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An alarm clock for 
people who have 
trouble getting 
out of bed





Gruber and Mullainathan

Cigarette Taxes Make Smokers Happier



Common Themes

Theory Testing not Predicting
• Does race affect hiring?

– NOT: What predicts hiring?

• Impact of commitment on 
smoker happiness
– NOT: What predicts (smoker) 

happiness?

Causation not correlation
• Randomly assign name

– NOT: Residual effect of race

• Exogenous tax variation
– NOT: Direct effect of tax
– NOT: quitting on happiness
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Theory Testing

• What does it mean to test a theory?

• Is it any different than a simple hypothesis 
test? `

Kleinberg, Mullainathan, Tan and Zimmerman 



A Fictional Example

• Anachronistic 19th century health researcher
– Mind-body connection: pessimism theory

• How to test? 

• Does room-mate health matter?
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Sets Up An Experiment

• Randomly assigns roommates

• Wants to control for other theories
– Doctor quality
– Ensures roommate assignment does not lead to 

correlated doctor assignment



Pessimism
• Roommate health still matters!

• Concludes support for her theory

• But over time new data comes out
– Someone notices that health of ward-mate matters

• Even if you don’t ever see or or talk to ward-mate
– Someone else had data on instrument/hand washing practices 

and find it matters
– . . . .

• Germ theory eventually rises



What goes wrong?

• This was a good hypothesis test
– Empirical relation is true: room-mate health does matter

• This was a less good theory test (pessimism theory) 
– Structural statement: Pessimism is not the reason

• Most science: theory testing not just hypothesis testing

• Requires a model of scientific theorizing
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But this is not what most 
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Modeling Modeling
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Models

• Models allow generalization
– Can map how X -> M in new contexts 
– Belief that M-> Y0 implies M-> Yi for some other I

• Self control for smoking cigarettes -> for smoking weed

• Note:
– Models are in scientists heads
– Their structure extends past any one data set or Y
– Latent variables analysis cannot extract them with one

data set



Deduction
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Carefree

Control for known models

Is X1 a proxy for some other 
known theory?

Control for those variables

Omitted model bias
X0 proxy for some unknown theory 
How could we control for them?
We do not know them?



Induction
1. Identify all variables S related to M0

2. Predict Y using full variable set: Performance 
3. Predict Y without S: Performance
4. Inductive test: M0 valid if

• Key insight: do not curate inclusion. 
– Curate exclusion 

• Note: Machine learning techniques are what 
allow induction
– Regularization allows high dimensional data analysis



What does Induction Do?

• Controls for all models covered by X
– Both known and unknown

• Suggests theory testing only as powerful as 
diversity of the data

• Does not induct NEW theories
– Interpretability an issue but not the only issue



Prediction
Maximize 
predictive fit

Minimal curation of 
included features

To make 
regularization 
easier

Induction
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test
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Example

• Prospect Theory:
– Losses loom larger than gains

• Key test: Disposition Effect
– Stocks in the loss domain (today price – purchase 

price) should be less likely to be sold



Deductive Test



Creating a Feature Set

• Four functions

• Ranges



Deductive Test
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Inductive Test



The Clone Problem







What is Needed

• More work to help us test structure provided 
by theories
– Expansions of induction
– Other methods?

• Note: 
– Currently we use theories to structure predictions
– But testing theories different than using them
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Policy

• Interested in taking an action (T—treatment). 
Should we or should we not?

• Core issue here is usually causal effect of T
– The unknown: what will outcome Y be without 

treatment

• Pretty far from machine learning



Two Important Policy Problems

• Rain Dances

• Umbrellas



A Very Complex Graphical model
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Causality for Policy

• We focus on causal inference because that’s 
where the lamp shines

• But many policy problems are prediction 
problems



Example

• Defendant comes before judge
– Judge must decide whether to release or not (bail) 

• Defendant when out on bail can behave badly:
– Fail to appear at case
– Commit a crime

• Judge release based on predicted defendant 
misbehavior while out on bail



Important Policy Problem

• Each year police make over 12 million arrests

• Release vs. detain high stakes
– Pre-trial detention spells avg. 2-3 months (can be 

up to 9-12 months)
– Nearly 750,000 people in jails in US
– Consequential for jobs, families as well as crime

Lakkaraju et. al.



Crime Rate Prediction

Holding release rate 
constant, crime rate is
reduced by 0.102
(58.45% decrease)
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Lakkaraju et. al.



Causality Lessons

1. Even for policy causality not always necessary
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• Regression Discontinuity

• Random assignment
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• Difference – in – Differences
– Smoking tax changes
– Many policy changes use this paper

• Instrumental variable

• Regression Discontinuity

• Random assignment







Can Improve on D-in-D

• Choose control variables using a prediction 
model
– Controlling for confounds = predicting the residual

• Replace “by hand” robustness checks with 
“machine” robustness



Can Improve on Other Strategies

• Instrumental Variables
– Choice of exact instrument – prediction problem

• Regression discontinuity
– Choice of control set

• Propensity score matching
– Predict treatment assignment



Causality Lessons

1. Even for policy causality not always necessary

2. Many causal identification strategies can be 
improved by machine learning



What is Needed

• Working on machine learning issues specific to 
policy contexts
– More explicit integration of the policy decision

into the prediction framework 

• Integration of machine learning “technology” 
with causal inference “technology”
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Discrimination

1. Complement experiment: 
– Is race predictive with “machine learning 

controls”? 

2. Massively increase scale of experiment

3. Understand heterogeneity of treatment



Discrimination



Cigarette Smokers

1. Much better data
– Happiness from twitter, instagram, facebook
– Smoking could be inferred directly

1. Better casual inference
– Machine learning for robustness checks

2. Inductive hypothesis testing



Conclusion

There’s a lot of profits in the orange juice market
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