaluated functions are different, too. To fill
this gap in this paper we focus on connectivity issues between the blank nodes
of the instance layer.

3 The BGen Generator

At first we describe the requirements of the generator (§3.1), the RDF/S schema
that we have defined (§3.2), and provide a simple instantiation example of that
schema which also introduces the notion of BComponent (§3.3). Then, we analyze
how we control the structural complexity of a BComponent (§3.4), and finally
we present the main algorithm and its phases (§3.5 - §3.7).

3.1 Requirements

Here we list the main requirements, while in Section 3.5 we describe how BGen
meets these requirements.
A. Correlation of data. The generator should produce resources that are not
randomly correlated in order to control the structure of the generated data
set and gain realism. A sensible method to implement such a correlation is to
produce data over a specific real-world-like schema that supports various kinds
of relationships (i.e. one-to-one, one-to-many, many-to-many).
B. Scaling of data. The generator should be able to generate big datasets suitable
for evaluating how the tasks/applications (or the RDF systems upon which they

Title Suppressed Due to Excessive Length

are built) scale.
C. Generation of anonymous data. The generator should support the creation
of blank nodes as a percentage of the totally generated resources.
D. Connectivity in anonymous data. The generator should allow controlling the
way blank nodes are connected using various features like diameter, density,
clustering coefficient. The connectivity between the anonymous and the named
data should also be controlled (through the schema and a similarity mode).

3.2 The Social Network Schema

Analogously to the UBA generator [5], we have created a schema that describes
some basic classes and relations inside a social network. It is illustrated as a
UML class diagram in Figure 1. A social network is the minimum unit of data
generation. The primitive building block of this network is the class Person

representing the members of this network. Each person has its personal info, de-
scribed through its name (first name and last name), its address (street, zipcode,
number and city), its gender and its birth date. Additionally, it has one or more
public messages (where each public message is characterized by its content and
its date). The instance personal info has its own security mode, which can get
one of the following values: FriendsOnly, Public, Private.

Fig. 1. The Social Network Schema of BGen

Each person is also connected with other persons through the hasFriend

property indicating who is friend of whom. Apart from the friendship connec-
tions, other relationships (parentOf, siblingOf) can be created, too.

Authors Suppressed Due to Excessive Length

The class diagram of Figure 1 is represented in RDF/S and all classes are
represented as instances of the rdfs:Class, while the ranges of their attributes
are represented as subclasses of the rdfs:Literal. The enumeration classes
(Gender mode, Security mode) are represented through the owl:DataOneOf. To
make the schema as realistic as possible, some restrictions were applied based
on common sense and domain investigation: they are denoted in Figure 1 by the
multiplicities of the depicted associations, e.g. each person has one personal info,
while it can have more than one public messages and friends.

3.3 Instantiating the Social Network Schema: Example

Here we provide an example showing how the schema is instantiated. Figure 2
shows a person (always represented as a blank node instance) accompanied with
its personal info, its messages etc. inside a social network, named sn:socialNet1

(always represented as a URI instance). We shall call this a BPerson instantia-

tion.

���������	
��

������

�����

��

����
�������

�
�������

����
����������

���������������

�����
�����

������������

����������

 ��

����
����

!�
���"

#
�$%��$&'�(�������(

��%���

���������

	
��
�����

����

������������������

��

�����

��������	
���

�
�
�
�
�
�
�
��
�
�	

�
�

�����%���

)
���*

���+���
��

���,
����

	
�������	���	

�
���������

Fig. 2. A simple instantiation paradigm

The decision on how many of the generated instances inside a BPerson in-

stantiation will be presented as blank nodes is based on a parameter named
|bPer|, where |bPer| ≥ 1 (i.e. a person is always instantiated as blank node),
while |uPer| controls how many will be presented as URIs. For the BPerson

instantiation of Figure 2 we can see that |bPer| = 4 and |uPer| = 3 (3 URI
instances). Although all classes of the social network schema can potentially
acquire blank nodes as instances, the classes City and Activity are instantiated
only by URIs because these resources need to be identified and indicated locally
and even globally in real-world-like datasets.

Notice that each BPerson instantiation produces exactly one maximal tree
of blank nodes, that is called bTree (nodes and edges in bold in Figure 2). More
complex structures of blank nodes (e.g. cycles) require more than one BPerson

Title Suppressed Due to Excessive Length

instantiations to be connected and will be analyzed later. For the case where
|bPer| = 1 the bTree is actually a single node and its height is 0, while as |bPer|
increases it becomes wider and its height can come up to 2 (the schema itself
poses this upper bound, as the longest paths that can be created for a BPerson

instantiation is hasPersonalInfo-address and hasPersonalInfo-name).
For comprehension reasons we further separate a BPerson instantiation into

two parts: (a) the isolated part that contains the personal information, the ac-
tivities, and the public message(s) (upper right part of Figure 2), and (b) the
connection part that contains all the connections of the person with other per-

sons (lower left part). These connections are achieved through the properties
hasFriend and parentOf (or siblingOf).

Let us now focus on the way a person is connected with other persons. To
make the example as simple as possible, we shall consider the whole isolated

part instantiation of a person as one instance that we will illustrate as a single

node for visualization convenience. In Figure 3 (left) we have three BPerson

instantiations which are connected through two friendship properties. Essentially
three bTrees are connected and merged under a common tree, which will be
called BComponent. However, this component is not always that simple. Figure
3 (right) shows a more complex connection between seven BPerson instantiations

through six friendship properties, two parent relations and four sibling relations.
We can now formalize the notion of BComponent.

��� ���

��������

Fig. 3. The construction of two BComponents

Definition 1. We call a triple btriple if it contains only one blank node, and
bbtriple if it contains two. Each maximal set of connected bbtriples of an RDF
graph G forms a sub-graph, called BComponent of G. ⋄

It follows that Figure 3 illustrates two BComponents. These components and
their features are crucial for controlling the blank nodes connectivity (analyzed
shortly). In the context of the social network schema of BGen, a BComponent

actually forms a community of connected persons.

3.4 Controlling the Complexity of BComponents

The problems, whose tasks are under evaluation (e.g. isomorphism checking,
optimal bnode matching), become hard or even intractable for cases where the
BComponents contain blank nodes that are connected with properties of the

Authors Suppressed Due to Excessive Length

same label and where their directly connected named parts are similar enough
(i.e. blank nodes of the same rdf:type). In such cases, each blank node cannot
easily be distinguished from the others and the evaluated functions either become
more time consuming, or their output deviates significantly from the optimal one.
Therefore, the following parameters are critical for controlling the BComponents

and generating the desired datasets.

Intra-BComponent complexity (morphology, clustering coefficient, density)
The generator’s parametermorphology controls how the blank nodes of a BCom-

ponent are connected through hasFriend properties, and can take four values: 1)
‘Single’ corresponding to a BComponent with only one person (i.e. ‘anti-social’
community), 2) ‘Tree’ corresponding to a BComponent whose persons form a
directed tree structure (i.e. ‘pyramid’ community), 3) ‘DAG’ corresponding to
a BComponent whose persons form a directed acyclic graph (i.e. ‘semi-sociable’
community), and 4) ‘Graph’ corresponding to a BComponent whose persons form
a graph with directed cycles, like that in Figure 4 (i.e. ‘sociable’ community).
Note that the hasFriend property is not symmetric and both directions should
be defined explicitly in order two persons to be friends of each other.

� !

hasFriend

sn:Tennis

sn:Football
"#$%&'()('*

sn:Football +,-./012103 � 4 � 5

"#$%&'()('*

Fig. 4. A BComponent with similarly structured blank nodes

As a refinement parameter (over the morphology) we propose the parameter
average clustering coefficient, C̄ (formulated in equation 1) [16], that gives an
average of the local clustering coefficients, Ck (formulated in equation 2), that
quantifies the degree to which the friends of each person (incoming and outgoing)
in the BComponent BC are friends between them (i.e. how strongly connected
the community is). In the following equations assume that n is the number of
blank node instances of the class Person inside the BC.

C̄ =
1

n

n∑

k=1

Ck, (1)

Ck =
|{(s, hasFriend, o) ∈ BC | s, o ∈ DFG(k)}|

|DFG(k)|(|DFG(k)| − 1)
, where (2)

DFG(k) = {s | (s,hasFriend, k) ∈ BC} ∪ {o | (k, hasFriend, o) ∈ BC}

Title Suppressed Due to Excessive Length

Note that only the hasFriend property and the instances of the class Person
are taken into account. For the Single and Tree morphologies C̄ = 0, while
for the DAG and Graph morphologies C̄ ∈ (0, 1]. For example, for the Graph

BComponent of Figure 4 the average clustering coefficient is C̄ = 1/2.
For making the dataset more realistic we allow other relations (apart from

hasFriend) to exist between two persons (i.e. the relations parentOf and
siblingOf for our schema). The number of these properties inside a BComponent
is computed by the parameter density [3], D (formulated in equation 3).

D =
|{(s, parentOf, o) ∈ BC} ∪ {(s, siblingOf, o) ∈ BC)}|

n(n− 1)
(3)

Density actually counts the number of parentOf and siblingOf relations that
are going to be added between the persons of the BComponent. Even though the
theoretical upper bound of density is 1, it will rarely have high values (i.e. it is
very rare all the persons of the BComponent to be parents or siblings between
them).

BComponent similarity It is not hard to see that the named parts of the
RDF graphs assist the matching algorithms to identify and match their blank
nodes. In our schema the named information (URIs or literals) that is connected
directly with the person (i.e. activity, personal info, public messages) gives to this
blank node a higher discrimination ability. For instance, in Figure 4 person : 1
differentiates from person : 2 through its different activity. On the other hand,
persons : 2 and : 3 have exactly the same named parts (i.e. both of them have
Football as their activity). The similarityMode of the generator provides the
ability to make the adjacent named structure of the blank nodes as similar as
possible by (i) turning more URIs to blank node instances (increasing the |bPer|
parameter), (ii) making more URIs and literals same (i.e. more persons with
same activity, street or city). In particular, the generator supports three scales
of similarity: easy, medium, and hard. As it scales up, the similarity becomes
higher and thus the bnode matching (as well as other tasks like blocking [13])
becomes more difficult.

3.5 The Generation Algorithm (Parameters and Phases)

The main algorithm of BGen takes the following seven input parameters4 that
express the desired features of the data set to be created:
1. N : the number of resources of the graph
2. P : the number of persons
3. |BC|: the number of BComponents (i.e. the number of communities of the

social network)
4. [minDmtr, maxDmtr]: the range of the diameter5 between the persons of the

BComponents. Diameters will be distributed uniformly to the BComponents.

4 In case the combination of the values produces non-valid states, the user is urged to
adjust them appropriately.

5 The diameter is the greatest distance between any pair of vertices [7].

Authors Suppressed Due to Excessive Length

5. morphologies: a subset of {Single, T ree,DAG,Graph} that controls how
the persons of the BComponents are connected (as described earlier)

6. mode1: its range is {realistic, uniform, powerlaw} and controls the dis-
tribution of the BComponents to the morphologies. The realistic mode dis-
tributes them according to the results of an analyzed corpus of real data in
[10], the uniform mode distributes them equally, while the powerlaw mode
approximates the 80 - 20 rule [12].

7. mode2: its range is {random, uniform, powerlaw} and controls the distri-
bution of the persons to the BComponents. The random mode distributes
the persons randomly, the uniform equally, and the powerlaw according to
the Zipfian distribution [12].
In order to give the user the ability to evaluate the approximation functions

to a greater extent, the following three parameters are also configurable (their
values are auto-configured in case they are not given as input):
1. [minC̄, maxC̄]: the range for the average clustering coefficient between the

persons of the BComponents.
2. [minD, maxD]: the range of the density between the persons of the BCom-

ponents.
3. similarityMode: its range is {easy,medium, hard} and controls the simi-

larity of the named resources connected to the BComponents.
Note that for the ranges ([minC̄, maxC̄],[minD, maxD]) their values are dis-
tributed uniformly to the BComponents. Recall that both morphology and av-

erage clustering coefficient are computed in terms of the hasFriend properties
of a BComponent, while the density is computed in terms of the parentOf and
siblingOf properties. Let us now see the production process. Initially, the gen-
erator enters the Preparation phase (described in §3.6) that aims at computing
all the necessary parameters for the internal steps of the algorithms (i.e. it com-
putes the features of each BComponent that will be created). Then, it enters the
Instance Generation phase (described in §3.7) that produces all the BCompo-

nents, as well as the named resources that are connected with them. The last
phase is the Connection phase, that connects all the generated BComponents

under the finally generated graph. Below we present analytically these three
phases.

3.6 Phase I: The Preparation Phase

The Preparation Phase takes as input the parameters of the main algorithm and
outputs a set of arrays; one array with |BC| elements for each feature of the
BComponents to be created. Thus, each BComponent BCi of the final graph is
described through the values of the i-th elements of the exported arrays.

At first, the algorithm computes the number of blank nodes (B) and the
number of URIs (U) taking N , P and similarityMode into account. The rest
of the algorithm computes the following features of each BComponent BCi: (a)
|bPeri|: the number of blank nodes inside each one of the BPerson instantia-

tions of BCi, (b) |uPeri|: the number of URIs inside each one of the BPerson

instantiations of BCi, (c) |peri|: the number of persons in BCi, (d) mori: the

Title Suppressed Due to Excessive Length

morphology of BCi, (e) dmtri: the diameter of BCi, (f) |friendsi|: the number of
friends that each person of BCi has, when C̄i = 0, (g) C̄i: the average clustering

coefficient of the persons in BCi and (h) Di: the density of persons in BCi.
Specifically, in order to compute the |uPeri|, the U URIs are shared to

the P persons uniformly. The |BC| BComponents are split to the available
morphologies (⊆ {Single, Tree, DAG, Graph}) based on the parameter mode1.

The |Single| BComponents can be easily initialized, since all their features
are fixed. For the rest |BC| − |Single| BComponents, |peri| is decided according
to mode2.

It follows the computation of the parameters dmtri, C̄i and Di which applies
the uniform distribution to the ranges [minDmtr, maxDmtr], [minC̄, maxC̄]
and [minD, maxD], respectively. Finally, the parameter |friendsi| is computed
for each BComponent separately by solving the following equation:

dmtri =
⌈

log|friendsi|(|friendsi| − 1) + log|friendsi| |peri | − 1
⌉

As regards dmtri, the main structure of each BComponent forms a non-perfect
k-ary tree of size N , where k = |friendsi| and N = |peri| (recall the connection
of bTrees into a common tree). The diameter of the BComponent, dmtri, is
actually given as the height of this tree6. Afterwards, this tree is enriched with
more hasFriend properties according to the value of C̄i.

3.7 Phase II: Instance Generation and Connection phase

At this phase BGen has a table with all the values that are needed to describe
the BComponents. For each tuple i of this table it produces the triples of the
BComponent BCi. Having explained the features of a BComponent, let us show
how the parameters determine the generated sub-graph through the examples of
Figure 3. Recall that each isolated part instantiation (illustrated as a super node
in Figure 3) is actually a set of instances of a BPerson instantiation. For this
example, suppose that the similarityMode is set to easy for both BComponents;
each instantiation contains only one blank node, so |bper1| = |bper2| = 1.

For the first BComponent, say BC1, we get that there are three BPerson

instantiations, so |per1| = 3 and dmtr1 = 1. From these values, we get that
each person (apart from the leaf nodes) should be connected with two outgoing
hasFriend relations, so |friends1| = 2. Finally, mor1 = Tree, C̄1 = 0, as no
cycles or DAGs are formed between them through the hasFriend relations, and
D1 = 0, as no other relations (i.e.parentOf, siblingOf) exist.

For the second BComponent, say BC2, there are seven BPerson instantia-

tions, so |per2| = 7. As, dmtr2 = 2 each one of the persons is connected with
two outgoing hasFriend relations; so |friends2| = 2. Moreover, there are four
siblingOf relations and two parentOf relations, as D2 = 0.07. Again, since
mor2 = Tree, C̄2 = 0 (i.e. there are no cycles or DAGs between them through
friendship relations).

6 http://xlinux.nist.gov/dads/HTML/perfectKaryTree.html

Authors Suppressed Due to Excessive Length

Phase III: Connection phase Finally, all the created BComponents with their
connected information (URIs and literals) are connected into the same graph.
This is implemented by connecting each person with a common instance of the
Social Network.

4 Usage and Experimental Evaluation

The experimental evaluation7 has two main objectives: (a) to investigate the
time efficiency of the generator and how that depends on the input parameters
(§4.1), and (b) to provide evidence that the selected features succeed in capturing
the complexity that is crucial for the intended tasks (§4.2).

4.1 Evaluating efficiency

In brief, for creating a data set of 5 millions triples the required time ranges from
3.5 to 8 minutes depending on the complexity of blank nodes. These timings do
not include the time required for saving in disk the output which depends on the
technology of the storage media, rather than the problem at hand. Most of the
time is spent in the instance generation phase, so the algorithm does not have
any forbidding complexity, memory requirements or overhead.

Increasing the Number of Resources We generated datasets having BCom-

ponents of moderate complexity, where their resources (N , P , |BC|) gradually
scale up ceteris paribus (i.e. keeping the complexity of the BComponents stable).

Figure 5(left) shows how this scaling impacts the total time, as well as the
partial times for (i) the preparation phase, (ii) the construction of blank nodes in
the BComponents, (iii) the generation of the rest of the graph (URIs and literals)
(i.e. population time), and (iv) writing triples to the repository. It is evident that
the times increase linearly to the number of resources. Just indicatively, for the
given main memory space, BGen can generate a data set of up to 15 million
resources (53 million triples) in less than 10 minutes.

Increasing the Complexity of Resources Regarding the rest of the param-
eters, we produce datasets with a stable number of resources (N = 5 million)
scaling up the complexity of the BComponents, by gradually scaling the com-
plexity parameters.

Figure 5(right) shows four different groups of datasets and how the total
time is affected when increasing the complexity of the BComponents. Inside each
group the aforementioned parameters are scaled up in three complexity levels.
Clustering coefficient gets [0.2, 0.4],[0.6, 0.8] and [0.6, 0.8], density gets [0, 0.1],

7 All experiments were conducted using the Sesame SailRepository over Main Mem-
ory Store (http://openrdf.callimachus.net/sesame/2.7/apidocs/org/openrdf/
repository/sail/SailRepository.html)using a PC with Intel i5-2500 3.3 GHz, 8
GB Ram, running Windows 7 (64-bit).

Title Suppressed Due to Excessive Length

[0, 0.2] and [0, 0.4], while the similarityMode gets easy, medium and hard, for
each complexity level, low, medium, high, respectively. From one group to the
other, |BC| is scaled down creating BComponents with more persons (as shown
in the X-axis). As the complexity of BComponents increases we can see a linear
increase in the total generation time; thus BGen remains time efficient.

The only restriction factor for BGen is the data structure that temporarily
stores the hasFriend properties of a current BComponent. On the worst case
scenario, where |BC| = 1 and C̄ =1, the space complexity comes to P 2. Indica-
tively, for the given memory space, in the extreme case where N = 107, P = 107,
and |BC| = 1 we get an out of memory exception for C̄ = 0.8.

Fig. 5. Generation times scaling up the resources and their complexity

4.2 Using the Generated datasets for Benchmarking

For checking that the selected features succeed in capturing the complexity
that is crucial for tasks like blank node matching, we generated one group of
eight datasets scaling up the values of the average clustering coefficient for each
similarityMode, easy, medium and hard, respectively. Each generated dataset
has N = 25,000, P = 3,000, |BC| = 10, [minDmtr, maxDmtr]= [1, 3], contains
graph morphologies, [minD, maxD]= 0, and mode1 = mode2 = uniform. The
range [minC̄, maxC̄] is [0, 0.2] for the dataset KB1, [0,0.4] for KB2, [0.2, 0.4]
for KB3, [0.3,0.5] for KB4, [0.4, 0.6] for KB5, [0.5, 0.7] for KB6, [0.6, 0.8] for
KB7, and [0.7, 0.8] for KB8. Each dataset is compared to itself. Because of space
limitations, the datasets were only tested using the signature-based blank node
matching method introduced in [15]8. This method returns a mapping between
the blank nodes of two graphs, aiming at minimizing the delta size when compar-
ing these graphs. However, note that this method only approximates the optimal
solution. The following experiments will allow us to consider which factors and
in what way make this method deviate from the optimal. Figure 6 (left) shows
the delta size, when each one of these datasets is compared to itself and Figure
6 (right) shows the time needed for this matching. It is evident that both the
average clustering coefficient and the similarityMode, affect the deviation from
the optimal delta size, that is zero, as the dataset is compared to itself. They

8 The datasets are also tested using other blank node matching methods in http:

//www.ics.forth.gr/isl/bgen/results.

Authors Suppressed Due to Excessive Length

also affect the time efficiency of the signaturemethod. Recall that according to
[15] the method can map 153,600 bnodes in 11 seconds. The current experiments
show that for the non-easy similarityMode the method loses its capability to
detect the optimal solutions even for low values of the average clustering co-

efficient. As these values increase the deviation is increased gradually. Notice
that the delta size comes up to 234, 676 triples for the last pair of datasets,
where each dataset contains 291, 000 triples, has [minC̄,maxC̄] in [0.6, 0.8] and
the similarityMode is hard. As regards time, the signature-based method has
time complexity linear to the number of blank nodes (i.e. P * |bPer|); therefore
the increase of the clustering coefficient does not impact significantly on time.
The small increases are explained because of the increase of the hasFriend prop-
erties that means bigger signatures. As the similarityMode increases we observe
bigger increases in time because of the increase of the number of blank nodes
(through the increase of bPer).

Fig. 6. Using the generated datasets to evaluate the signature method

In conclusion, we can say the generated datasets succeed in making clear
how approximate solutions deviate from the optimal solution, and thus such
datasets are suitable for comparatively evaluating such methods, e.g. for rapidly
evaluating the potential and limits of various heuristics. All datasets used in this
paper, as well as the current version of the generator are accessible for use9.

5 Concluding Remarks

BGen is the first Semantic Web synthetic data generator able to create datasets
with blank nodes appropriate for comparing and benchmarking various semantic
data management tasks, e.g. equivalence and comparison.

Since the complexity of solving optimally such problems depends on the con-
nectivity of blank nodes, the datasets produced by BGen can aid the assessment
and the comparative evaluation of the various techniques that have been (or will
be) proposed for carrying out such tasks.

The proposed method can produce variable in size and in complexity struc-
tures of blank nodes controlled through a plethora of configuration parameters,
e.g. morphology (tree, DAG, cycle), diameter, density, clustering coefficient, sim-
ilarity of the named resources connected to the blank nodes.

9 http://www.ics.forth.gr/isl/bgen/results

Title Suppressed Due to Excessive Length

The construction algorithm has linear time and space requirements with re-
spect to the number of resources. We also provided evidence that the selected
features succeed in capturing the complexity that is crucial for the intended
tasks, by reporting experimental results of bnode matching over the produced
datasets. The results make evident how approximate solutions deviate from the
optimal ones.

In the future we will use BGen for evaluating (and devising new) bnode
matching techniques. We also plan to make this generator publicly available and
associate it with LDBC10. Moreover one could easily extend the generator, e.g.
by adding parameters controlling the lexical similarity of URIs and literals, for
using it also for entity matching.

References

1. C. Bizer and A. Schultz. The berlin SPARQL benchmark. International Journal
On Semantic Web and Information Systems, 2009.

2. L. Chen, H. Zhang, Y. Chen, and W. Guo. Blank Nodes in RDF. Journal of
Software, 2012.

3. Thomas F. Coleman and Jorge J. More. Estimation of Sparse Jacobian Matrices
and Graph Coloring Problems. SIAM Journal on Numerical Analysis, 1983.

4. Y. Guo, Z. Pan, and J. Heflin. An evaluation of knowledge base systems for large
OWL datasets. In International Semantic Web Conference, 2004.

5. Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge base
systems. In Selected Papers from the Intern. Semantic Web Conf. ISWC, 2004.

6. C. Gutierrez, C. Hurtado, and A. Mendelzon. Foundations of Semantic Web
Databases. In Proceedings of the Twenty-third Symposium on Principles of
Database Systems (PODS), 2004, Paris, France, 2004.

7. F. Harary. Graph Theory. Addison-Wesley, Reading, MA, 1969.
8. T. Heath and C. Bizer. Linked Data: Evolving the Web into a Global Data Space.

Morgan & Claypool, 2011.
9. T. Kfer, A. Abdelrahman, J. Umbrich, P. O’Byrne, and A. Hogan. Observing

Linked Data Dynamics. In ESWC, 2013.
10. A. Mallea, M. Arenas, A. Hogan, and A. Polleres. On Blank Nodes. In Procs of

the 10th Intern. Semantic Web Conference (ISWC 2011), 2011.
11. P. Minh Duc, P. A. Boncz, and O Erling. S3g2: A Scalable Structure-Correlated So-

cial Graph Generator. In TPC Technology Conference on Performance Evaluation
& Benchmarking, 2012.

12. M. E. J. Newman. Power laws, pareto distributions and zipf’s law. Contemporary
Physics, 2005.

13. G. Papadakis, E. Ioannou, T. Palpanasa, C. Niederee, and W. Nejdl. A blocking
framework for entity resolution in highly heterogeneous information spaces. IEEE
Knowledge and Data Engineering, 2012.

14. R. Pichler, A. Polleres, F. Wei, and S. Woltran. dRDF: Entailment for Domain-
Restricted RDF. In Extended Semantic Web Conference (ESWC), 2008.

15. Y. Tzitzikas, C. Lantzaki, and D. Zeginis. Blank Node Matching and RDF/S
Comparison Functions. In Procs of the 11th Intern. Semantic Web Conference
(ISWC 2012), 2012.

10 http://www.ldbc.eu/

Authors Suppressed Due to Excessive Length

16. D.J. Watts and S.H. Strogatz. Collective dynamics of small-world networks. Na-
ture, 1998.

