

Filling Context-Ad Vocabulary Gaps with Click Logs

2014/9/2

Yahoo Japan Corporation **Yukihiro Tagami**, Toru Hotta, Yusuke Tanaka, Shingo Ono, Koji Tsukamoto, Akira Tajima

Copyright (C) 2014 Yahoo Japan Corporation. All Rights Reserved.

- Our paper pdf in the proceedings seems to be broken...
- Please refer to the followings and get the pdf
 - http://dl.acm.org/citation.cfm?id=2623334
 - http://researchlab.yahoo.co.jp/ml/20140701_81.html

- For contextual advertising, we propose a method of translating contextual information into the textual features of ads by using past click data
 - In this study, we focus on increasing the clickthrough rate(CTR)
- We applied our approach to a real ad serving system and achieved an improvement over the existing production system

- Contextual advertising for Japanese market
 - Developed by Yahoo! JAPAN
 - Annual revenue: 30 billion JPY (300 million USD)

- Two-stage approach in our ad serving system
 - 1. Ads are retrieved by multiple methods using inverted index
 - 2. The ads are merged and passed to click-through rate(CTR) prediction model

Copyright (C) 2014 Yahoo Japan Corporation. All Rights Reserved.

Objective of selecting ads

- Ad serving system selects ads that are relevant to the page content and/or user information
 - Advertisers are primarily interested in targeting relevant users
 - Publishers, which is a Web page owner, are concerned with keeping the user experience pleasant

Typical approach (1/2)

- To measure the word overlap between two types of information
 - In practice, these vocabularies are different
 - → context-ad vocabulary gaps

Typical approach (2/2)

- To use semantic taxonomy or hidden classes
 - It is necessary to expand the ad retrieval system or build new index to handle it
 - In the operation, the following tasks are periodically required
 - A review of the number and hierarchical structure of categories
 - A re-creation of clusters
 - In practice, these are not always easy to perform

- Our approach translates contextual information into the textual space of ads
- The translation table is learned with click logs

A score proportional to CTR

$$score(\boldsymbol{q}, \boldsymbol{a}) = \boldsymbol{q}^{\mathrm{T}} \boldsymbol{W} \boldsymbol{a} + \boldsymbol{w}_{basic}^{\mathrm{T}} \boldsymbol{x}_{basic}$$
 $= \sum_{i=1}^{D_q} \sum_{j=1}^{D_a} w_{ij} q_i a_j + \boldsymbol{w}_{basic}^{\mathrm{T}} \boldsymbol{x}_{basic}$

 $q \in \mathbb{R}^{D_q}$: contextual feature vector $a \in \mathbb{R}^{D_q}$: ad feature vector x_{basic} : features such as ad's display position w_{basic} : weight vector corresponding to x_{basic} W : translation matrix parameters

- Feature selection using past click statistics
 - To learn the translation matrix efficiently
 - To make the transformed vector sparse
- The score is represented linear form

$$score(\boldsymbol{q}, \boldsymbol{a}) = \sum_{(i,j)\in P} w_{ij}q_ia_j + \boldsymbol{w}_{basic}^{\mathrm{T}} \boldsymbol{x}_{basic}$$

 $= \boldsymbol{w}_{match}^{\mathrm{T}} \boldsymbol{x}_{match} + \boldsymbol{w}_{basic}^{\mathrm{T}} \boldsymbol{x}_{basic}$
 $= \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$
 $P = \{(i,j) \mid m_{ij} > T\}, \ m_{ij} = rac{ctr(q_i, a_j)}{\max(ctr(q_i), ctr(a_j))}$

Copyright (C) 2014 Yahoo Japan Corporation. All Rights Reserved

- In our setting, some ads are displayed on a page at the same time
- User clicks the ad because it is preferable in the listing

P13

- Defining a pairwise loss function
 - RankSVM (squared hinge loss)

$$L(\boldsymbol{w}) = \sum_{r \in R^+} \sum_{i: y_i^{(r)} = 1} \sum_{j: y_j^{(r)} = 0} \max(0, 1 - \boldsymbol{w}^{\mathrm{T}} (\boldsymbol{x}_i^{(r)} - \boldsymbol{x}_j^{(r)}))^2$$

 R^+ : a set of ad requests which includes clicked ad

• We add a regularization term to avoid overfitting and seek the parameters

$$\hat{\boldsymbol{w}} = \arg\min_{\boldsymbol{w}} \frac{1}{2} \|\boldsymbol{w}\|_2^2 + C \cdot L(\boldsymbol{w})$$

- P14
- With the learned matrix, the contextual feature vector is transformed into the input term vector of the ad retrieval system for each ad request

$$oldsymbol{q}_{input} = oldsymbol{q}^{\mathrm{T}} \hat{oldsymbol{W}}$$

 $\int \int \mathrm{Top}{}^{k} \mathrm{similarity\, search}$
 $\mathrm{using\, inverted\, index}$
(WAND algorithm)
 $(oldsymbol{a}_{1}, oldsymbol{a}_{2}, \ldots, oldsymbol{a}_{N})$

Online A/B testing result

P15

- Relative gain over existing method
 - Click-through rate(CTR)
 - Colored value represents "p-value < 0.05" on chi-squared test (website A, B, D, E, H)
 - Cost per click(CPC)
 - Revenue per request(RPR)

Metrics	Website							
	А	В	С	D	E	F	G	Н
CTR	-3.67%	+4.60%	+0.48%	+2.82%	+2.47%	+1.42%	+3.27%	+4.02%
CPC	+3.63%	-2.00%	+1.62%	+1.31%	-1.01%	+7.51%	-2.42%	-2.94%
RPR	-0.18%	+2.51%	+2.10%	+4.17%	+1.44%	+9.04%	+0.77%	+0.97%

Example of translation table

- Example of Web site B's table for user terms
 - "User terms" are extracted from user behavioral events

User term	Translated term	Weight
	iPhone	0.2114
iPhone	ケース(case)	0.1534
	iPad	0.0868
	プリウス(Toyota Prius)	0.2600
プリウス(Toyota Prius)	燃費(mileage)	0.0732
	HV(Hybrid Vehicle)	0.0607
	温泉(hot spring)	0.1730
温泉(hot spring)	旅館(Japanese inn)	0.1272
	露天風呂(outdoor hot spring)	0.0809

- For contextual advertising, we propose a method of translating contextual information into the textual features of ads by using past click data
 - In this study, we focus on increasing the clickthrough rate(CTR)
- We applied our approach to a real ad serving system and achieved an improvement over the existing production system

Questions?

Please speak clearly and slowly.

Yukihiro Tagami yutagami@yahoo-corp.jp

Copyright (C) 2014 Yahoo Japan Corporation. All Rights Reserved.