Three-dimensional cellular spheroides in oncology researcha bridge between *in vitro* and *in vivo* studies

#### Simona Kranjc

Department of Experimental Oncology Institute of Oncology Ljubljana

### **Spheroids**



increases confidence in *in vitro* testing results

- stem cell research
- tissue engineering

#### **Characteristics of 2D and 3D cell cultures-spheroids**

| Characteristic                                      | 2D                                                  | 3D                                                                                                                                                                                                                                                           |
|-----------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Secretion of<br>extracellular matrix<br>(ECM)       | no                                                  | collagens, laminin, fibronectin,<br>glycosaminoglycans;<br>similarly organized as in the tissues                                                                                                                                                             |
| Cell-cell interactions                              | no                                                  | yes (homo and hetero interactions)                                                                                                                                                                                                                           |
| Cell- ECM interactions                              | no                                                  | yes (cell-matrix adhesions)                                                                                                                                                                                                                                  |
| Proliferation and growth rate                       | activated, fast                                     | regulated; slower                                                                                                                                                                                                                                            |
| Gene expression and<br>protein secretion<br>profile | qualitatively<br>and<br>quantitatively<br>different | upregulation of the expression of genes:<br>involved in progression and metastatic<br>processes (IL-8, GROα ali MIP-3α),<br>regulation of the ECM components,<br>intercellular junctions<br>secretion of: growth factors,<br>proangiogenic factor VEGF, TNFα |
| Drug sensitivity                                    | more                                                | less                                                                                                                                                                                                                                                         |

#### **Characteristics of spheroides**

- nutrient, oxygen and waste gradients
- necrosis area 2r>100  $\mu$ m; 2r>500  $\mu$ m hipoxia and necrosis in the center
- transplation *in vivo*



| Method          | Advantages                                                                                                                                                                               | Disadvantages                                                                                                                                                                                                    |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hanging<br>drop | <ul> <li>-inexpensive (96 well plate, petry dish coated with agar)</li> <li>-homogenous</li> <li>-suitable for high-throughput testing</li> <li>-easily accessible spheroides</li> </ul> | <ul> <li>-expensive if using specialised plates</li> <li>-difficult exchange of medium due to small culture volume</li> <li>-labour intensive if preparing the plates</li> <li>-diameter up to 600 μm</li> </ul> |



#### Hanging drop: Human adenocarcinoma colon cancer HT29 spheroides

#### 3 days after seeding cells



#### 10 days after seeding cells

| 300 cells        | 500 cells     | 1000 cells   | 2000 cells    | 3000 cells   |
|------------------|---------------|--------------|---------------|--------------|
|                  |               |              |               | 28 Ja        |
| 2r 464,4µm± 32,3 | 480,6μm± 48,6 | 535,9µm± 9,1 | 546,4µm± 30,0 | 543,1µm±10,1 |

| Method             | Advantages                                                                                                                                                                                                                                                                                                              | Disadvantages                                                                                                                            |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Forced<br>floating | <ul> <li>-simple, fast (96 well plate ULA or<br/>normal plate coated with agar /diffrent<br/>biopolymer; round or conical bottom)</li> <li>-inexpensive</li> <li>-suitable for high-throughput testing</li> <li>-easily accessible spheroides</li> <li>-more culture medium</li> <li>-diameter up to 1500 µm</li> </ul> | <ul> <li>-variability in size and<br/>shape (fixed cell no./well!)</li> <li>-plate coating is relatively<br/>labour intensive</li> </ul> |



#### Spheroid generation



ULA 96-well round-bottom plate

## Forced floating: Human squamous cell carcinoma FaDu spheroides

#### 3 days after seeding cells on 96 well plate coated with agar



#### 13 days after seeding cells on 96 well plate coated with agar



| Method          | Advantages                 | Disadvantages                                  |
|-----------------|----------------------------|------------------------------------------------|
| Agitation-based | -simple to culture cells   | -specialised equipement                        |
| approaches:     | -large scale production    | -no control over size; additional culture step |
| -spinner flask  | relatively easily          | needed to uniform the size                     |
| bioreactors     | achievable                 | -time consuming due to extra step required     |
| -rotational     | -motion of culture assists | for homogenous spheroid                        |
| culture system  | nutrient transport         | -cells exposed possibly to shear force in      |
|                 | -easily accesible          | spinner flask (? sensitive cells)              |
|                 | spheroides                 |                                                |
|                 | -diameter up to 1 cm       |                                                |



| Method                                                                                                                                    | Advantages                                                                           | Disadvantages                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Matrices (matrigel)<br>and scaffolds<br>(collagen, laminin,<br>alginate and other<br>biodegradable<br>materials, which<br>form hydrogels) | -provide 3D<br>support that<br>mimics in vivo<br>-some incorporate<br>growth factors | <ul> <li>-expensive for large scale production</li> <li>-difficulty in retrieving cells following 3D</li> <li>culture formation</li> <li>-nonhomogenous size</li> </ul> |



- Growth factors

| Method                                    | Advantages                               | Disadvantages                                                                                                      |
|-------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Microfluidic<br>cell culture<br>platforms | -suitable for high<br>throughput testing | <ul> <li>-require specialised equipment</li> <li>-further analysis of spheroides are</li> <li>difficult</li> </ul> |



Methods-monocultures

**Methods-cocultures** 

#### **Spheroides-cocultures**

 stable transfected cells with reporter gene (GFP, Luc, dsRed, β-gal) or labeled with fluorescent dye enable easy monitoring and analysing

> HepG2-GFP, 10 days old



 fibroblasts with tumor cells (epithelial mesenchimal transition-EMT)







Model system for vascularization

 normal endothelial cells with fibroblasts or stem cells (vascularization)

*Fennema, Trends in Biotechnology, 2013, 31-2* 

#### Growth analysis:

- inverted light or fluorescent microscopy (software for measurement)
- microplate reader (Tecan; Presto Blue, Alarmar Blue, MTS) for evaluating viability, Volume (µm³) proliferation, migration
- cytometry (Celigo cytometer, fast& automated analysing)
- confocal mycroscopy

#### Growth of human squamous cell carcinoma FaDu spheroides



# Analysing and evaluating of spheroides after electrochemotherapy



Hystologycal analysis of spheroides:

- embeeding in parafin, Tissue Tek
- immunohistochemistry analysis: hematoxylin and eosin staining, gradient of proliferation (Ki67), hypoxia (glucose transporter 1; GLUT-1)



Vinci et al., 2012, BMC Biology, 10:29

Standard analysis on molecular and protein level

Migration assay on matrix protein:

• migration of cells from spheroid on matrix proteins (fibronectin)





U-87 MG dispersed migration

KNS42 radial migration

Mouse mamary carcinoma TSA spheroides

Vinci et al., 2012, BMC Biology, 10:29

#### Matrigel invasion assay :

tumor spheroid embeeded in Matrigel



Inverted microscopy

Mouse mamary carcinoma TSA spheroides



24 h



Celigo<sup>™</sup> cytometer

#### U-87 MG tumour spheroid invasion



Vinci et al., 2012, BMC Biology, 10:29

## Conclusions

- simple and quite unexpensive to grow the spheroides
- the interactions and comunications between the cells in spheroides, secretion of extracelullar matrix - in vivo phenotype of cells is retained
- in spheroides nutrient, oxygen and waste gradients are present
- studies performed on spheroides gives us more reliable results *in vitro*
- importantly complies with the ethical principles of animal research (3 R's: Reduction, Refinement, and Replacement).

## Acknowledgements

- prof. dr. Gregor Serša
- prof. dr. Maja Čemažar
- dr. Tanja Dolinšek
- Mira Lavrič
- ARRS-Slovenian Public Research Agency



Javna agencija za raziskovalno dejavnost Republike Slovenije

• COST







Laboratoire Européen des Applications des Impulsions Electriques en Biologie et Médecine