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Electrification: “The greatest engineering 
achievement of the 20th Century”      

The National Academy of Engineering 
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Electrical (Power) Engineering101 
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Electric Utility is a Capital Intensive Industry 
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Much more Distribution Transformers than Power Transformers 
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Optimal Asset Maintenance and Capital investment is of Importance 

§ Existing asset maintenance largely depends on pre-determined “rule-of-thumb” 
schedules 

– Does not consider the realistic utilization impacts 
– Can be risky at both over- and under-maintenance 
–  Incurs unnecessary cost for a utility 

§ Decision on capital investments for upgrades/replacement gets impacts too 
because of this 

§ Maintenance schedule should reflect true utilization of individual assets 

§ One of the key components to enable this is to compute the “Electrical Age” of 
transformers 
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But How to Obtain Ambient Temperature of Transformers? 

Transformer Aging Model 
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Challenge: there are only Limited Number of Weather Stations 
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Paucity of Weather Station Network is a Common Issue 

§ Meteorological metrics, such as temperature, wind speed, humidity and pressure, 
are useful for many applications 

– Smarter grids (Superstorm Sandy’s caused outages)  
– Dynamics of forests 
– Cherry blossom 
– … 

§ For many business-related applications, it is more useful to have a finer resolution 
meteorological metrics, both spatially and temporarily, than provided by typical 
weather forecast service 

– NOAA: National Oceanic and Atmospheric Administration 

§ A solution for meteorological metrics at finer resolution was sought in this work 
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Physical-based Model is typically Computationally Intensive 

§ Weather Research and Forecasting (WRF) Model is most well-known and used by 
NCEP (National Centers for Environmental Prediction) and many other forecasting 
centers internationally 

§ A numerical weather prediction (NWP) system by solving a set of PDEs (e.g., 
compressible, nonhydrostatic Euler equation) 

 
– Formulated using a terrain-following mass vertical coordinate 

§ Accurate, but computationally expensive (HPC) 

§ Resolution is also limited by boundary conditions (e.g., provided by weather 
station measurements) without special treatment 

velocity. ✓ is the potential temperature. Also appearing in the governing equations of the ARW
are the non-conserved variables � = gz (the geopotential), p (pressure), and ↵ = 1/⇢ (the inverse
density).

2.2 Flux-Form Euler Equations

Using the variables defined above, the flux-form Euler equations can be written as
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along with the diagnostic relation for the inverse density
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air, R
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is the gas constant for dry air, and p0 is a reference pressure (typically 105 Pascals). The
right-hand-side (RHS) terms F
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, and F⇥ represent forcing terms arising from model
physics, turbulent mixing, spherical projections, and the earth’s rotation.

The prognostic equations (2.3) – (2.8) are cast in conservative form except for (2.8) which
is the material derivative of the definition of the geopotential. (2.8) could be cast in flux form
but we find no advantage in doing so since µ� is not a conserved quantity. We could also use a
prognostic pressure equation in place of (2.8) (see Laprise, 1992), but pressure is not a conserved
variable and we could not use a pressure equation together with the conservation equation for ⇥
(2.6) because they are linearly dependent. Additionally, prognostic pressure equations have the
disadvantage of possessing a mass divergence term multiplied by a large coe�cient (proportional
to the sound speed) which makes spatial and temporal discretization problematic. It should be
noted that the relation for the hydrostatic balance (2.9) does not represent a constraint on the
solution, rather it is a diagnostic relation that formally is part of the coordinate definition. In the
hydrostatic counterpart to the nonhydrostatic equations, (2.9) replaces the vertical momentum
equation (2.5) and it becomes a constraint on the solution.

8



© 2010 IBM Corporation 

IBM Research 

11 

Learning-based Model: Trade-off between Accuracy and Speed 

§  Inverse distance weighting 

§ Splines, Regression, Kriging  

§ Neural networks and machine learning techniques 
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Major Contributions of this Work 

§ Application of Compressed Sensing (CS) to large-scale geospatial interpolation of 
climate data 

– Compressed Sensing (CS) is a signal processing technique for efficiently acquiring and 
reconstructing a signal, by finding solutions to underdetermined linear systems. 

§ New Bayesian Compressed Sensing model with student-T prior (BCST) 

§ Efficient and effective estimation of latent variables for BCST 

§ Extensive experiments to validate the effectiveness of the proposed model 



© 2010 IBM Corporation 

IBM Research 

13 

Estimate DCT Coefficients to Minimize Reconstruction Error with 
Student-t prior 

Weather Stations Meteorological 
metrics? 
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Student-t is a better Prior than Laplace for Meteorological Metrics 

§ Log-likelihood ratio 
(LLR) test to 
compare the fit of 
both priors 

– R = 4499.0 

§ How to derive an 
analytical form to 
efficiently do the 
prediction? 

– Approximated 
Variational 
Inference 
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BCST as a General Meteorological Interpolation Service 

Clean the error data items 

Split the spatial region into grids 

BCST model 
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Experimental Setup 

§ Two data sets 
– KNMI (Royal Netherlands Meteorological Institute) daily weather data 

•  33 Weather stations in Netherlands 
•  Temperature, humidity, average wind speed etc 
•  Grid: ~25 KM, 11x17 

– Vendor provided 5-minute weather data 
•  About 15K weather stations mainly in North America 
•  Temperature, Humidity, Barometric pressure, etc 
•  ~10 KM, 20x20 

§ Evaluation metric: average normalized error (ANE) 

§ Comparison methods 
– BCST-AVI (proposed method with Approximated Variational Inference) 
– BCST-GS (proposed method with MCMC Sampling for inference) 
– BCSL: compressed sensing with Laplace prior for DCT coefficients 
– CS: compressed sensing L1 norm to regularize DCT coefficients 
– TPS: Thin Plate Spline 
– UK: Universal Kriging 
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Temperature Interpolation Results on KNMI  
(metric: percentage) 
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Runtime Comparison (in ms) 
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Example: Barometric Pressure Map in NYC 

High pressure 

Low pressure 

Metric: 1/100 inch of 
mercury 
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Conclusions & Future Work 

§ A compressed sensing technique with Student-t prior 

§ Efficient and effective algorithms for both inference and learning 

§ Many potential applications, especially in the area of to smarter energy research 

§ Future work: 
– Considering both spatial and temporal correlations to improve resolution in both 

dimensions 
– Optimal gridding schemes 


