LASTA: Large Scale Topic Assignment on Multiple Social Networks

Nemanja Spasojevic, Jinyun Yan, Adithya Rao, Prantik Bhattacharyya Klout, Inc.

{nemanja, jinyun, adithya, prantik}@klout.com

Highlights and Contributions

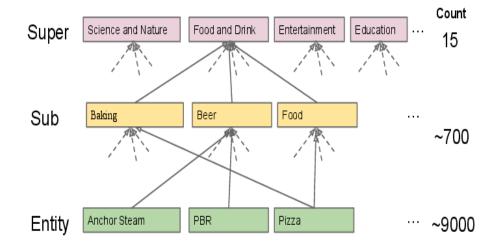
- Fully deployed production system to assign topics at scale
 - ~10,000 topics assigned to hundreds of millions of users daily
 - Reactive to fresh data
- Data from multiple social networks used to create an aggregated profile for a user:
 - Twitter, Facebook, LinkedIn, Google+, Wikipedia
 - User activity, profiles, connections
- **Feature engineering** approach that uses following categories:
 - Original generated content
 - Reactions to original content
 - Indirect attributions to user
 - Graph based features
- Cross-Network information leads to:
 - More topics assigned per user
 - More users who can be assigned topics
 - Better user-topic associations compared to using a single network

Klout

- Klout is a social influence measurement tool.
- Users register on Klout.com and connect their social network accounts.
- Klout collects authorized/public information from connected networks.
- Klout derives influence scores and topics for users from collected data.

Motivation

- Assign topics to the long tail
- Focus on socially recognizable topics of interest
 - Warren Buffett may be interested in *Ukulele* and *Online Bridge*, but is known for his recognizable interests like *Business* and *Money*.
- Applications in Recommendation and Targeting systems:
 - Content recommendations
 - User targeting
 - Question Answering



Extensibility in terms of data sources.

Challenges in social data

Message size:

 Overall data size may be huge, but message size per user may be small.

Text Sparsity:

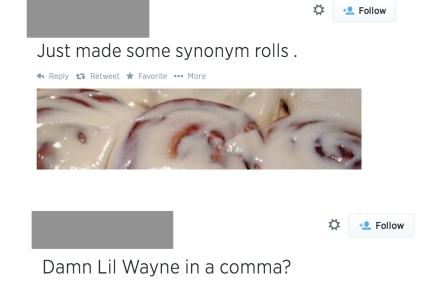
 Many users may be passive consumers of content.

Noise:

 Social content abounds in colloquial language, slang, grammatical errors, abbreviations.

Context:

 Need to expand context to get more information



♠ Reply ★ Retweet ★ Favorite ••• More

FAVORITES

15

40

Why use data from multiple networks?

- Phrase usage on different social networks is different
- Phrase overlap across social networks is small
- Combination of networks provides more quantity and diversity of phrases used.

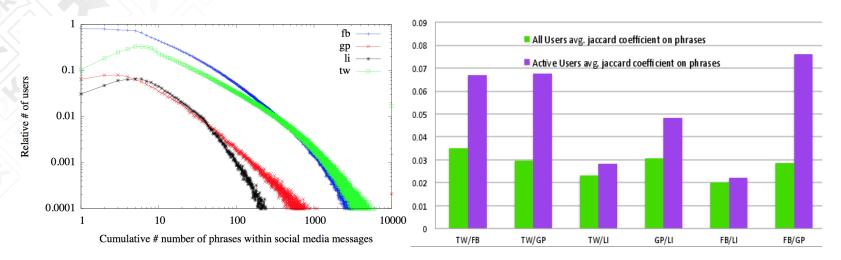
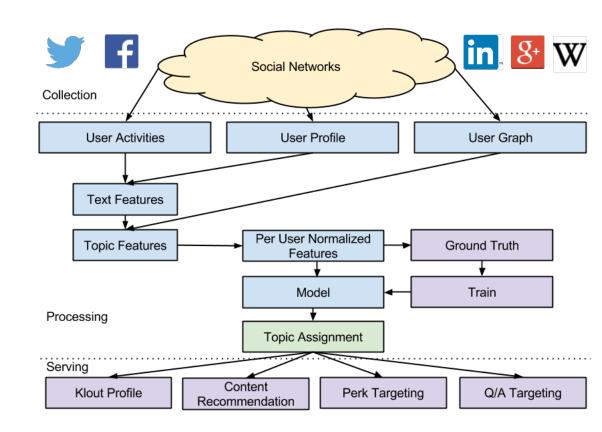


Fig. 1. Verbosity distribution across social networks

Fig. 2. Phrase overlap on social networks

Data Pipeline

- Facebook: Authored status updates, shared URLs, commented and liked posts, text and tags associated with videos and pictures.
- Twitter: Authored tweets, retweets, mentions and replies on other tweets, shared URLs, created and joined lists.
- LinkedIn: Authored posts, comments, skills stated by the user and endorsed by connections.
- Google+: Authored messages, reshares, comments, shared URLs and plus-ones.
- Wikipedia: Wikipedia pages for well known personalities.

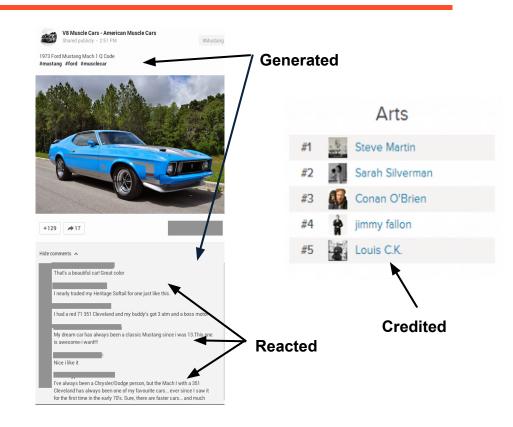


System Details

- Topic Assignment runs as a bulk job on the Hadoop MapReduce stack
 - o HDFS, Hive, HBase
- Exploded Resource footprint (uncompressed reads/writes from HDFS):
 - Feature Generation: 55.42 CPU days, 6.66 PB reads, 2.33 PB writes
 - Score generation: 11.33 CPU days, 3.78 PB reads, 1.09 PB writes
- Hive User Defined Functions (UDFs) implement utilities for data aggregation and transformation
 - https://github.com/klout/brickhouse
- Machine Learned models are trained offline and improved regularly.

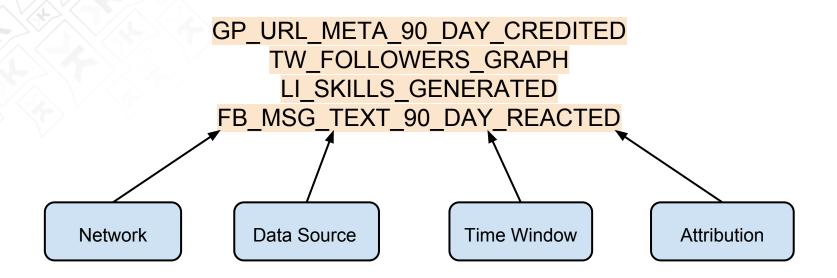
Feature Engineering

- A Topic Feature in the pipeline is represented as a bag-of-topics derived in a specific manner.
 - eg. TW_MSG_TEXT => { (topic1, 1.0), (topic2, 3.0), ... (topicN, 1.0) }
 - A particular topic may occur in multiple bags of topics.
- Data sources are attributed to users as:
 - Generated: Original text, urls created and shared by a user.
 - **Reacted**: Reactions to original content from a user.
 - Credited: Attributions that do not depend directly on the activity of a user.
 - Graph: Topics derived for friends, followers, connections.



Feature Engineering

- Each Feature is encoded as <network>_<data-source>_<time-window>_<attribution>
- Extensibility to create new features is important for experimentation and prototyping
 - o eg. Add a new time window, or a new data source



Ground Truth

- Since we want socially recognizable topics, members in a user's social graph evaluate topics for the user.
- Order is not considered during labeling.

Statistics	Value
# of participants	43
# of evaluated users	766
# of (user, topic) labels	32,264
# of positive (user, topic) labels	17,208
# of negative (user, topic) labels	15,056

Nemanja Spasojevic aka. sofronije

TOPIC	
water-polo	0
open-water-swimming	О
management	O
quantum-mechanics	0
C++	0
klout	0
algorithms	0

Evaluation and results

Training:

- Transform bag of topics to a feature vector for each topic user pair (ti, u).
- Train a Binary Classification model using ground truth data.

Evaluation on test set:

- Single Network comparison
- Attribution Comparison
- Most Predictive Features

User	Top 10 Topics						
Marissa Mayer	yahoo, google, technology, business,						
	twitter, social-media, flickr, design,						
	marketing, seo, gmail						
Lady Gaga	music, lady-gaga, celebrities, art, fash-						
	ion, born-this-way, venus, entertain-						
	ment, radio						
Barack Obama	politics, affordable-care-act, health-						
	care, new-york-times, congress, chicago,						
	twitter, washington, illinois						

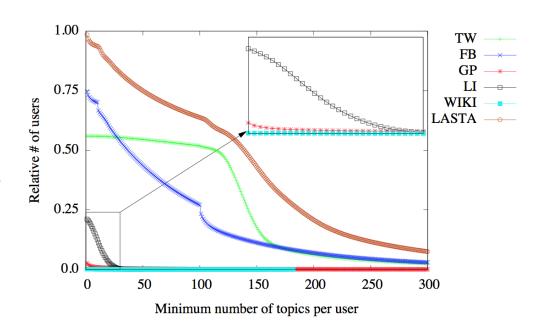
LASTA vs single networks

Better long tail performance:

LASTA assigns topics to a higher percentage of users, compared to using a single network.

More comprehensive per user:

LASTA assigns more topics per user than a single network.



Cross-Network topics

Table 9: Super-topic percentage distribution across different networks

Super-topic	LASTA	TW	\mathbf{FB}	LI	GP	WIKI
technology	23.972	19.706	11.559	33.420	22.822	8.247
entertainment	23.987	20.049	20.866	3.406	14.377	30.669
business	15.893	10.628	7.567	41.053	12.857	10.937
lifestyle	7.910	7.403	11.409	2.328	7.969	4.810
science-and-nature	4.431	3.705	3.604	1.266	4.682	3.208
arts-and-humanities	6.605	7.056	6.836	5.765	9.392	13.373
government-and-politics	3.547	4.763	4.388	2.182	3.534	5.261
sports-and-recreation	4.379	7.503	7.591	0.659	4.913	7.921
food-and-drink	2.671	7.228	11.863	0.819	7.255	2.142
health-and-wellness	1.976	3.894	5.150	1.691	4.083	1.867
fashion	1.439	2.645	2.945	0.732	2.776	2.203
education	1.443	2.375	3.485	3.369	2.170	4.058
news-and-media	0.966	1.722	0.899	2.597	1.060	4.366
travel-and-tourism	0.535	0.779	1.155	0.614	1.041	0.654
hobbies	0.246	0.543	0.683	0.100	1.070	0.285

Key Takeaways

- Do not ignore the long tail.
- Using more than one social network offers the opportunity to get a deeper understanding of users.
- Expanding context is important for topic derivation.
- If you are designing a production system, ensure it has the following characteristics:
 - It is extensible
 - It allows fast experimentation and prototyping

Questions?