Frontiers in E-Commerce Personalization

Sri Subramaniam VP, Relevance, Groupon (srisub@groupon.com)

1

E-Commerce 1.0 \rightarrow 2.0: Still "Pull"

- E-commerce 2.0 seems to be about: insanely bigger catalogs, insanely fast shipping and user experience
- Search is the dominant finding paradigm
- Weak-intent screens (ex: Home, Browse) have been polluted by Ads, leading to a self-fulfilling tune-out with consumers
- Average **basket size** remains under 1.5
- What happened to the **fun** experience of walking down the aisle in a mall store, picking up stuff you didn't think about?
- Something's missing...

E-commerce 1.0 \rightarrow **2.0**: **Discovery**

- Make online shopping more **delightful**, more like a game
- Bring back **curation** and careful selection of inventory
- **Deliberate serendipity**: make consumers feel they stumbled upon something cool
- Under the hood, massive use of science, and context
- Context = **Mobile**, **Social**
 - Your phone just knows so much about you locations, likes, pins, apps, products you browse
 - Fire up "fun shopping app": voila, the 5 deals you are most likely to buy on impulse, at that time, at that place!

Local: Ripe for Discovery

- Relatively **low inventory** (100Ks, not 100Ms)
- Consumers have **persistent interests**, but are open to serendipity and adjacency
- Consumers are open to new deals around same interests
- Mobile + Local:
 - Consumers are hooked to their devices, creating a persistent connection to exploit
 - We can learn so much more about the user
 - Impulse buying can be huge, if the consumer can be inspired!

Leading the way in mobile commerce

Groupon's vibrant mobile marketplace connects consumers with their local economy

80 million people worldwide have downloaded our mobile app to date

More than $54^{\%}$ of our Global transactions completed on a mobile device in September 2013

One of the 25 most downloaded free apps of all time

Our mobile app is available in 42 countries.

More than 650,000 merchants featured

Sources: Internal Data; iTunes ranking for US stores available here https://itunes.apple.com/WebObjects/MZStore.woa/wa/viewFeature?id=500873243&mt=8&v0=wwwitunes25Bcountdown-appstore

Right deals to the right users using the right medium at the right time

C

Objective Function

Conversion

P(conversion)

• Favors lower price deals

Revenue

E(rev) = P(conversion) * price

 More expensive deals can dominate

Need to balance multiple, often conflicting objectives

Deal Performance

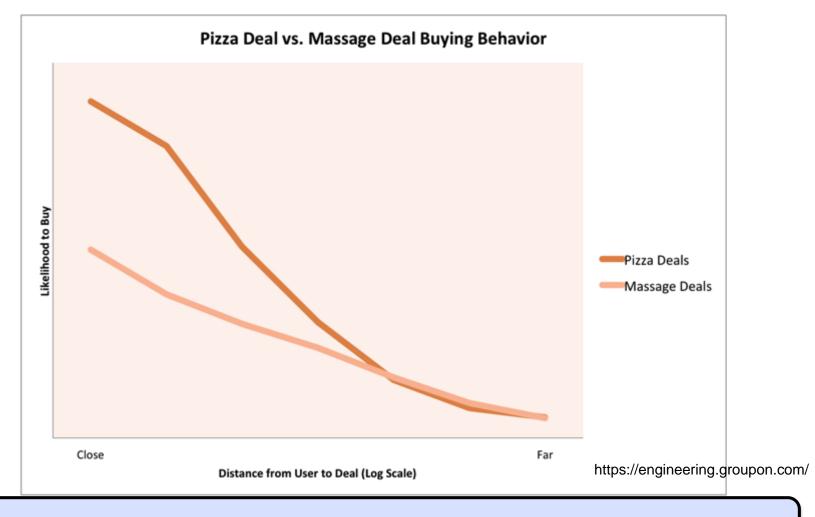
- Merchants are expecting to be heavily "featured" on the first week of running a new deal
- Mobile: glean deal performance within an hour of launch
- Harder in e-mail: need 2-day "pre-feature" period
- Explore / Exploit: give deals a chance, with no predisposition
- **Signals**: Views, Add-to-Carts, Purchases over impressions at specific positions
- Measure correlation with user attributes Male/Female, Age Group, Engagement stage, etc
- **Time decay** applied to emphasize recency of signals

Local: Location, Location, Location

- Why not sort by distance? Nope!
- Its about "**propensity to travel**": how far is a user in a location willing to travel to a deal?
- Varies by:
 - Category: 10 miles for Pizza, 100 miles for LASIK
 - Pop density: 2 miles for pizza in downtown NY vs 20 miles for pizza in Fargo, ND
 - Socio-economic: Less affluent → Affluent, but less of the other way
 - **Suburban/Urban**: Brooklyn \rightarrow Manhattan, not opp.
 - **Travel / Vacation**: Distance from downtown / hotspots, not user's hometown
 - Lat-long: Home address vs current GPS location

Local: Location, location, location!

C



Distance to deal location is key

Location: Zip Affinity scoring

- **Zip affinity** for a deal: Compute affinity with the zip codes from which users are willing to travel to it
 - = Evidence: User activity with deal (views, purchases):
 compute heat map, cut off long tail, normalize
 + Priors: user activity with deals of same category & price
 range in that zip. Ex: Nail salons in 95129 in price range
 \$30-\$50
- **Reverse index**: Given a user's location, filter list of deals that the user may have a propensity to travel to
- **Distance factor**: Use zip affinity to weight the scoring
- Zip codes capture geo-, socio-economic factors.
 - Graticules are less attractive alternative

Location: advanced ideas

- Mobile: glean "hangout" locations:
 - Sample GPS location at night time: probably home
 - Sample at day time: probably work
- Hot spots (restaurants, bars, etc): often not in zip code, or near home. Need to consider nearest (hip) "downtown" location
- Commute from home to work?
- Notify when user is near a deal
 - UX is key to annoying vs delightful

User – Deal – Context Matching

- **Content-based techniques** work well for Local:
 - Persistent interests, transient deals
 - Allows for mixing in user interests from outside (ex: Facebook Likes, etc)
 - Content-based reco combined with deal performance
- User attributes (UA): Gender, Age group, engagement stage, etc
- Deal attribute (DA): categories, semantic tags, price range, etc
- Context attributes (CA): Time of day, Season, Occasion, etc
- **User activity** (Search, Browse, View, Purchase, etc)
- **Cold-start** problem mitigated by:
 - Explicit personalization, Facebook profile mining
 - Priors: UA-DA tables

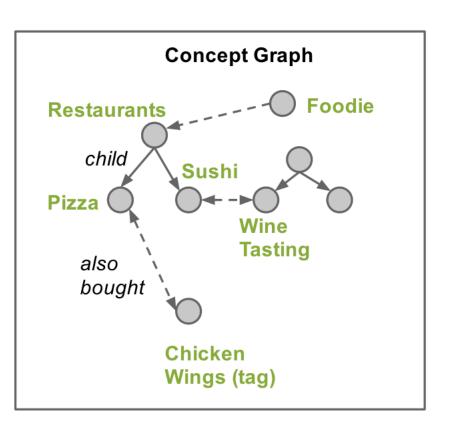
Deal Features

- Semantic tags:
 - Category hierarchies (Ex: Fitness \rightarrow Gyms)
 - Descriptive Tags (Ex: Romantic, Good for kids, Gift, etc)
 - Entity tags (Ex: Panini, Scalp massage)
 - Attributes (Ex: Hotel wi-fi, etc)
- Tags can be **learnt**: how gift-worthy is this item?
- Price range, Deal recency, etc
- **User activity** (View, Purchase, etc) with deals, adds score for attributes DA
- Browse & Search (query-categorized) into DA scores
- Averaging over all users: allows for unique interests to shine
- Learn weights for various attribute groups, activities

Semantic graphs

• Unified graphs can be useful to represent all kinds of information:

- Nodes and relationships: Is-a, Contains, Also-Purchased-with, etc
- Hierarchy allows progressively refined personalization
- Allows "deliberate serendipity"



Collaborative Filtering

- Ephemerality of deals forces us to look at deal attributes
- CF can be applied to deal attributes
 - People who like Pizza also like Italian
- Use purchase/view activity of users to find affinity of deal attributes to each other
- Item-Item CF can be layered on top, esp. for popular deals
- DA-DA CF allows us to extend the user's feature vector helps with "semi-active" users

User Features

- Gender (Male vs Female) is a stronger signal for Local, compared to e-commerce goods
 - Age group, income level, etc: not very strong
- Engagement stage (New user, active, inactive, "looker")
 - New users tend to buy Restaurant deals
 - Active users tend to look for latest deals
- Priors: Compute table of UA-DA correlation
 - Ex: (Women, Jewelry) vs (Women & Men, Hotels)
- Gender can be tricky
 - females tend to buy for household, males tend to look at, but not purchase female deals

User Profiling

- The How: Thin line between creepiness and delight
 - -Transparency and explanations allow you to push the frontier
- Cold start problem:
 - Facebook profile: Demographic, glean interests from Likes, even posts
 - -Behavioral targeting, but has privacy concerns
 - -Location, gender and age give you a headstart
- Explicit personalization: "What do you like?"
 - -Choosing from a list of interests has poor adoption
 - -Doesn't work well. "Healthy living" likers end up buying pizza!
 - Explicit dislike works better. "What do you hate?", "Don't show me deals like this.. Ever"

Diversity

- Matching brings focus, so need to diversify results to mix it up a bit
- Important for discovery: homogeneity causes drop-off in user interest!
- Multiple dimensions: product mix, categories, price range, etc
- Done along adjacent sliding windows of deal results
- Note that any diversity will reduce "pure" relevance

Freshness and "Back-off"

- Active users need to see fresh, new deals every time
- Lesser the intent, more the need for freshness
- But.. If viewed or added to cart, show it MORE retargeting
- Freshness: Back-off or deboost based on last set of impressions
- Backoff from entire categories if user is not showing interest
- Purchase Backoff
 - If user purchased something, back-off for a period that depends on category of item
 - 2 weeks for pizza
 - 100 years for Lasik surgery!

Personalized Search

- In a low-intent session, "Search" is not that targeted either
 - Ex: "male grooming", "spa package", "things to do"
- Personalization can boost relevance significantly
 - "things to do": show more Kids Activities to a mom
 - "fragrance": show men's perfumes to a man
- "Banded" broad-matching: addresses openness of user to explore, even in Search:
 - Search results can be shown in bands of decreasing relevance
 - Personalized ranking within each band
 - Each band represents a broader match:
 - Ex: "Sky Zone" → "Sky Zone", followed by "trampoline, bounce house", followed by "Kids activities"

Summary

- E-commerce "2.0" should be as much about personalization, as its about speed and comprehensiveness
- Local commerce (such as Groupon) relies heavily on personalized recommendations
- Location-awareness is a huge component of Local
- Content-based techniques work well for Local, and persistent interests in general
 - But to be truly effective, content-based techniques must be combined with classic performance signals and CF
- Diversity and freshness become important when user intent is low, and they are looking to be delighted

Acknowledgements

Thanks to many talented individuals at Groupon I am privileged to work with!

- Personalization / Relevance Engineering
- Data Science

C

• Marketing / Market Research

srisub@groupon.com