

Novel Geo-spatial Interpolation Analytics for General Meteorological Measurements

Bingsheng Wang, Jinjun Xiong*

Computer Science Dept, Virginia Tech IBM Thomas.J. Watson Research Center*

IBM Smarter Energy Research Institute: Advance the Future of Utility http://www.research.ibm.com/client-programs/seri/

Electrical (Power) Engineering101

Electric Utility is a Capital Intensive Industry

4

Much more Distribution Transformers than Power Transformers

Optimal Asset Maintenance and Capital investment is of Importance

- Existing asset maintenance largely depends on pre-determined "rule-of-thumb" schedules
 - Does not consider the realistic utilization impacts
 - Can be risky at both over- and under-maintenance
 - Incurs unnecessary cost for a utility
- Decision on capital investments for upgrades/replacement gets impacts too because of this
- Maintenance schedule should reflect true utilization of individual assets
- One of the key components to enable this is to compute the "Electrical Age" of transformers

But How to Obtain Ambient Temperature of Transformers?

Challenge: there are only Limited Number of Weather Stations

Paucity of Weather Station Network is a Common Issue

- Meteorological metrics, such as temperature, wind speed, humidity and pressure, are useful for many applications
 - Smarter grids (Superstorm Sandy's caused outages)
 - Dynamics of forests
 - Cherry blossom
 - ...
- For many business-related applications, it is more useful to have a finer resolution meteorological metrics, both spatially and temporarily, than provided by typical weather forecast service
 - NOAA: National Oceanic and Atmospheric Administration
- A solution for meteorological metrics at finer resolution was sought in this work

Physical-based Model is typically Computationally Intensive

- Weather Research and Forecasting (WRF) Model is most well-known and used by NCEP (National Centers for Environmental Prediction) and many other forecasting centers internationally
- A numerical weather prediction (NWP) system by solving a set of PDEs (e.g., compressible, nonhydrostatic Euler equation)

$$\partial_t U + (\nabla \cdot \mathbf{V}u) - \partial_x (p\phi_\eta) + \partial_\eta (p\phi_x) = F_U$$

$$\partial_t V + (\nabla \cdot \mathbf{V}v) - \partial_y (p\phi_\eta) + \partial_\eta (p\phi_y) = F_V$$

$$\partial_t W + (\nabla \cdot \mathbf{V}w) - g(\partial_\eta p - \mu) = F_W$$

$$\partial_t \Theta + (\nabla \cdot \mathbf{V}\theta) = F_\Theta$$

$$\partial_t \mu + (\nabla \cdot \mathbf{V}) = 0$$

$$\partial_t \phi + \mu^{-1} [(\mathbf{V} \cdot \nabla \phi) - gW] = 0$$

- Formulated using a terrain-following mass vertical coordinate
- Accurate, but computationally expensive (HPC)
- Resolution is also limited by boundary conditions (e.g., provided by weather station measurements) without special treatment

Learning-based Model: Trade-off between Accuracy and Speed

- Inverse distance weighting
- Splines, Regression, Kriging
- Neural networks and machine learning techniques

Major Contributions of this Work

- Application of Compressed Sensing (CS) to large-scale geospatial interpolation of climate data
 - Compressed Sensing (CS) is a signal processing technique for efficiently acquiring and reconstructing a signal, by finding solutions to underdetermined linear systems.
- New Bayesian Compressed Sensing model with student-T prior (BCST)
- Efficient and effective estimation of latent variables for BCST
- Extensive experiments to validate the effectiveness of the proposed model

IBM

urvey, Esri Japan, METI, Esri China (Hong Kong

Estimate DCT Coefficients to Minimize Reconstruction Error with Student-t prior

Student-t is a better Prior than Laplace for Meteorological Metrics

BCST as a General Meteorological Interpolation Service

Experimental Setup

- Two data sets
 - KNMI (Royal Netherlands Meteorological Institute) daily weather data
 - 33 Weather stations in Netherlands
 - Temperature, humidity, average wind speed etc
 - Grid: ~25 KM, 11x17
 - Vendor provided 5-minute weather data
 - About 15K weather stations mainly in North America
 - Temperature, Humidity, Barometric pressure, etc
 - ~10 KM, 20x20
- Evaluation metric: average normalized error (ANE)
- Comparison methods
 - BCST-AVI (proposed method with Approximated Variational Inference)
 - BCST-GS (proposed method with MCMC Sampling for inference)
 - BCSL: compressed sensing with Laplace prior for DCT coefficients
 - CS: compressed sensing L1 norm to regularize DCT coefficients
 - TPS: Thin Plate Spline
 - UK: Universal Kriging

Temperature Interpolation Results on KNMI (metric: percentage)

Num. of Observati ons	BCST-AVI	BCST-GS	BCSL	CS	TPS	UK
6	4.4655 ± 0.2090	4.5271 ± 0.2043	6.0500 ± 0.2360	6.5341 ± 0.2765	24.075 ± 1.0912	21.531 ± 1.2026
8	4.1963 ± 0.2071	4 . 0133 ± 0.2058	5.5939 ± 0.2126	6.0756 ± 0.2391	15.071 ± 1.1238	14.295 ± 1.2815
10	3.9797 ± 0.2077	3.9246 ± 0.2001	5.0283 ± 0.2247	5.7360 ± 0.2337	11.676 ± 1.0394	10.578 ± 1.2292
12	3 . 8415 ± 0.2070	3.8518 ± 0.2085	4.9300 ± 0.2586	5.5593 ± 0.2274	10.209 ± 0.9548	8.0038 ± 0.9005
14	3.6969 ± 0.2041	3.6728 ± 0.2097	4.5629 ± 0.2256	5.3472 ± 0.2199	8.3562 ± 0.4875	6.4566 ± 0.3853
16	3.4824 ± 0.2059	3.4815 ± 0.2056	4.4169 ± 0.2698	5.1859 ± 0.4248	6.9671 ± 0.4248	5.2924 ± 0.4530

Runtime Comparison (in ms)

Model	KNMI Data	Vendor Data
BCST-AVI	14 . 162 ± 1.7789	31 . 169 <u>+</u> 2.0685
BCST-GS	14205 <u>+</u> 269.91	63375 <u>+</u> 1792.7
BCSL	116.20 ± 3.1875	489.65 ± 12.750
CS	69.073 <u>+</u> 30.499	276.31 ± 30.312
TPS	74.000 ± 6.6500	106.00 ± 8.4327
UK	50.000 ± 5.9470	160.00 ± 10.824

Example: Barometric Pressure Map in NYC

Conclusions & Future Work

- A compressed sensing technique with Student-t prior
- Efficient and effective algorithms for both inference and learning
- Many potential applications, especially in the area of to smarter energy research
- Future work:
 - Considering both spatial and temporal correlations to improve resolution in both dimensions
 - Optimal gridding schemes

