# Data, Predictions, and Decisions in Support of People and Society

**Eric Horvitz** 



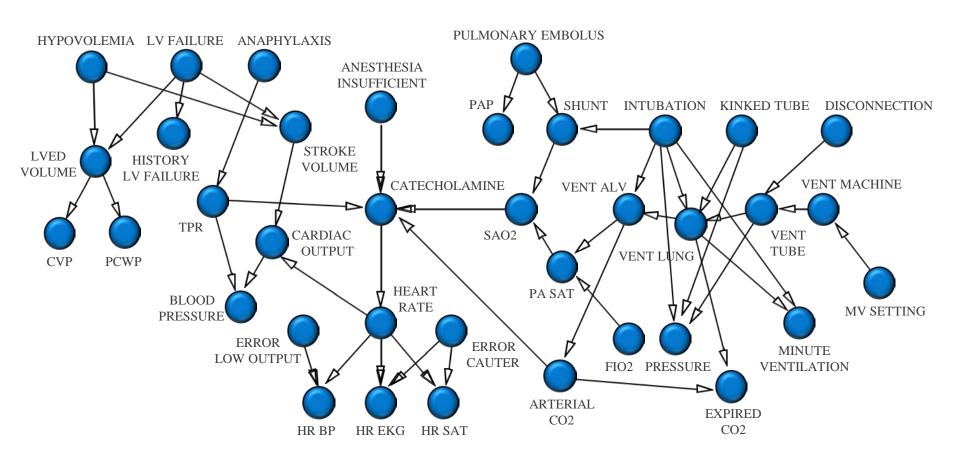
### Data Science for Social Good

Critical contributions to humanity

Learning, inference, and decision making

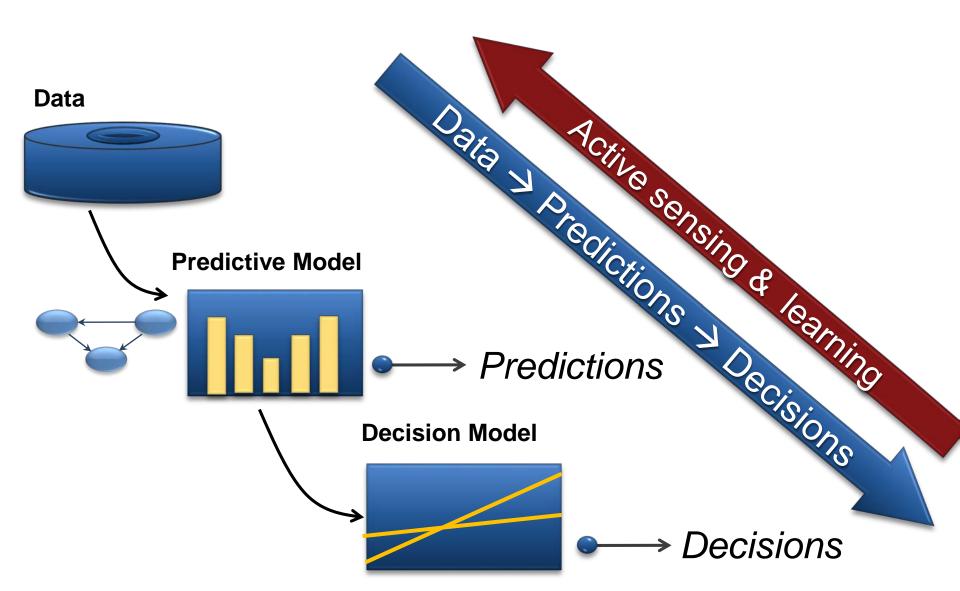


# Inference for high-stakes challenges



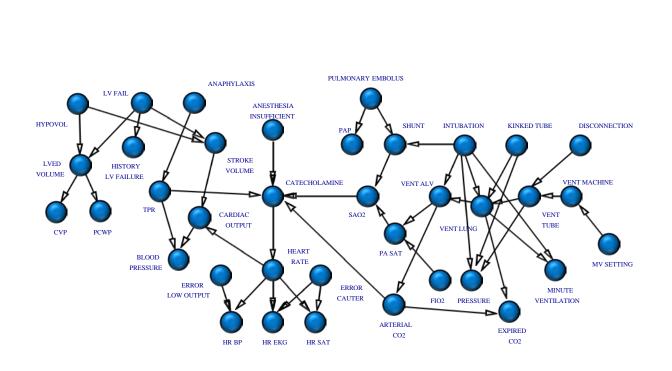


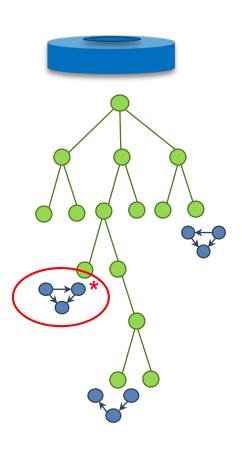
### Predictions to Decisions



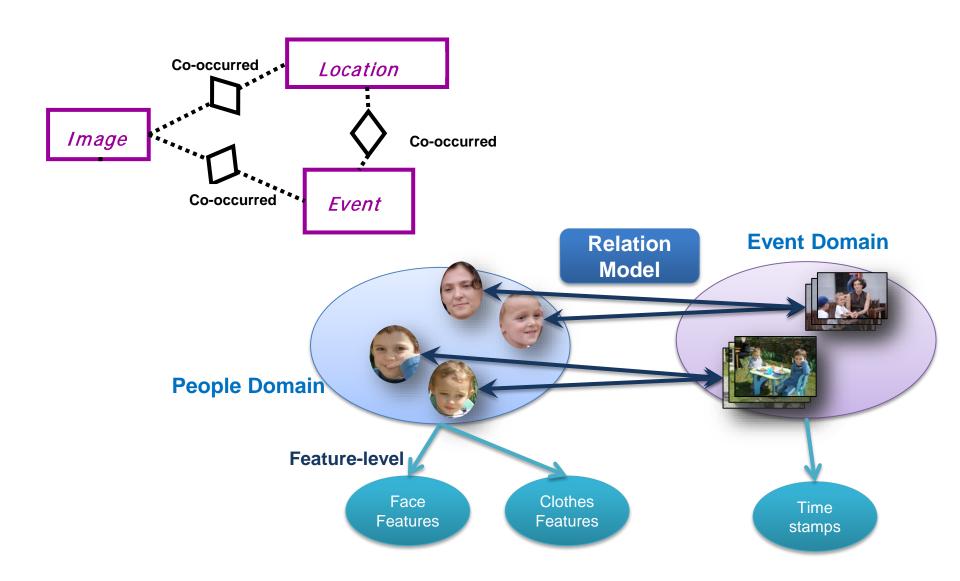
## **Exciting Times**

### Learning procedures keeping pace with data





### Rise of Rich Representations



### Rise of Rich Representations





J. Shotton, J. Winn, C. Rother, A. Criminisi

## Rise of Rich Representations





### Renaissance of Familiar Methods

Pursuit of speech, vision with stacked representations



Conversational Speech: Switchboard challenge



### Renaissance of Familiar Methods

Pursuit of speech, vision with stacked representations



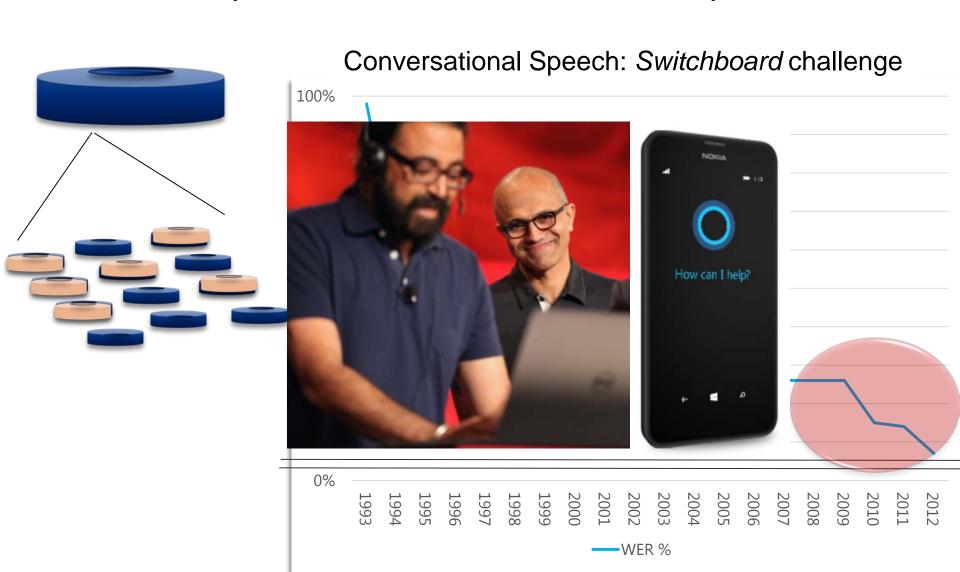
Conversational Speech: Switchboard challenge



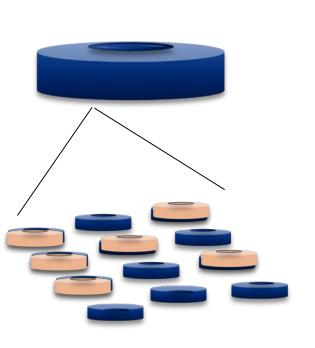
WER %

### Renaissance of Familiar Methods

Pursuit of speech, vision with stacked representations



# Data, Learning, and Systems



Algorithms for learning & inference

Large-scale systems

## Beauty and the Bottleneck

Hekaton: Database service In-memory, manycore, latch-free: **30x speed-up** 



Trill: Streaming analytics

Column-oriented batches, P3 sort:

2-4 orders of magnitude speed-up

Streaming
Reduce Sub-Query

Streaming
Map Sub-Query

Streaming
Temporal Binary
Merge

Merge

Catapult: Data center search perf.

Speed-ups via FPGA

40x speed-up



### Data Science for Social Good

Transportation
Clinical medicine
Public health



### Inference about Traffic

### Smartflow, UAI 2005

#### Multiple views on traffic



#### Incident reports



#### Weather



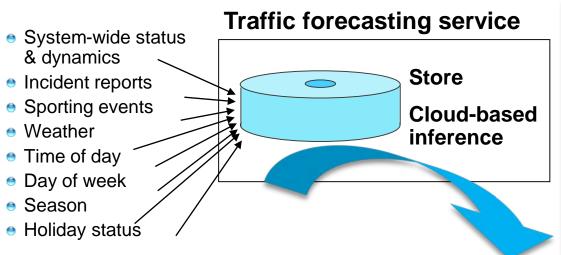
#### Major events

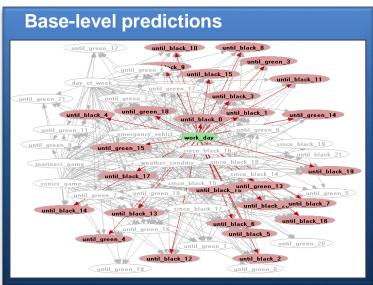


- Operator ID: Nick Heading: INCIDENT Message: INCIDENT INFORMATION
- Cleared 1637: I-405 SB JS I-90 ACC BLK RL CCTV 1623 - WSP, FIR ON SCENE

- Event store
- Learning
- Reasoning

# Forecasting Future Traffic



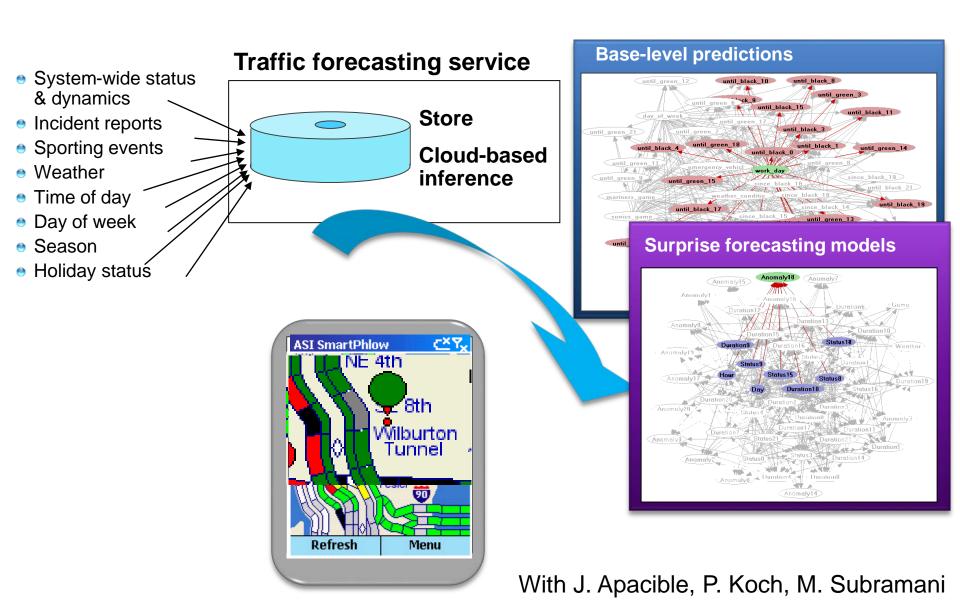


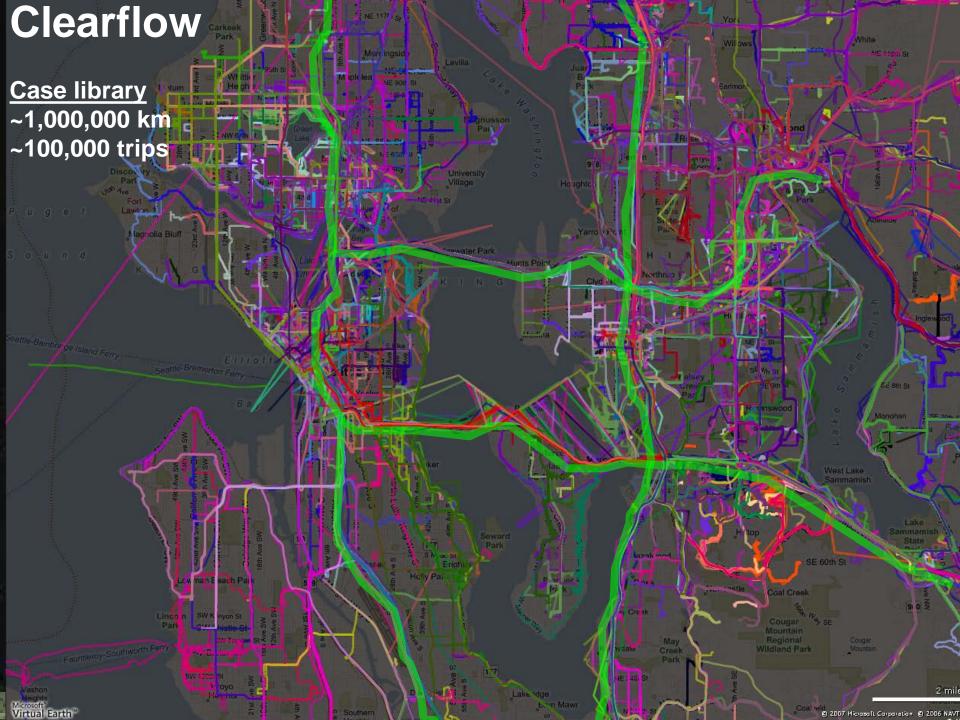


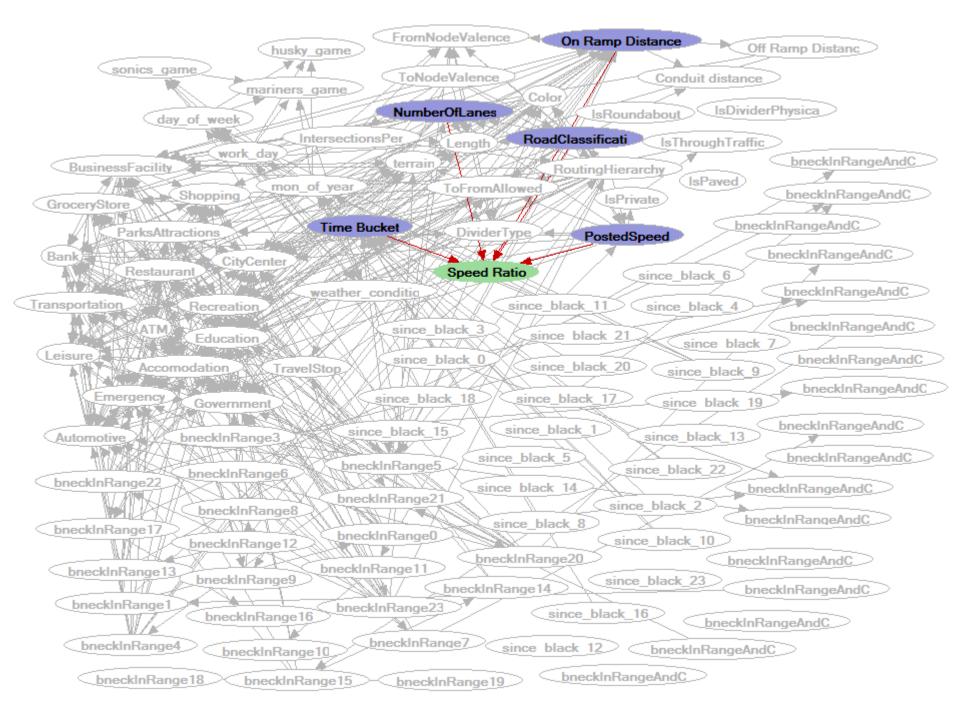
Max likely duration

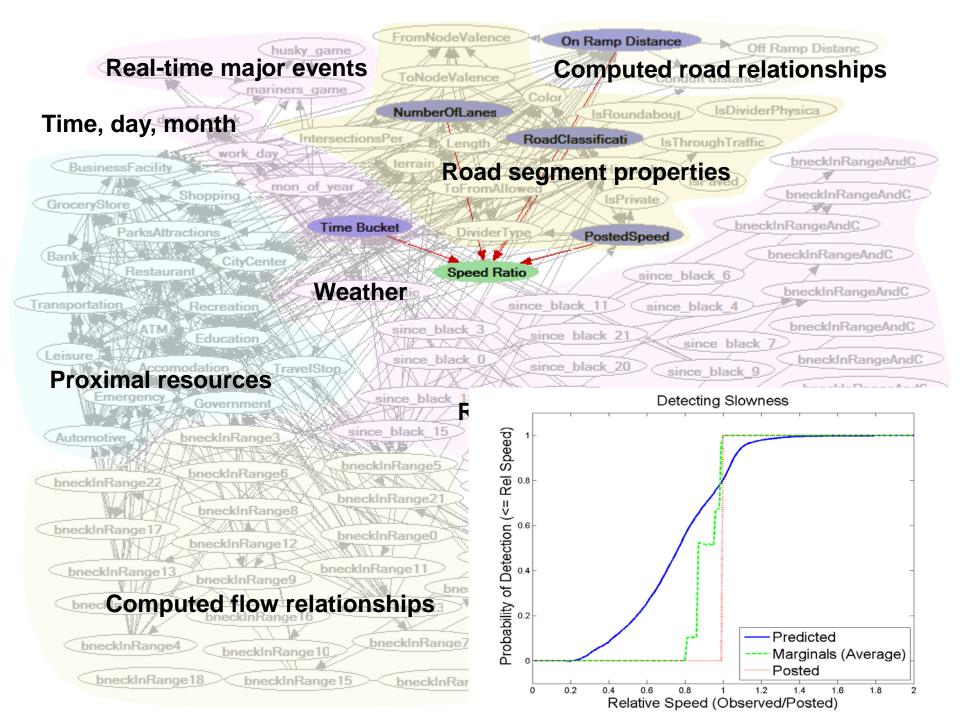
With J. Apacible, P. Koch, M. Subramani

# Forecasting Future Traffic









#### The New York Times

### **Technology**

WORLD U.S. N.Y. / REGION BU

BUSINESS | TECHNOLOGY

SCIENCE

HEALTH

SPORTS

OPINION

#### Microsoft Introduces Tool for Avoiding Traffic Jams

By JOHN MARKOFF

Published: April 10, 2008

SAN FRANCISCO — <u>Microsoft</u> on Thursday plans to introduce a Web-based service for driving directions that incorporates complex software models to help users avoid traffic jams.

#### Related

Times Topics: Microsoft Corporation The new service's software technology, called Clearflow, was developed over the last five years by a group of artificial-intelligence researchers at the company's Microsoft Research laboratories. It is an

ambitious attempt to apply machine-learning techniques to the problem of traffic congestion. The system is intended to reflect the complex traffic interactions that occurrence traffic backs up on freeways and spills over onto city streets.

The Clearflow system will be freely available as part of the company's <u>Live.com</u> site (<u>maps.live.com</u>) for 72 cities in the United States. Microsoft says it will give drivers alternative route information that is more accurate and attuned to current traffic pa on both freeways and side streets.



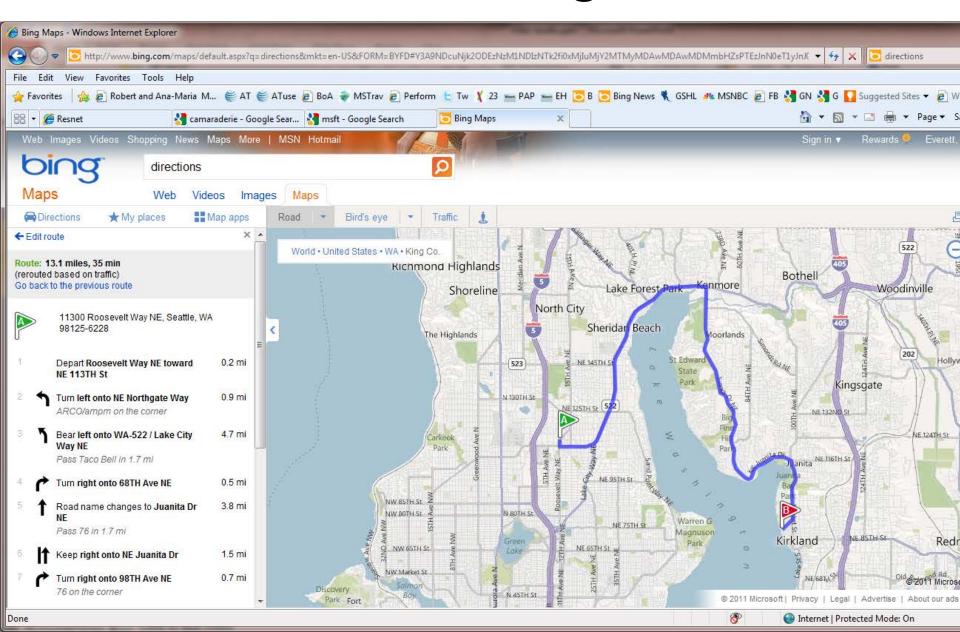
Microsoft now considers surface street traffic as well as freeway speeds in its routing.

# Traffic-Sensitive Routing

72 cities across North America
Flows assigned to ~60 million streets every few minutes

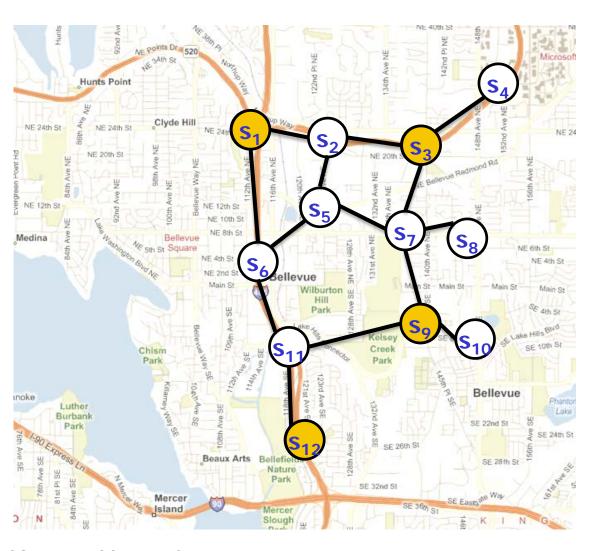


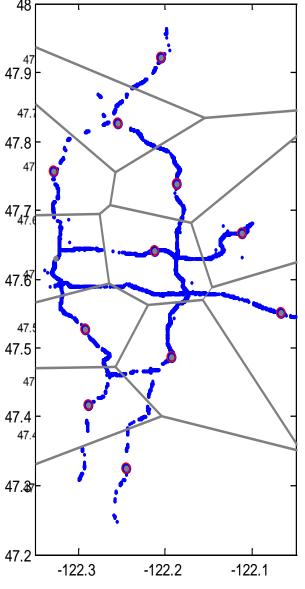
# Traffic-Sensitive Routing



# Community Sensing

Utilitarian: Demand-weighted value





Krause, H., et al.

# Community Sensing

Utilitarian: Demand-weighted value

**Phenomenon** 

Variables of spatiotemporal process

$$\operatorname{Var}(\mathcal{X}_s \mid \mathcal{X}_{\mathcal{A}} = \mathbf{x}_{\mathcal{A}}) \quad \operatorname{Var}(\mathcal{X}_s) - \operatorname{Var}(\mathcal{X}_s \mid \mathcal{X}_{\mathcal{A}} = \mathbf{x}_{\mathcal{A}})$$

Demand Model Population needs

$$R(\mathcal{A}) = \sum_{s \in \mathcal{V}} \mathbb{E} \left[ \mathcal{D}_s(\text{Var}(\mathcal{X}_s) - \text{Var}(\mathcal{X}_s \mid \mathcal{X}_{\mathcal{A}})) \right]$$

Sensor Availability

Sharing Preferences

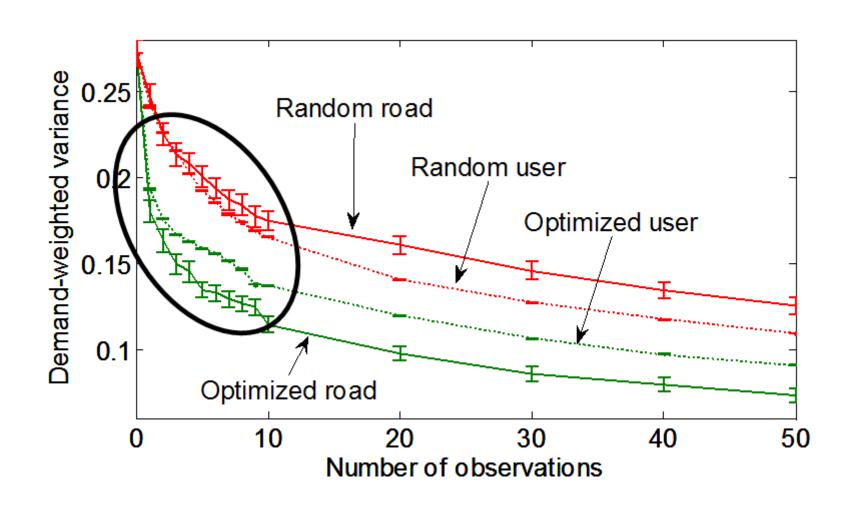
Avail. of observations B at locations A

$$P(A \mid B)$$

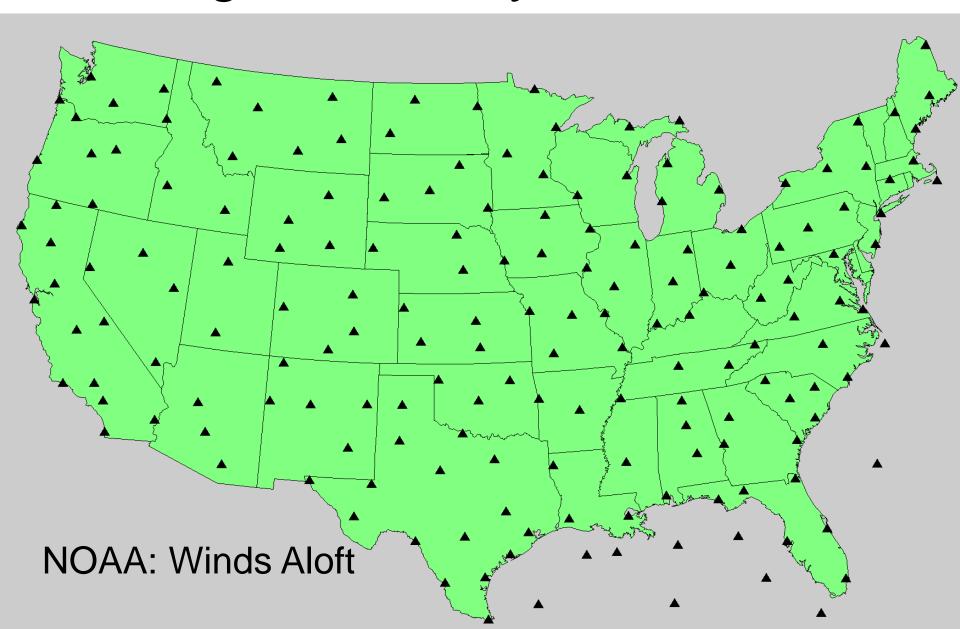
$$F(\mathcal{B}) = \mathbb{E}_{\mathcal{A}|\mathcal{B}}[R(\mathcal{A})] = \sum_{\mathcal{A}} P(\mathcal{A} \mid \mathcal{B}) R(\mathcal{A})$$

# Community Sensing

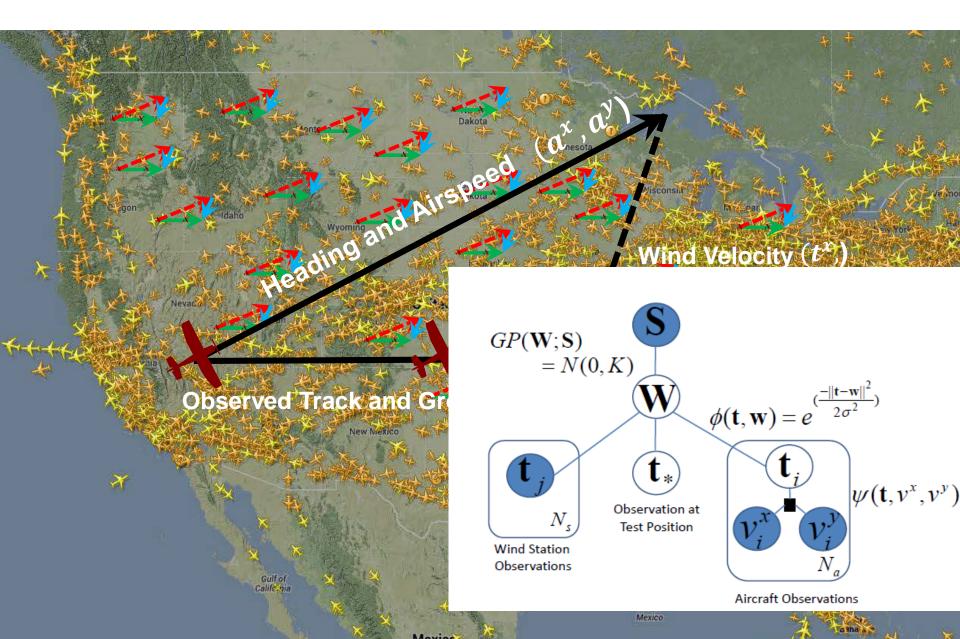
Utilitarian: Demand-weighted value



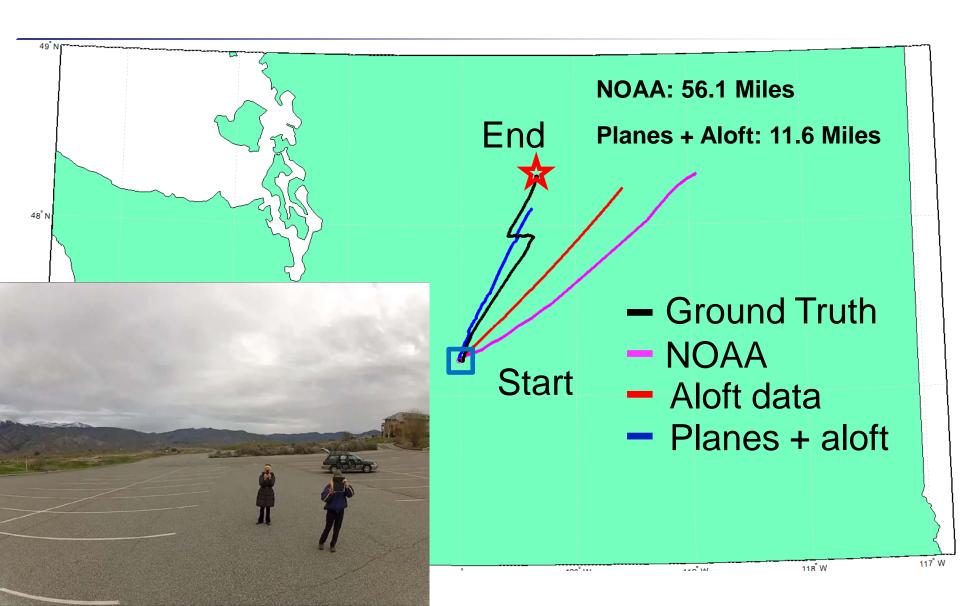
# Aiming for the Sky: Aviation



### Thousands of Wind Sensors

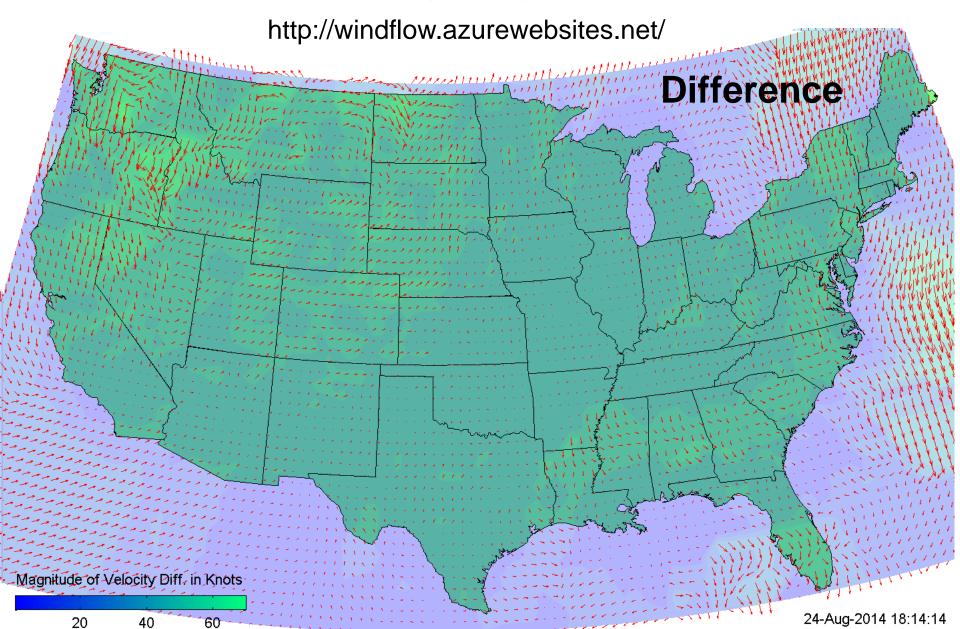


### **Studies**



### Windflow

#### **Azure Cloud Service:**



### Clinical Medicine

### Rich dataset: All visits, 15 years of data

- Admissions, discharge, transfer (ADT)
- Chief complaint in free text
- Age, gender, demographics
- Diagnosis codes (ICD-9)
- Lab results and studies
- Medications
- Vital signs
- Procedures
- Locations in hospital
- Admitting and attending MD codes
- Fees and billing
  - ~30,000 variables available in dataset

# Readmissions Challenge



Sign in | Get NEJM's E-Mail Table of Contents - Free | Subscribe

#### SPECIAL ARTICLE

◆ Previous

Volume 360:1418-1428

April 2, 2009

Number 14

<u>Next</u> ►

#### Rehospitalizations among Patients in the Medicare Fee-for-Service Program

Stephen F. Jencks, M.D., M.P.H., Mark V. Williams, M.D., and Eric A. Coleman, M.D., M.P.H.

#### **ABSTRACT**

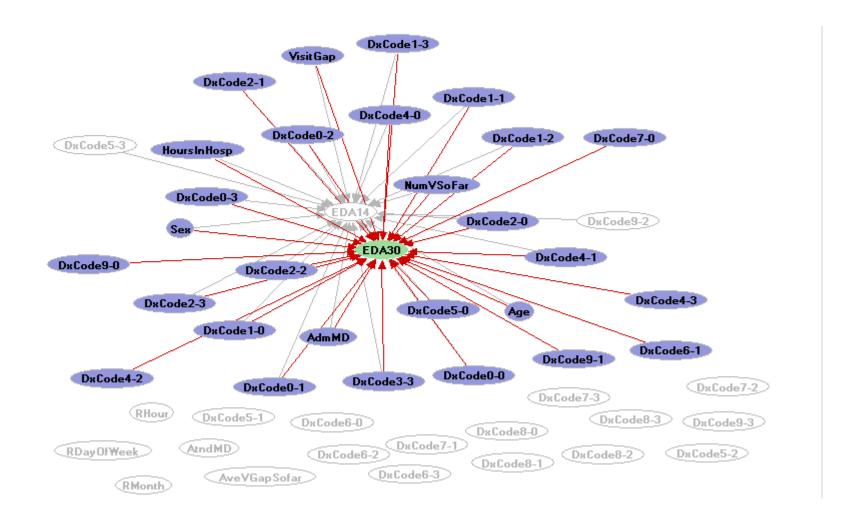
~20% within 30 days

Background Reducing rates of rehospitalization has attracted attention from policymakers as a way to improve quality of arguency and patterns of the frequency and patterns of the frequency and patterns of the frequency changes.

Methods We and

Estimated cost to Medicare (2004): \$17.4 billion

### Predictive Model for Readmission



# Going Live

### Readmissions Manager

Reducing Hospital Readmissions is an Impending Priority

#### **Overview**

One in five Medicare inpatients is readmitted within 30 days. The Centers for Medicare and Medicaid Services (CMS) considers 40%-75% of these readmissions to be preventable.

In October 2012, CMS will begin to track readmission and impose financial penalties on hospitals with higher–than–expected readmission rates for certain conditions. Other payers will certainly follow.

It is clear that hospital admissions and readmissions are becoming a critical parameter for tracking care delivery from both a financial and quality perspective.

Readmissions Manager for Microsoft Amalga is an innovative solution to help organizations address this very important business need.



# At hospitals around the world...



# Challenge: Interpretability



# Interpretability

Considering human interpretability

Procedures that allow end users to understand contribution of individual features

What influence does changing observations x have if other values are not changed?

# Interpretability-Power Tradeoff

$$y = \beta_0 + \beta_1 x_1 + ... + \beta_n x_n$$

$$y = f_1(x_1) + ... + f_n(x_n)$$

$$y = f(x_1, ..., x_n)$$

Y. Lou, R. Caruana, J. Gehrke, and G. Hooker. Accurate Intelligible Models with Pairwise Interactions. In KDD, 2013.

### Interpretability-Power Tradeoff

$$y = \beta_0 + \beta_1 x_1 + ... + \beta_n x_n$$

$$y = f_1(x_1) + ... + f_n(x_n)$$

$$y = \sum_i f_i(x_i) + \sum_{ij} f_{ij}(x_i, x_j)$$

$$y = \sum_i f_i(x_i) + \sum_{ij} f_{ij}(x_i, x_j) + \sum_{ijk} f_{ijk}(x_i, x_j, x_k)$$

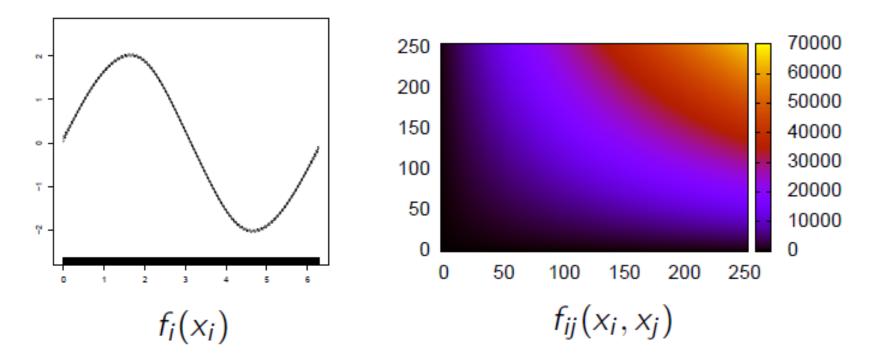
$$y = f(x_1, ..., x_n)$$

Y. Lou, R. Caruana, J. Gehrke, and G. Hooker. Accurate Intelligible Models with Pairwise Interactions. In KDD, 2013.

# Capturing Key Interactions

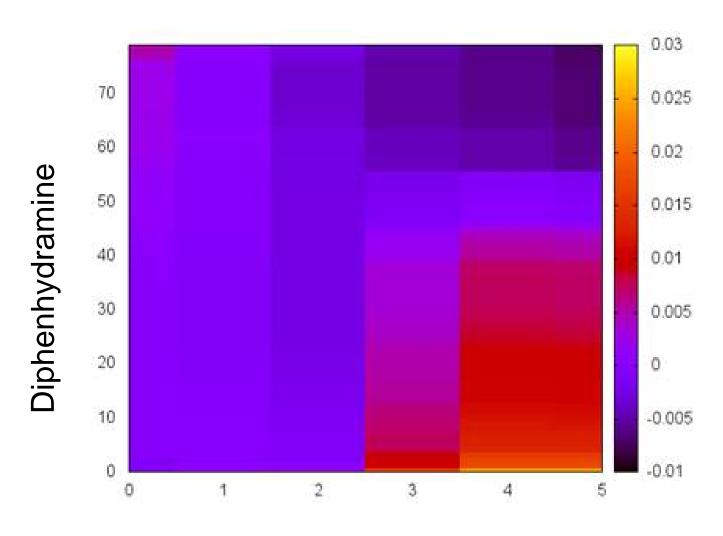
Efficient means to identify pairwise interactions

$$y = \sum_{i} f_i(x_i) + \sum_{ij} f_{ij}(x_i, x_j)$$



Y. Lou, R. Caruana, J. Gehrke, and G. Hooker. Accurate Intelligible Models with Pairwise Interactions. In KDD, 2013.

### Insights about Interactions



Betamethasone

#### **Decisions**

#### Units 5E/501/8E/9W/8ITCU

#### Baseline:

Discharges to home/ home health between 10/15/2011 - 4/29/2012

Readmissions Rate (all cases): 13%

Score ≥ 25: 27%

Average direct cost/readmission: \$10,888

#### **Initial Pilot**

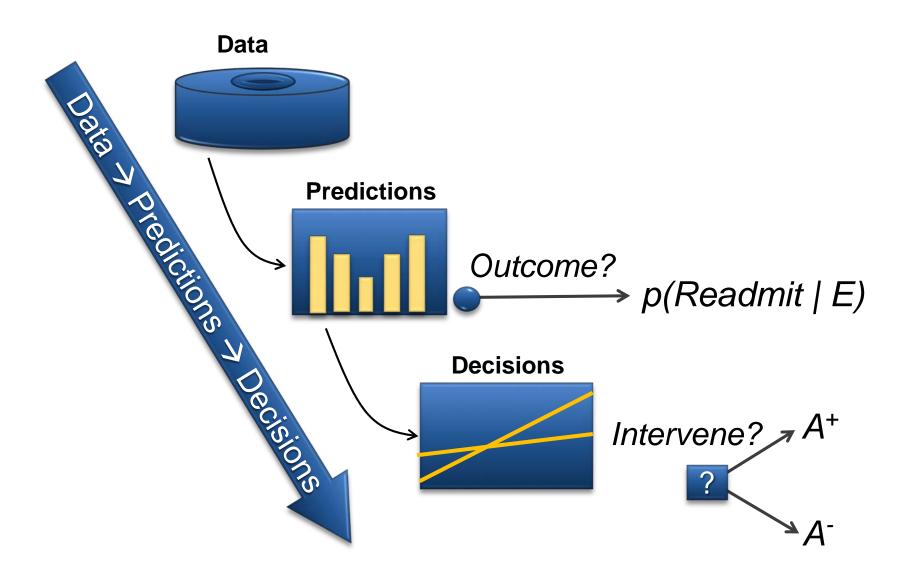
4/30/2012 - 7/30/2012

#### 1 Month Post engagement

| Readmissions Rate                   | 12%       | 10%         |
|-------------------------------------|-----------|-------------|
| Score ≥ 25                          | 23%       | 20%         |
| # of Admissions Avoided             | 9         | 11          |
| Follow up call completion           | 52%       | 61%         |
| Follow up call <u>not</u> Completed | 32%       | 21%         |
| Total Annualized savings            | \$391,968 | \$1,448,104 |

↓ Total Readmission Rate by 3% and +\$1.4M Savings

#### **Decisions**



#### Example: Heart Failure

Most frequent dx for hosp. Medicare patients

6–10% of folks over 65

\$35 billion/yr US

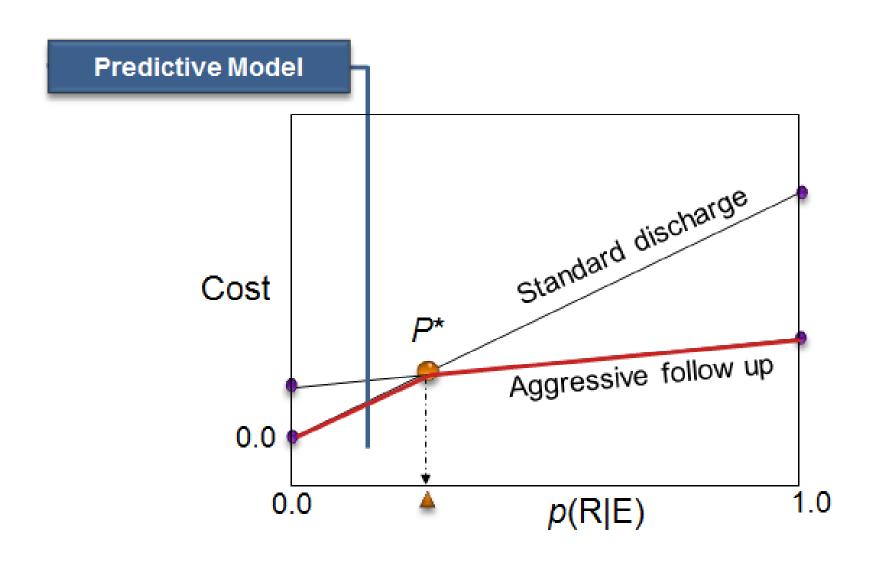
#### **Decision:**

Invest in post-discharge program for patient?

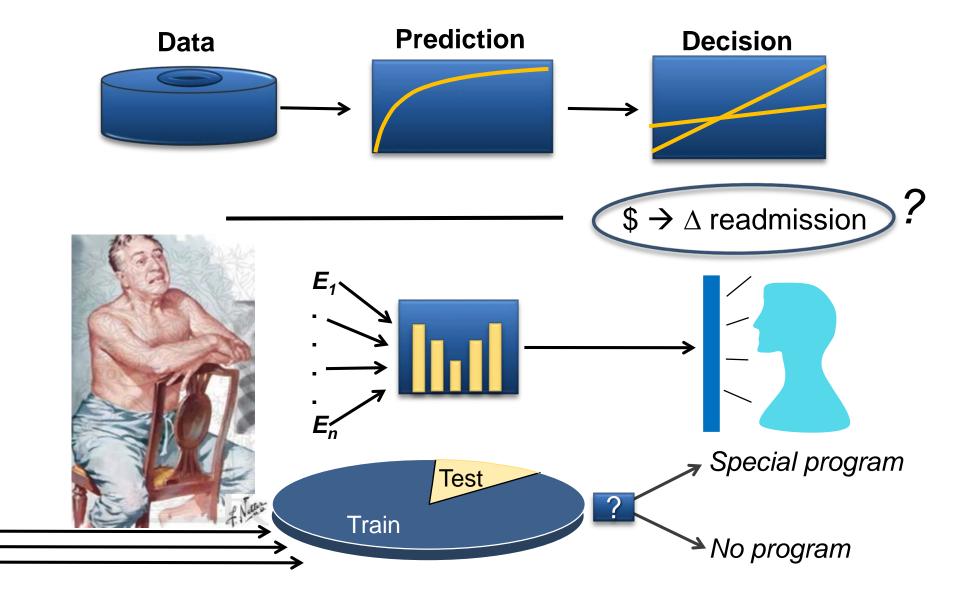


With M. Bayati, M. Braverman, P. Koch, K. Mack, G. Ruiz, M. Smith

# **Utility Model**



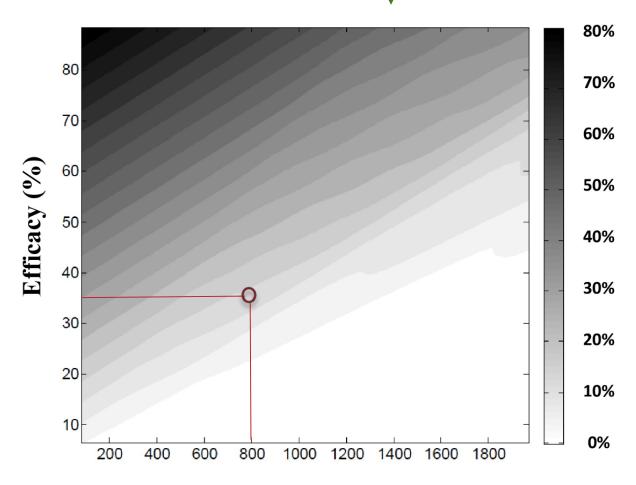
# Exploration with Decision Pipeline



### Decision Pipeline -> Visualization

\$800 intervention @ 35% efficacy?

131.4% readmissions \$13.2%.

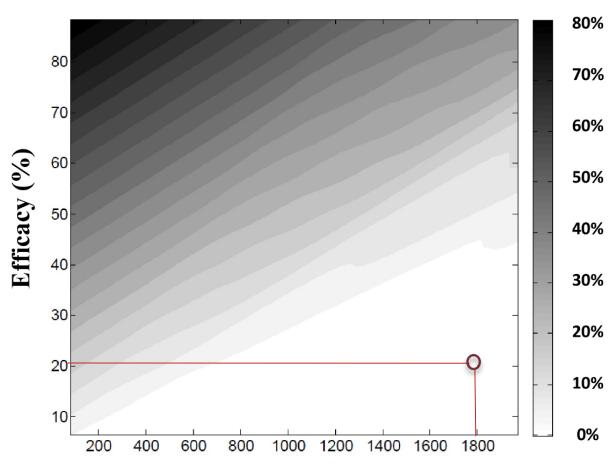


Cost of intervention (\$)

### Decision Pipeline -> Visualization

\$1800 intervention @ 20% efficacy?





**Cost of intervention (\$)** 

### Errors, Adverse Events, and Deaths

#### **Deaths:**

44,000 - 98,000 preventable deaths per year "To Err is Human," Inst. of Medicine, 2000

#### Adverse events:

44% preventable.

Levinson, 2010

#### Costs:

\$17 to \$29 billion per year in U.S.

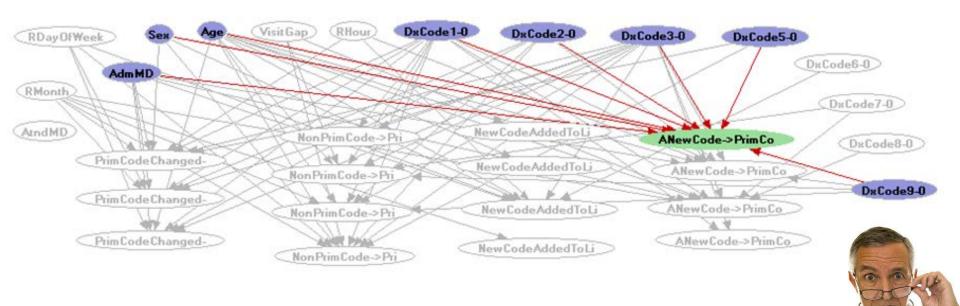
Thomas, et al., 1999

#### **Detecting Errors**

e.g., Predict surprise at emergency dept.

At discharge time:

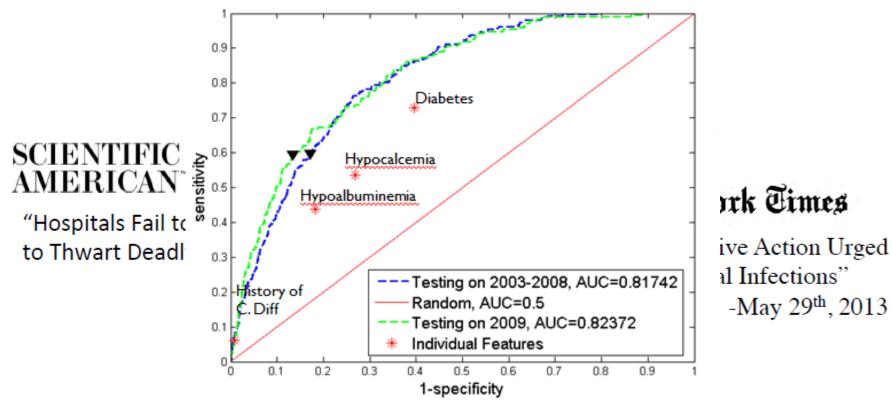
→ p(readmit < 72 hrs.|E) with <u>new primary diagnosis</u>.



#### Hospital-Associated Infection

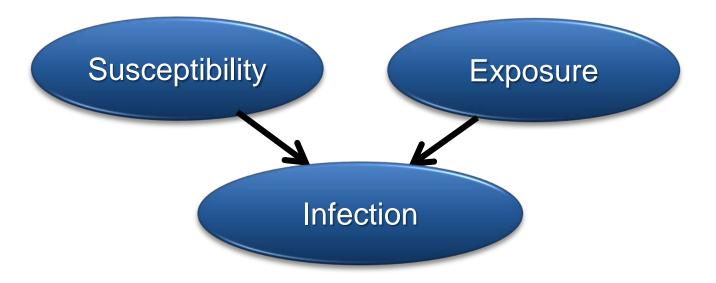
1 in 20 hospitalizations, ~\$20 billion/yr. 5% death: top 10 contributor of death in US



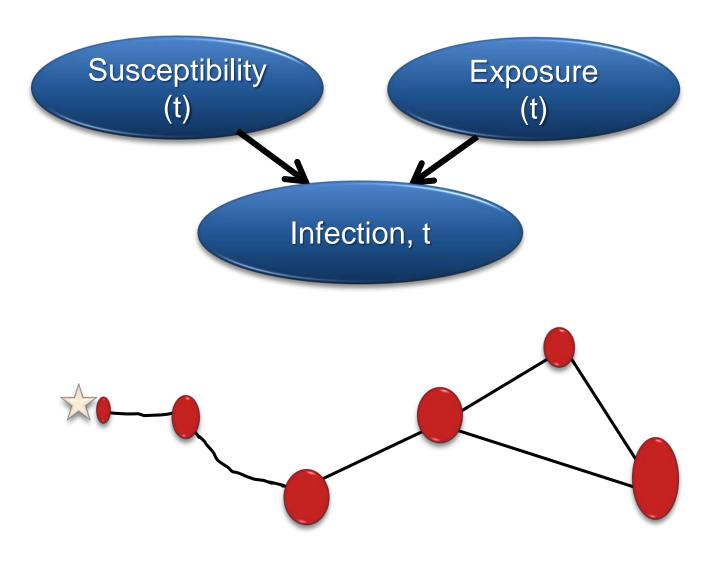


With Wayne Campbell, Ella Franklin, John Guttag, Jenna Wiens

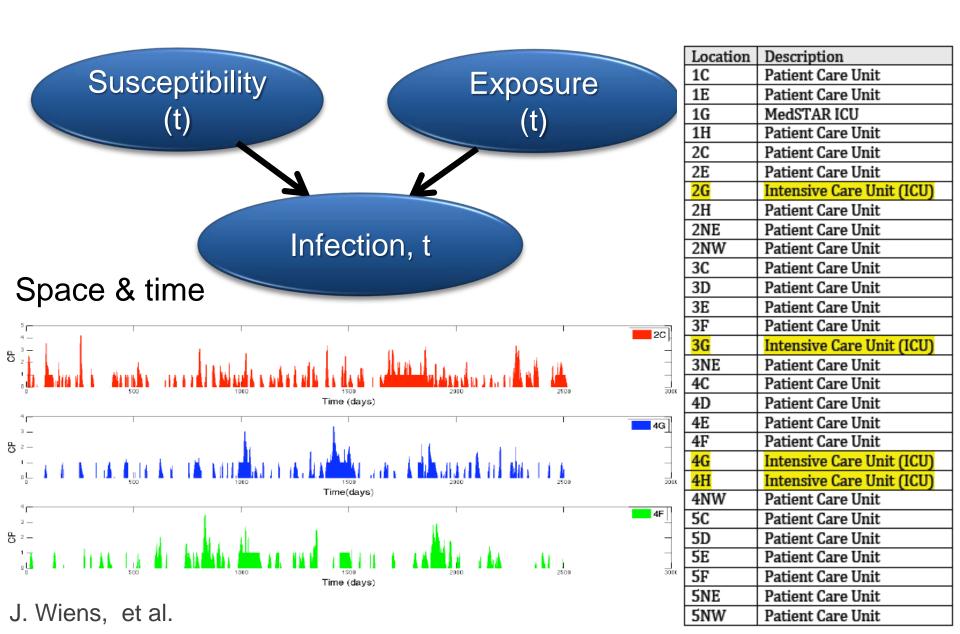
### Data on Time and Space



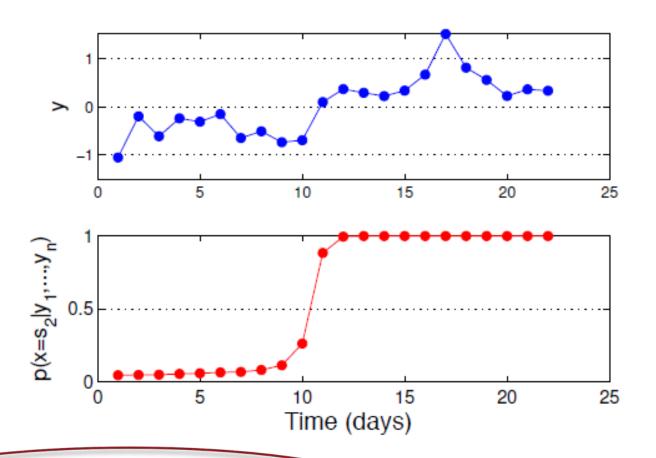
### Data on Time and Space



# Data on Time and Space

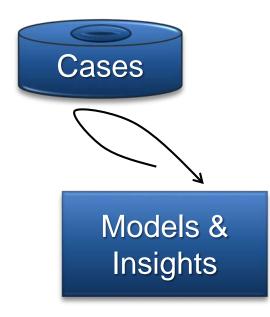


### Temporal Models and Prediction



NIPS 2012: AUC: 0.69 → 0.79

# Causal Discovery

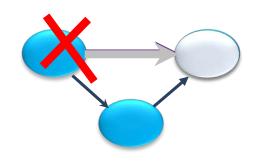


#### Pt. acquires C. Difficile?

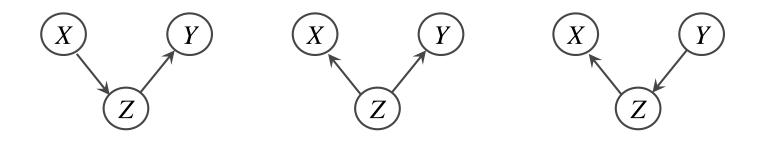
- diabetes = TRUE
- history of C. Diffi = TRUE
- hospital service = gsg (general surgery)
- meds= acetylcysteine (n-acetylcys)
- meds = lidocaine hcl
- meds = clindamycin phosphate
- platelet count = C (thrombocytosis)
- unit = 2g
- albumin = L (hypoalbuminemia)
- admission source = transfer
- attending MD= XXXXXX
- unit = 2d
- CO2 = L (hypocapnea)
- city = XXXXXX
- employer name = Not Employed
- monocyte percent = H
- 70<=age<80</li>
- wbc = H (white blood cell count)
- admission procedure = catheterization
- admission complaint =gastrointestinal
- last visit meds = fentanyl citrate
- meds = hydromorphone hcl

Studies in causality

### Causal Discovery

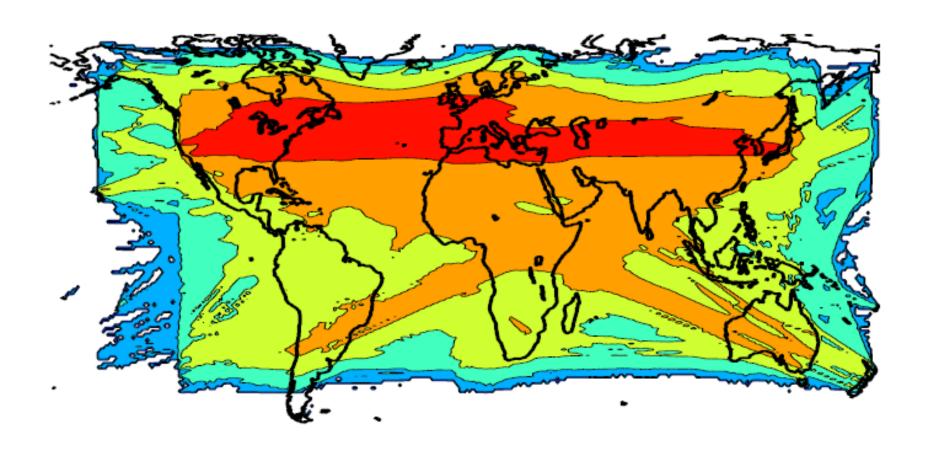


Given  $X \perp Y$  and  $-(X \perp Y / Z)$ ,



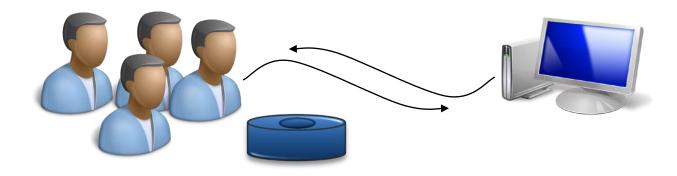
Is the only possible causal model

#### Web for Planetary-Scale Sensing



#### Signals on Medication Adverse Effects

→ Web search as sensor for side effects?
1 in 250 of people query on top-100 drugs.



#### Signals on Medication Adverse Effects

Pharmacovigilence: spontaneous reports FDA *Adverse Event Reporting System* (AERS)

2011 finding (Tatonnetti, et al.):

Paxil + Pravachol → 1 Hyperglycemia

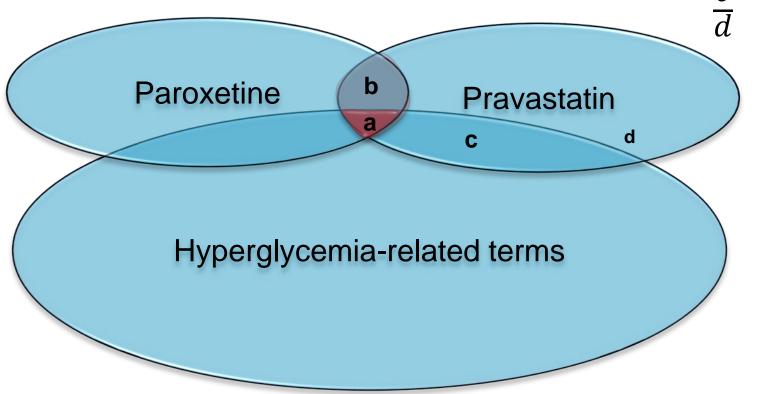
Pravachol → × Hyperglycemia

Paxil → × Hyperglycemia

#### Web-Scale Pharmacovigilance

#### Disproportionality analysis

- Reporting ratios (RR)--obs. vs. expected:  $RR = \frac{\overline{b}}{c}$ 

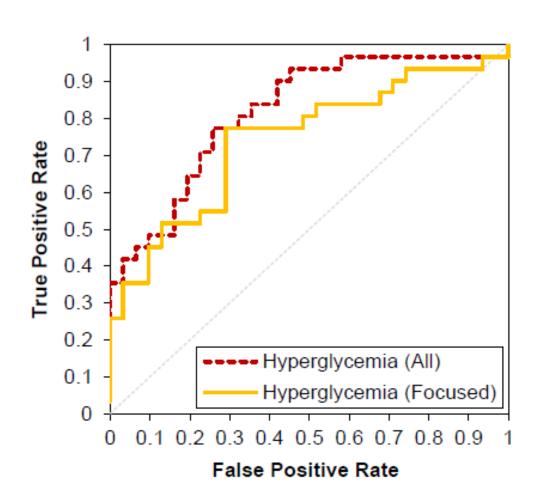


|                        | a   | b    | c    | d     | RR    | 95% CI<br>(Lower, Upper) | p-value<br>(one-tailed) |
|------------------------|-----|------|------|-------|-------|--------------------------|-------------------------|
| Expected (pravastatin) | 342 | 2716 | 2581 | 56302 | 2.747 | 2.438, 3.094             | < 0.0001                |
| Expected (paroxetine)  | 342 | 2716 | 3645 | 71243 | 2.461 | 2.189, 2.767             | < 0.0001                |

### Characterizing Sensor Error

#### Test on known interactions

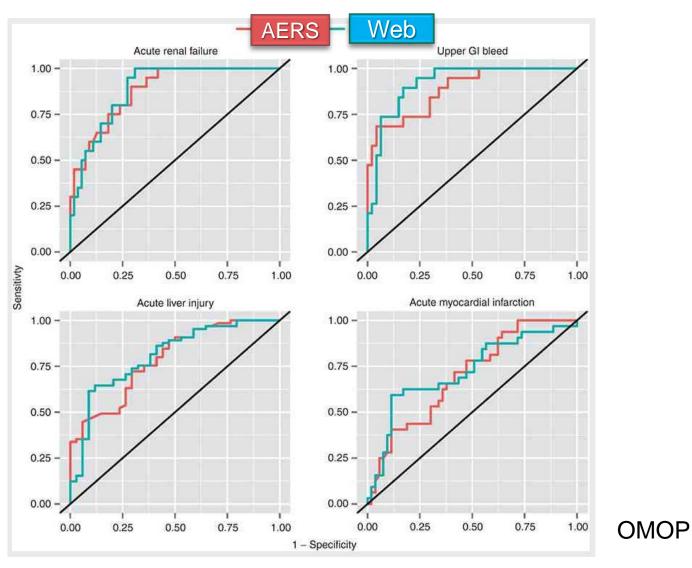
- 31 true positives for hyperglycemia
- 31 true negatives for hyperglycemia



| Label | Drug 1        | Drug 2             |
|-------|---------------|--------------------|
| TP    | dobutamine    | hydrocortisone     |
| TP    | dobutamine    | triamcinolone      |
| TP    | dobutamine    | prednisolone       |
| TP    | betamethasone | dobutamine         |
| TP    | glipizide     | phenytoin          |
| TP    | dobutamine    | methylprednisolone |
| TP    | prednisolone  | salmeterol         |
| TP    | salmeterol    | triamcinolone      |
| TP    | betamethasone | terbutaline        |
| TP    | dexamethasone | dobutamine         |

| TP | budesonide          | salmeterol       |
|----|---------------------|------------------|
| TN | hydrochlorothiazide | tazobactam       |
| TN | clindamycin         | montelukast      |
| TN | lamotrigine         | nystatin         |
| TN | methylprednisolone  | rosuvastatin     |
| TP | budesonide          | formotero1       |
| TN | loratadine          | nystatin         |
| TN | hydroxychloroquine  | prochlorperazine |
| TN | labetalo1           | sertraline       |
| TN | ciprofloxacin       | vecuronium       |

#### Rare, Serious Adverse Effects



Multi-item Gamma Poisson shrinker algorithm (DuMouchel and Pregibon, KDD)

R. White, R. Harpaz, et al.

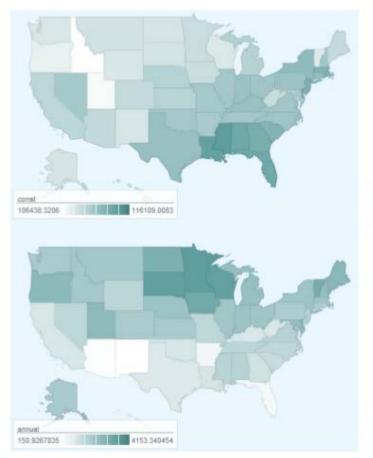
### Complementarity of Signals

|                             | AERS | Search | / Together \ |
|-----------------------------|------|--------|--------------|
| Acute Renal Failure         | 0.88 | 0.88   | 0.93         |
| Upper GI Bleed              | 0.89 | 0.92   | 0.92         |
| Acute Liver Injury          | 0.79 | 0.81   | 0.86         |
| Acute Myocardial Infarction | 0.70 | 0.73   | 0.75         |
| Average                     | 0.81 | 0.83   | 0.86         |
|                             |      |        |              |

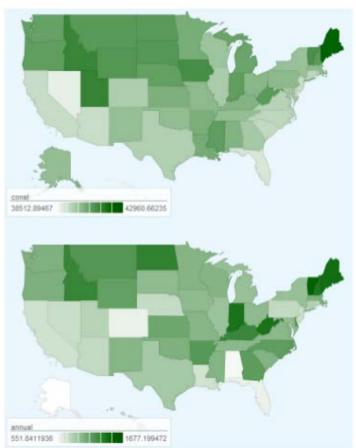
AUC improvements statistically significant (p<0.05)

#### Wide Range of Studies

#### e.g., Nutritional content of downloaded recipes



Total calories / serving



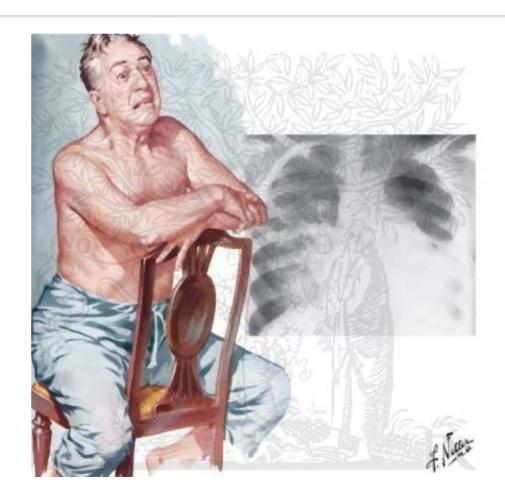
Calories from carbohydrates

Annual fluctuation

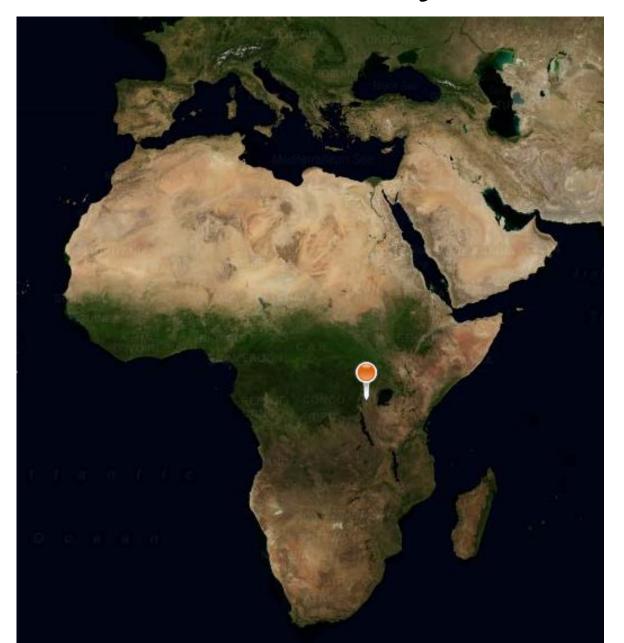
Mean

#### Diet & Illness: Heart Failure

Na+ content in downloaded recipes & admissions (DC metro area)



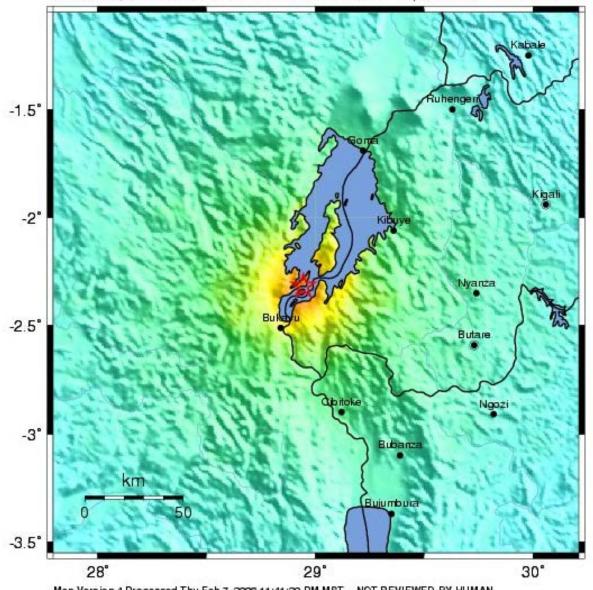
# Disruption and Recovery



### Disruption and recovery

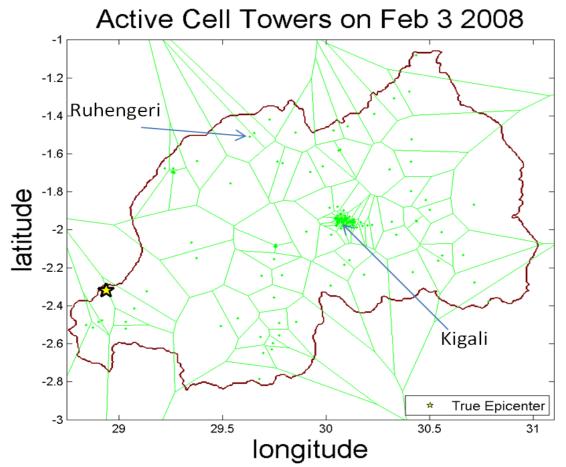
Lac Kivu quake Feb 3, 2008 5.9

USGS ShakeMap: LAC KIVU REGION, DEM. REP. OF THE CONGO Sun Feb 3, 2008 07:34:12 GMT M 5.9 S2.32 E28.94 Depth: 10.0km ID:2008mzam



#### Cell Tower Call Densities in Rwanda

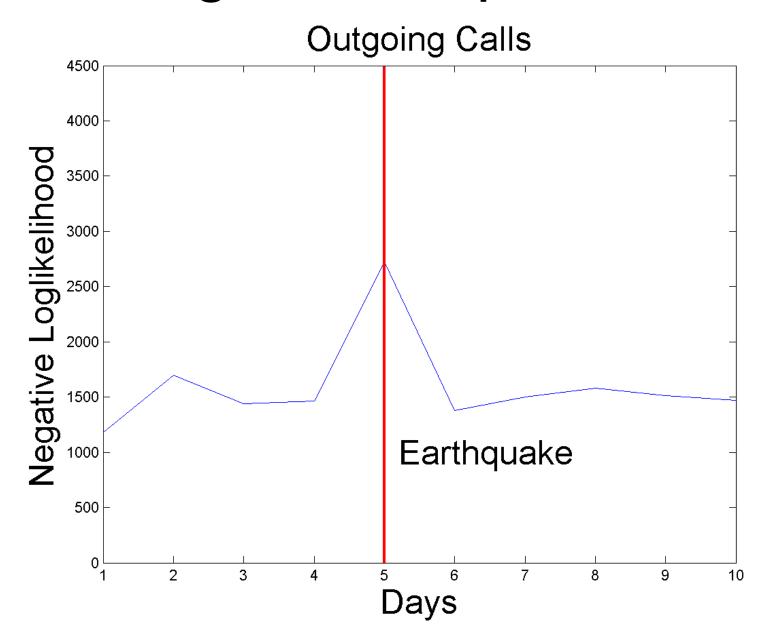
3 years of logs of ins and outs of comms. 140 cell towers, 6 days: 10,527,799 calls



# Assumptions

- 1. Cell traffic deviates from normal in case of unusual events
- Deviations inversely proportional to distance from event center
- 3. Larger disruptions have deviations that persist longer

# Detecting the Earthquake



# Inferring the Epicenter

### Modeling deviations from the trend

$$p(a_i \mid Event) \sim N(m_i(1 + \Delta_i), \Sigma_i)$$

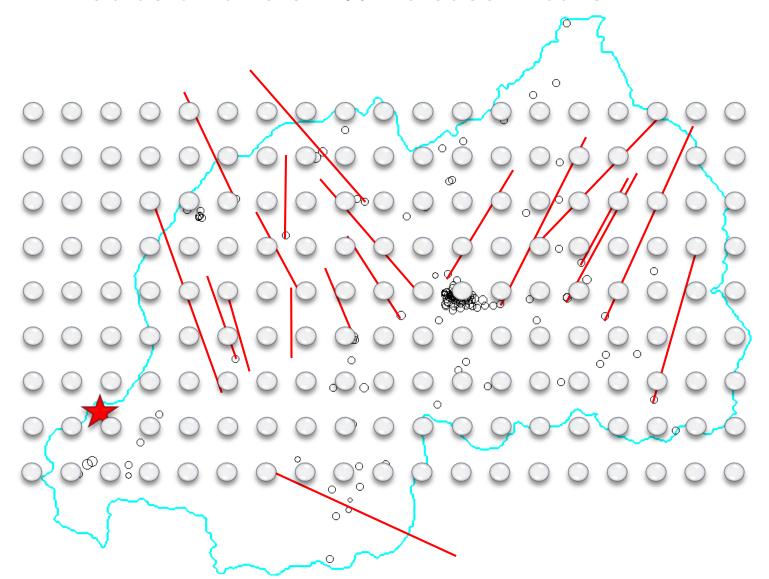
$$\Delta_i = \frac{\alpha}{\beta + \left[ (e_x - x_i)^2 + (e_y - y_i)^2 \right]^{\gamma}}$$

Unknown parameters:  $\theta = (\alpha, \beta, \gamma, e_x, e_y)$ 

$$\theta = \arg\max_{\theta} \sum_{i=1}^{T} \log p_{\theta}(a_i \mid Event)$$
 epicenter

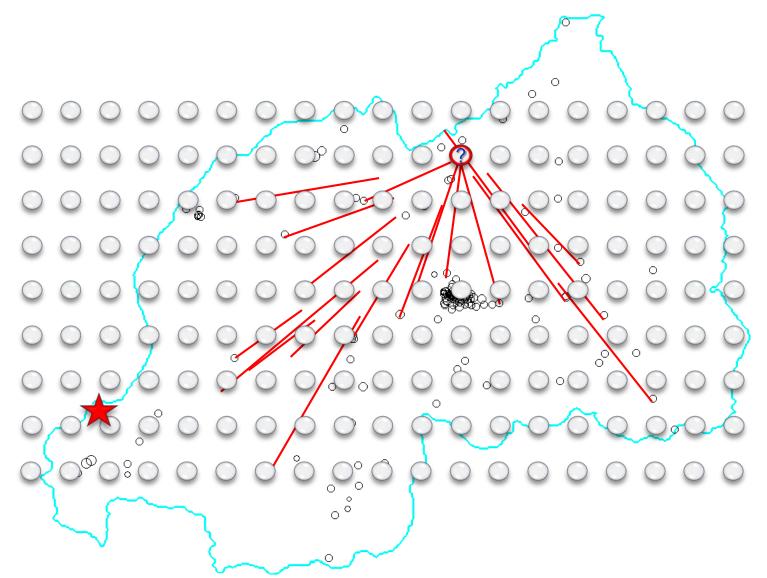
# Determining the Epicenter

Radius of towers = % increase in calls



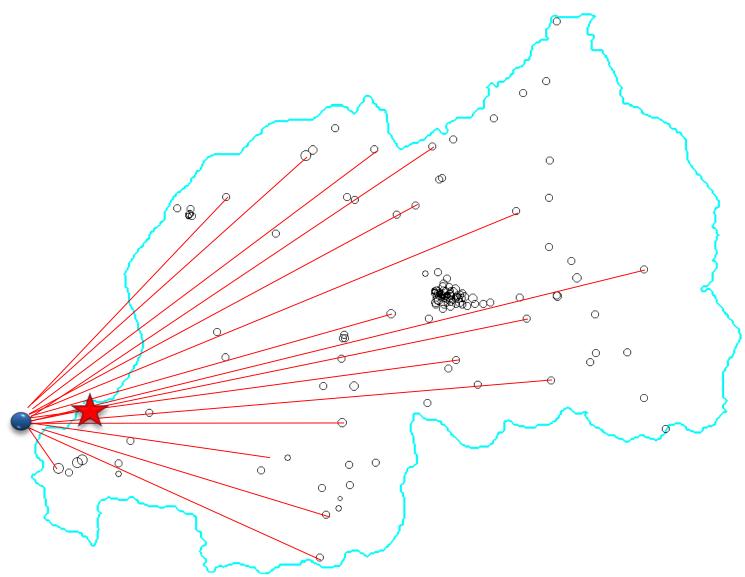
# Determining the Epicenter

Radius of towers = % increase in calls

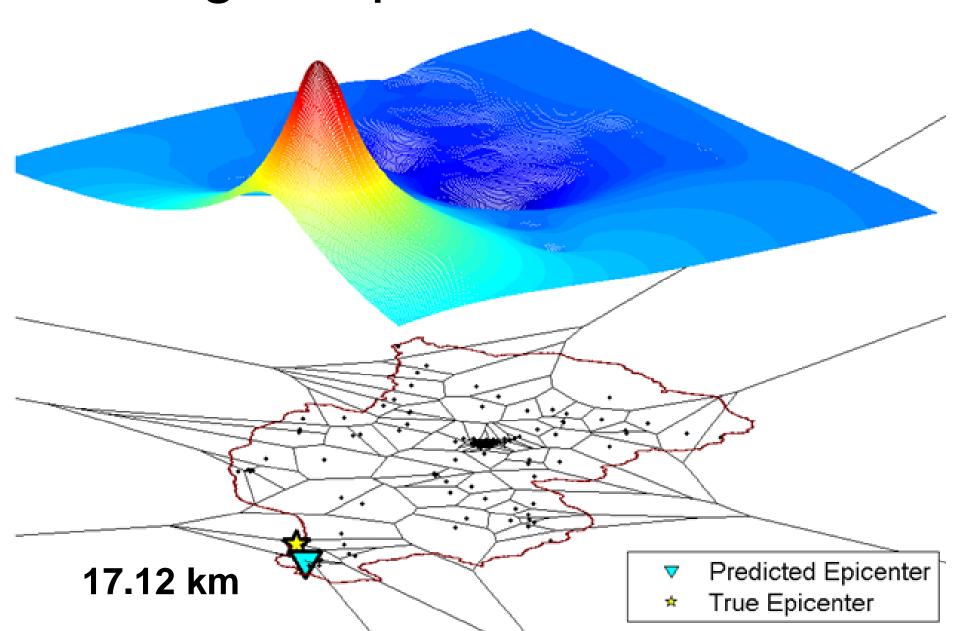


# Determining the Epicenter

Radius of towers = % increase in calls

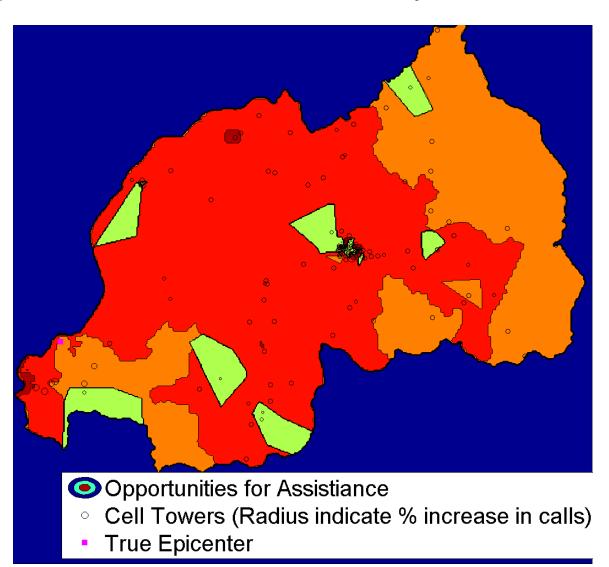


# Inferring the Epicenter



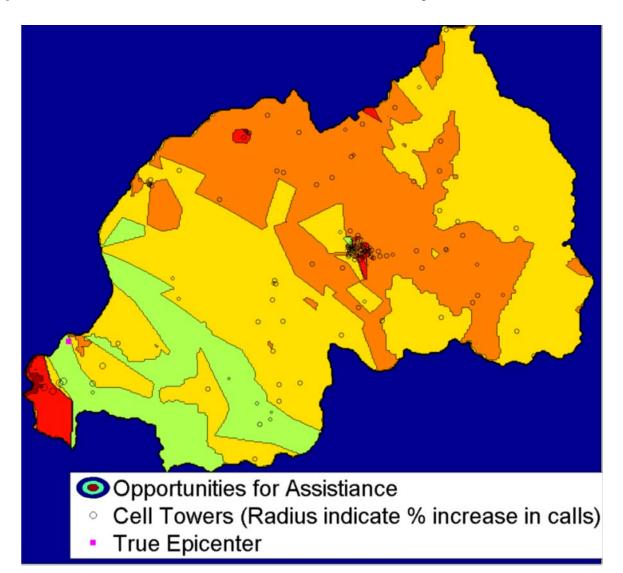
# Inferring Opportunities to Assist

Opportunities for Assistance Day 0



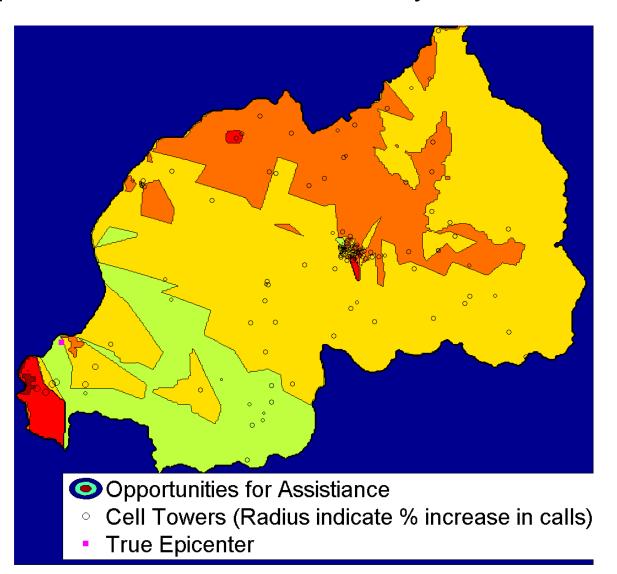
# Inferring Opportunities to Assist

Opportunities for Assistance Day 1



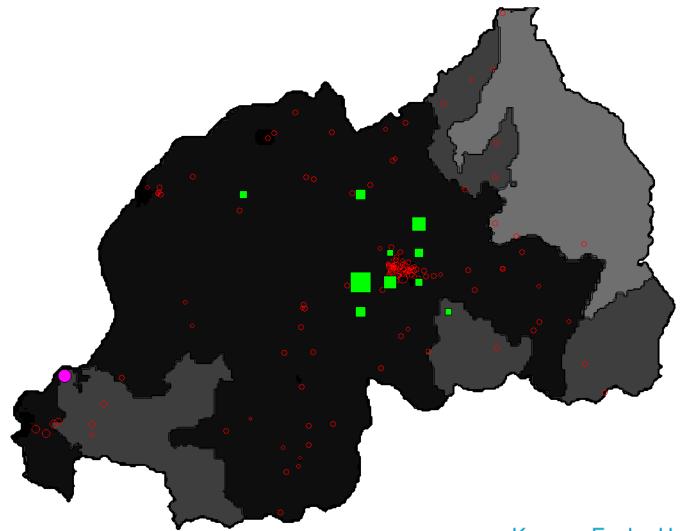
# Inferring Opportunities to Assist

Opportunities for Assistance Day 2



# Value of Survey

Ideal Reconnaissance (Day 2)



Kapoor, Eagle, Horvitz, 2010

# ARTIFICIAL INTELLIGENCE FOR

#### AI-D.ORG



#### **Data-Driven Development**

**AAAI AI-D Symposium** 





Can we quantify a crime wave? Is crime contagious? Given the time, place, and nature of a crime, we are attempting to infer casual relationships between crimes and locations across a city. - J. TOOLE, J. PLOTKIN, N. EAGLE

PEOPLE GET INVOLVED

#### Quantifying the Stability of Society



Is there such a thing as a 'poverty trap'? Logistic classifiers applied on communication and census data point to a new mechanism for poverty that relates to the persistence of relationships. This analysis shows that economic exchanges flow primarily through these persistent edges and the inability to maintain these ties can prevent upward economic mobility. - Y. DE MONTJOYE, A. CLAUSET, N. EAGLE

#### Economic Shocks in Rwanda



Do people react to economic shocks in a similar manner? Time-series analysis of anonymized mobile phone records coupled with random surveys, will hopefully lead to better insight about the dynamics of rural economies. - J. BLUMENSTOCK, N. EAGLE

#### Communication as a Lens into Poverty



How do communication patterns reflect poverty? We find the principal components of a wide range of diversity metrics, including Shannon entropy, explain over two-thirds the variance of regional socioeconomic status. - N. EAGLE, M. MACY, R. CLAXTON

#### Identifying Need and Risk



Can mobile phones identify high-risk behavior? A group of 10 male sexworkers in coastal Kenya where provided with mobile phones that logged communication, proximity and movement behavior. When coupled with self -report surveys, we are attempting to develop a system that can infer the onset of high-risk behavior and deliver salient information in real-time. - E. SANDERS. N. EAGLE

#### Al-D Sample Research Projects

Below are a list of active AI-D research projects. If you'd like to add your own project to this list, please feel free to get involved.

Food Shortage

Disease Surveillance

Diffusion of Norms

Mobility and Malaria

Slum Dynamics

Computational City Planning

Urban Growth Models

Expertise Inference

Crime as Contagion

Stability of Society

Shock Modeling

Entropy and Poverty

Realtime Risk





# Co-Location: Computational Epidemiology Understanding spread of illness

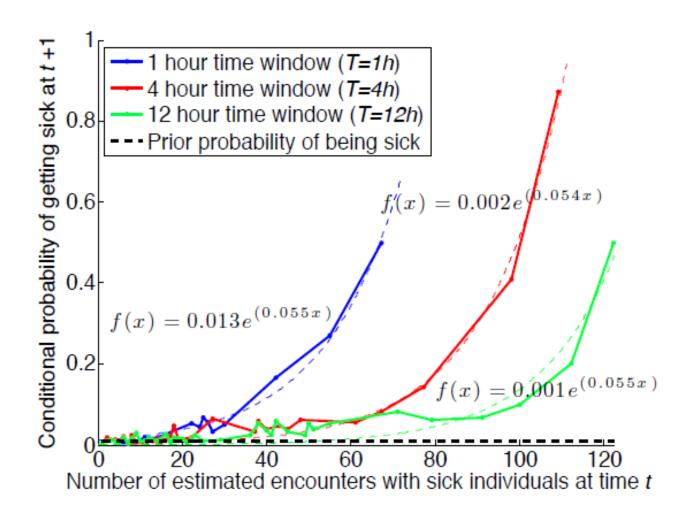


A. Sadilek, H. Kautz, V. Silenzio, Modeling Spread of Disease from Social Interactions, ICWSM 2012.

### Identifying Illness from Tweet Terms

| Positive Features |        | Negative Features |         |  |
|-------------------|--------|-------------------|---------|--|
| Feature           | Weight | Feature           | Weight  |  |
| sick              | 0.9579 | sick of           | -0.4005 |  |
| headache          | 0.5249 | you               | -0.3662 |  |
| flu               | 0.5051 | of                | -0.3559 |  |
| fever             | 0.3879 | your              | -0.3131 |  |
| feel              | 0.3451 | lol               | -0.3017 |  |
| cough             | 0.3062 | who               | -0.1816 |  |
| feeling           | 0.3055 | u                 | -0.1778 |  |
| coughing          | 0.2917 | love              | -0.1753 |  |
| throat            | 0.2842 | it                | -0.1627 |  |
| cold              | 0.2825 | her               | -0.1618 |  |
| home              | 0.2107 | they              | -0.1617 |  |
| still             | 0.2101 | people            | -0.1548 |  |
| bed               | 0.2088 | shit              | -0.1486 |  |
| better            | 0.1988 | smoking           | -0.0980 |  |
| being             | 0.1943 | i'm sick of       | -0.0894 |  |
| being sick        | 0.1919 | so sick of        | -0.0887 |  |
| stomach           | 0.1703 | pressure          | -0.0837 |  |
| and my            | 0.1687 | massage           | -0.0726 |  |
| infection         | 0.1686 | i love            | -0.0719 |  |
| morning           | 0.1647 | pregnant          | -0.0639 |  |

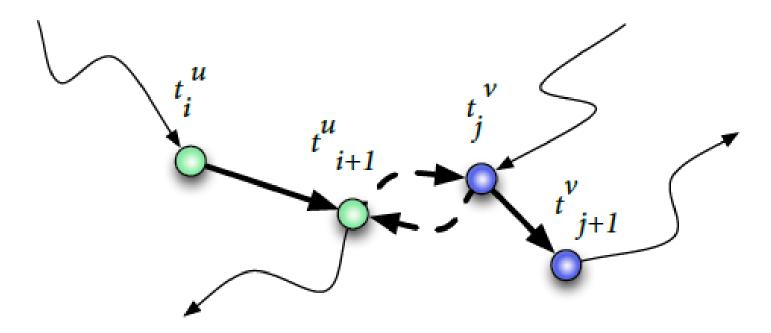
### Collocation and Transmission



### Directions for Disrupting Spread of Illness

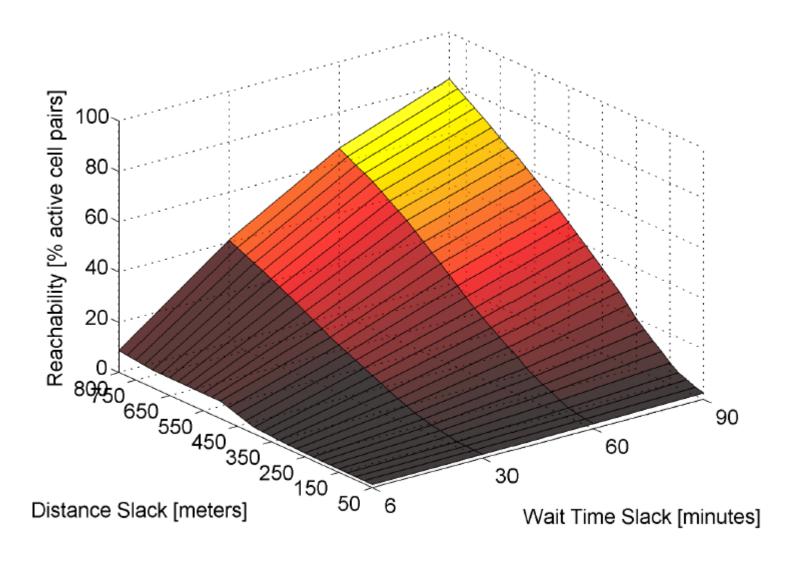
"Crowd physics:" On physics of the crowd e.g., Studies of flow through a population

e.g., Routing graph per proximity & dwell



A. Sadilek, J. Krumm, and E. Horvitz. Crowdphysics: Planned and Opportunistic Crowdsourcing for Physical Tasks, ICWSM 2013.

# Reachability, Permeability, Phase Transitions e.g., In Seattle





### Opportunities to Slow Spread of Disease

Study robustness & fragility of routing graph Disruption of reachability and permeability

