New generation transgenic techniques in rabbits

László Hiripi National Agricultural Research and Innovation Center, Gödöllő

2nd Congress of the Slovenian Society for Laboratory Animals

Why to use rabbits as model animals

• Prenatal development (especially long lasting effects on health and complex disorders)

•Diabetic pregnancy

•Atherosclerosis (Spontan mutants), transgenic rabbits

•Eye research (retinal degeneration)

•Arrhythmogenesis/ heart diseases

•Antibody production

Transgenic rabbit as a bioreactor

Ruconest- Human C1 inhibitor

Produced in the milk of transgenic rabbits

For the treatment of hereditary angioedema

Alpha glucosidase produced in the milk of TR. Rabbits-For Pompe disease Clinical trials phase III

First generation transgenic method was microinjection in rabbits

Surgical transfer

Problems and solutions

Transgenic rabbits

Additive transgenesis

Problem: efficiency

Targeted transgenesis (knock-out, knock in, allele exchange)

Problem: ES cells

New technologies: Transposon transgenesis

nuclease technologies

Transposon mediated transgenesis

RNA TRANSPOSON

DNA TRANSPOSON

Important in biotecnology

Transzposons are effective weapons in different fields of biotechnology

Insertional mutagenesis

How it works

The Sleeping Beauty system

•DNA transposon (Tc1/mariner)

•Reconstructed from salmon

•100X more efficient type by mutagenesis

•Integration to TA sequence

•Works in different species

Elements of SB-100 System

1.

2.

RESULTS

Embryos	Transferred	No. mothers	Efficiency	TG lines
644	472	25/10 40 %	7/46 15 %	4

Determination of integration sites, copy number

Founders	Integration	
	site	
SB ₃ JT	19 Chr	
SB ₃ BT	8 Chr	

Expression

Liver Testis

Summary

	Microinjection	Transposon	
Efficiency	1-6 %	15%	
Capacity	>2 Mb	<6 kb	
Integration	randomly	Randomly (TA)	
Form of integration	Concatamers	Single copy 1-3 integration sites	
Expression	++++	+++++	
Transgene transmission	++++	++++	

How to use our GFP rabbit

-Produce rabbit pluripotent stem cell lines

-experimental surgery methods (cornea, cartilage)

"Designer nuclease technology"

- Artificial systems based on natural protein systems
- •Always harbour DNA binding part and a cleavage domain

Work as specific molecular scissors

Zinc finger nuclease Talen nuclease RNA mediated Crispr system

ZFN in rabbits- IGM targeted

Our experiences with Zinc finger nuclease in rabbits

- •Very effective: 20-25% of founders are positive
- •Founders are usually mosaic (less than 50% of F1 generation are mutant)
- •Founders always transmit transgene to F1
- •F1 generation can carry a different mutation than founder's ear. Special mosaicism.

 $\Delta 2$ mutation vs $\Delta 4+1$

Why we have mosaic founders?

TALEN experiments in rabbits

One published paper with 2 different knock outs

TALEN rabbit experiments in our lab

Flushed zygotes	Transferred zygotes	Recipients/ deliveries	Transgenics/new borns
213	178	10/5 50%	?/15

CRISP-R was extremly efficient in rabbits

Target gene	No. of embryos injected	No. of BL (%)	No. of BL sequenced	Mutants (%)	Bi-allelic mutations (%)
CD36	25	15 (60.0)	15	10 (66.7)	8 (80.0)
LDLR	18	11 (61.1)	10	5(50.0)	0 (0)
CFTR	60	33 (55.0)	19	11 (55.6)	4 (36.3)
APOE	67	33 (49.2)	23	16 (69.6)	16 (100)
APOCIII	38	13 (34.2)	9	4 (44.4)	0 (0)
LEP	18	12 (66.7)	12	2(16.7)	0 (0)
LEPR	19	13 (68.4)	10	1(10.0)	0 (0)
RyR2	20	13 (65)	10	10 (100.0)	8 (80.0)
SCARB1	25	16 (64.0)	8	2 (25.0)	0 (0)
Total	290	159 (54.8)	116	61 (52.6)	36 (59.0)

Targeted insertion is possible but not reported in rabbits

The result is homologous recombination and gene knock in or allele exchange

Nuclease technology is the ultimate technique to produce targeted gene modifications

- •Relatively cheap
 - Very specific
- •Efficient in rabbits
- Any targeting event can be produced
- •Even single bp exchange can be tested
 - •TRACELESS TECHNOLOGY
- •Open a new era for large animal models

REGULATION???

Thank you for attention!

