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Road Map

 Very large scale modeling

 First principle:
Model the whole, not just the parts

 Second principle:
Tame complexity via hierarchical decomposition

 Third principle:
Time and space should not depend on data size



Very Large Scale Modeling

Generation Microchips Models
Prehistory Single components (pre-1960) Descriptive statistics
First Integration (1960-1970) Small models (pre-1995)
Second LSI (1970-1980) Large models (1995-2015)
Third VLSI (1980-now) Very large models (2015 on)



The LSI-VLSI Transition
Before:
 Wire gates one by one
 Design tied to fabrication

After:
 Combine modules
 Design independent of 

fabrication
 CAD tools
 Hardware description 

languages



A Similar Transition Is 
Underway in KDD

Large Model Very Large Model
Customer Social network
Gene, protein Metabolic pathway
Neuron Brain
Service City
Organism Ecosystem
Atmosphere Climate
Object recognition Vision
Parser Language
Recommender system 360º view of you



A Similar Transition Is 
Underway in KDD
 Not just more data, but modeling

larger systems
 Poses host of new problems
 Requires new methodology
 This talk:
 Three principles (of many)
 Examples from my research



First Principle
Model the whole, not just the parts



Example: Social Networks

Customers



Example: Social Networks

Customer model

Demographics

Profile

Clicks

Etc.

Buy



Example: Social Networks

Customer model

Demographics

Profile

Clicks

Etc.

Buy

Marketing



Example: Social Networks

. . . but customers influence each other



Modeling the Whole Network

 Friends are often the largest influence on 
purchasing decisions

 If you don’t model the whole,
you risk missing the forest for the trees

 But how do we model the whole?
 Traditional statistical models not applicable, 

because samples not independent
 Ad hoc methods don’t generalize,

and don’t give you optimal actions



Markov Logic Networks
 Easy to represent interactions using logic:

 But logic rules are all-or-none;
can’t model graded, uncertain behavior

 So treat them as feature templates for
a log-linear model (Markov network)



From Log-Linear Models to MLNs

 Log-linear model:

 Each instance of an MLN rule becomes
a feature in the log-linear model

 If Anna influences Bob and both buy,
probability goes up
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MLN for Viral Marketing



Richer MLNs

 Customer and product attributes
 Costs, prices and profits
 Multiple relations and entity types
 Choice of marketing actions
 Time
 Multiple products
 Multiple companies
 Etc.



The Inference Problem

 But how do we use an MLN like this?
 Choose initial set of customers to market to
 Compute expected number of buyers
 Search for optimal marketing strategy

 Highly intractable in general



The Cost of Inference

Anna buys Effect on
Zach? 



The Cost of Inference

Anna buys Effect on
Zach? 

Prob(Bob, Chris buy): 22 = 4 states



The Cost of Inference

Anna buys Effect on
Zach? 

Prob(Di, Ed, Fran, Glenn buy): 24 = 16 states



The Cost of Inference

 Cost of inference is exponential in width
of network

 Same for every probabilistic model (etc.)
 Ad hoc inference can give arbitrarily bad 

results
 What to do?



Second Principle
Tame complexity by

hierarchical decomposition



Hierarchical Decomposition

 Everyone does it . . . except us
 E.g.: VLSI, programming
 Most models are not hierarchical
 Why?
 Little need so far
 Phenomena are not hierarchical?



The World Is Hierarchical

Part Hierarchy

Economy

MediaEnergy Health

ViacomDisney Warner

ITHR Sales



The World Is Hierarchical

Class Hierarchy

Human

American

Californian TexanNew Yorker

Asian European

JeterDe Blasio Streisand



Hierarchical Decomposition

 Most phenomena are approximately 
hierarchical

 Even if not, we need to approximate
them as such

 Better than assuming complete 
independence

 Better than intractable models



Exploiting Hierarchy

 Subparts are independent given part
P(Co. buys, HR buys, IT buys, . . .) =

P(Co. buys) P(HR buys | Co. buys)
× P(IT  buys | Co. buys) × . . .

 Probability for class is average over subclasses
P(Buys | American) =

P(New Yorker) P(Buys | New Yorker)
+ P(Californian) P(Buys | Californian) + . . .

 Combining the two ensures tractability



Buying an Item

Anna’s
friends Zach’s

friends 



Buying an Item
Anna’s
coworkers Zach’s

coworkers 



Buying an Item
Anna’s
friends Zach’s

friends 

Anna’s
coworkers Zach’s

coworkers 

Item
Type



Buying an Item

Anna’s
friends

Zach’s
friends 

Anna’s
coworkers

Zach’s
coworkers 
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A marginal probability can be efficiently computed 
if it is either:
 A weighted sum of efficiently computable 

marginals over the same variables

 A product of efficiently computable marginals 
over disjoint variables

The Sum-Product Theorem



The Sum-Product Theorem

 Recurse through any number of levels
 Allows many tractable wide networks
 Not just probabilities (any function, semiring)
 Decomposition can be learned, encoded,

or approximation



Markov Logic Networks

Sum-Product Theorem

Tractable Markov Logic

+



Third Principle
Time and space should not

depend on data size



From Big Data to Big Models

 The purpose of big data is to learn a big 
model (or many small ones)

 Otherwise it’s wasted
 Size of model dictates size of data you need
 Excess data can be ignored
 Just how much data is enough?



Streaming Bound Algorithms

 Infinite data stream
 Constant time and memory
 Goal: Learn approximately same model

as we would with infinite time and memory



Why Is This Possible?

 To predict election winner, we only need
to poll a few thousand voters

 All we have to do is generalize this to models 
with complex structure and many parameters

 Data in stream must be in random order



Learning an MLN

 Data is relational database
 Maximize likelihood
 Weight learning: Gradient descent

 Structure learning: Greedy search

No. of true instances of rule i in data

Expected no. true instances according to MLN
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Hoeffding Bounds





Gradient Descent





Gradient Descent Error Bound





Gradient Descent Error Bound





Streaming Gradient Descent





What If Data Changes Over Time?

 Maintain sufficient statistics over sliding 
window

 Monitor difference between current statistics
and statistics model was learned on

 If difference exceeds bound for some 
statistic, relearn corresponding part of model



Applications to Date

 Viral marketing
 Web knowledge bases
 Object recognition
 Web caching
 Semantic parsing
 Etc.
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 Viral marketing
 Web knowledge bases
 Object recognition
 Web caching
 Semantic parsing
 Etc.



Principles of
Very Large Scale Modeling

1.  Model the whole, not just the parts
→ Markov logic networks

2.  Tame complexity via hierarchical
decomposition
→ Sum-product theorem

3.  Time and space should not depend
on data size
→ Streaming bound algorithms



The Master Algorithm

Machine Learning and the
Big Data Revolution

Pedro Domingos

Basic Books
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