A Hazard Based Approach to User Return Time Prediction

Komal Kapoor Jaideep Srivastava

Mingxuan Sun Tao Ye

Outline

- Motivation
- Techniques
- Data and Findings
- Conclusion

Motivation

User Retention

User Retention

• What works and what doesn't work?

Redesign and restructuring

User Retention

• What works and what doesn't work? • Identifying at risk users

Redesign and restructuring

Selective targeting, promotions, marketing

Retention for the New Web

- Highly dynamic user behavior
 - multiple services in market
 - significant number of drop outs
 - prone to changes
- Engagement is the new metric for success
 - user return rate
 - user time spend

Retention for the New Web

• Highly dynamic user behavior

- multiple services in market
- significant number of drop outs
- prone to changes
- Engagement is the new metric for success
 - user return rate
 - user time spend

Techniques

Survival Analysis

- Modeling time of occurrence of event
 e.g. death, failure, recovery, adoption, return, exit, click, etc.
- Handle incomplete (censored) data
 - Users that do not return
 - Cannot simply discard such users! (bias)
- Attribute return rate to user features and other events
 - Covariates feedback, tenure, loyalty
 - Dynamic covariates time of day, system changes

 $\lambda(t) = \lambda_0(t) * \exp(\beta_1 * X_1(t) + \beta_2 * X_2(t) + ...)$

 $\lambda(t) = \lambda_0(t) * \exp(\beta_1 * X_1(t) + \beta_2 * X_2(t) + ...)$

Baseline Hazard Function (non-parametric)

 $\lambda(t) = \lambda_0(t) * \exp(\beta_1 * X_1(t) + \beta_2 * X_2(t) + ...)$

Regression Coefficient

 $\lambda(t) = \lambda_0(t) * \exp(\beta_1 * X_1(t) + \beta_2 * X_2(t) + ...)$

The first and the second terms are independent of each other and are learned separately

Data and Findings

Music Domain Datasets

- The Last.fm public dataset :
 - 1000 users
 - Training: All user visits during Oct Dec 2008
 - Testing: All user visits during Jan Mar 2009
- Large-scale proprietary dataset:
 - 73,465 users
 - Cross Validation: All users visits during May July 2012
- Multiple observations from the same user are reweighted, each user gets unit weight

Covariates

Typical visitation patterns of a user

- Active Weeks
- Density of Visitation
- Visit Number
- Time weighted average return time (TWRT)

Satisfaction/engagement with the service

- Duration
- % Distinct Songs
- % Distinct Artists
- % Skips
- Explicit feedback indicators

Baseline Hazard Function

- Baseline hazard has a declining shape
- Indicative of *inertia* (likelihood of return decreases as time spent away increases)

Length of absence (days)

the social music revol

Return Time Prediction

E(Return Time | Model, Covariates)

Return Time Prediction

Weighted Root Mean Squared Error (WRMSE) = $\sqrt{\frac{\sum w * (T^p - T^a)^2}{\sum w}}$

WRMSE Return Time Predictions for Last.fm Dataset

Training Data Test Data (10-fold Cross Validation) Average 10.55 10.40 **Linear Regression** 9.61 9.37 **Decision Tree** 9.45 9.15 Regression **Support Vector Machine** 10.76 10.33 Neural Networks 9.36 9.58 **Hazard Based** 8.76 8.45 Approach

WRMSE Return Time Predictions for Large-Scale Dataset

	Training Data (10-fold Cross Validation)
Average	18.55
Linear Regression	18.33
Decision Tree Regression	18.14
Support Vector Machine	-
Neural Networks	18.26
Hazard Based Approach	16.58

Future Return Time Prediction

E(Return Time | Model, Covariates, **Observed Absence**)

Future Return Time Prediction

Large-scale WRMSE Future Return Time Prediction

Length of Absence (LOA)

Classification into User Buckets

Short	Long
Return	Return
time	time

F-measure for User Classification using LOA (Large-scale Dataset)

Length of Absence (LOA)

Conclusions

Takeaways

- Proposed return time prediction as an approach for improving retention in web services
- Used a Cox proportional hazard model which incorporated dynamic return events and effects of covariates
- Improved performance by using the length of absence (LOA)
- Outperformed state-of-the-art baselines in return time prediction and user classification based on return time

Thanks!