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Reserve Price Optimisation

The task:

• To find the optimal reserve prices (hard floors)
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Why
• Suppose it is second price auction

– Normal case: 𝑏2 ≥ 𝛼

– Preferable case: 𝑏1 ≥ 𝛼 > 𝑏2 (it increases the revenue)

– Undesirable case: 𝛼 > 𝑏1 (but there is risk)
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• Suppose: two bidders, private values drawn from Uniform[0, 1]

• Without a reserve price (or 𝑎 = 0), the payoff 𝑟 is:

• With 𝑎 = 0.2:

• With 𝑎 = 0.5:

• With 𝑎 = 0.6:

An example

Reserve prices in internet advertising auctions: A field experiment, Ostrovsky and Schwarz, 2011 4

𝑟 = 𝐸 min 𝑏1, 𝑏2 = 0.33

𝑟 = 𝐸 min 𝑏1, 𝑏2 𝑏1 > 0.5, 𝑏2 > 0.5 + 0.5 × 0.5 = 0.42

𝑟 = 𝐸 min 𝑏1, 𝑏2 𝑏1 > 0.2, 𝑏2 > 0.2 + 0.32 × 0.2 = 0.36

𝑟 = 𝐸 min 𝑏1, 𝑏2 𝑏1 > 0.6, 𝑏2 > 0.6 + 0.6 × 0.4 × 2 × 0.6 = 0.405

Paying the second highest price Paying the reserve price



The optimal auction theory
• In the second price auctions, advertisers bid their private values 

[𝑏1, … , 𝑏𝐾]

• Private values -> Bids’ distributions

– Uniform

– Log-normal

• The publisher also has a private value 𝑉𝑝

• The optimal reserve price is given by:
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Questions:

• How are advertisers bidding?

• Does Uniform/Log-normal fit well?

Optimal Reservation Prices in Auctions, Levin and Smith, 1996

𝐹 𝒃 = 𝐹1 𝑏1 ×⋯× 𝐹𝐾(𝑏𝐾)

𝛼 −
1 − 𝐹 𝒃

𝐹′ 𝒃
− 𝑉𝑝 = 0



• They usually use a private regression model (No access to publishers)

• Perhaps they don’t even know it! (Just try to maximise the ROI)
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Bidding is complicated

Many advertisers bid at fixed values
(Think about a decision tree)

And they come and go
(with different lifetime span)



Uniform/Log-normal distributions do NOT fit well
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Test at the placement level
(because we usually set reserve prices 

on placements)

Test at the auction level

• Chi-squared test for Uniformity

• Anderson-Darling test for Normality



Results from a field experiment
• On Yahoo! Sponsored search

• Using the Optimal Auction Theory

8Reserve prices in internet advertising auctions: A field experiment, Ostrovsky and Schwarz, 2011

Mixed results



Our solution
• A dynamic and one-shot game between the winner (w) and the 

publisher (p)

• Extension form representation

– Information nodes: 
• 𝐼1: Auction succeeded: the winning bid 𝑏1 is higher
• 𝐼2: Auction failed: the reserve price 𝛼 is higher

– Actions: 
• 𝑎𝑝1: to increase 𝛼 so that 𝛼 ≥ 𝑏1
• 𝑎𝑝2: to increase 𝛼 so that 𝛼 < 𝑏1
• 𝑎𝑝3: to decrease 𝛼 so that 𝛼 ≥ 𝑏1
• 𝑎𝑝4: to decrease 𝛼 so that 𝛼 < 𝑏1

• 𝑎𝑤1: to increase 𝑏1 so that 𝑏1 ≥ 𝛼
• 𝑎𝑤2: to increase 𝑏1 so that 𝑏1 < 𝛼
• 𝑎𝑤3: to decrease 𝑏1 so that 𝑏1 ≥ 𝛼
• 𝑎𝑤4: to decrease 𝑏1 so that 𝑏1 < 𝛼
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1) Expected payoff of advertiser, publisher

2) Payoff for the advertiser could be negative if one 
has been bidding the max price
(𝑎𝑤1: to increase 𝑏1 so that 𝑏1 ≥ 𝛼) 3) One won’t do that, 

so discounted publisher’s payoff



Heuristics and Modification
• If the reserve price is too high, lower it

• If too low, higher it

• If in the preferable range (𝑏1 ≥ 𝛼 ≥ 𝑏2), slightly higher it

• A parameter 𝜆 allowing to converge over time

Δ𝛼(𝑡) =  

𝜆𝑡ℎ𝛼(𝑡) 𝛼 > 𝑏1
𝜆𝑡𝑙𝛼(𝑡) 𝑏2 > 𝛼

𝜆𝑡𝑝𝛼(𝑡) 𝑏1 ≥ 𝛼 ≥ 𝑏2
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Dataset (it’s online experiment)

• Observed 130m impressions from Dec 2012 to Feb 2013
(Subsampled 10% due to computing power restraint)

• From 39 placements, 19 websites of different categories

• From a production Supply Side Platform in UK
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Competing Algorithms
• Round-robin scheduling

– Zero (the base line)

– Weighted average (linear)

– Optimal auction theory

– Heuristics (OneShot)

– Bayesian (univariant and bivariant)

• Reserve prices are set for each (placement, hour_of_day)
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Findings

12.3% better than the 2nd best
28.5% better than the optimal auction theory
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Findings

Advertisers are overpaying because of tricky set ups
(They don’t know it could be first price auction!)

(And seems they don’t care!)

Real-time Bidding for Online Advertising: Measurement and Analysis, Yuan et al., 2013 15



Advertisers need to catch up
(at least from 1-year ago’s point of view)
and consider cost in bidding algorithms
Weinan Zhang, Shuai Yuan, Jun Wang, 
Optimal Real-Time Bidding for Display 
Advertising, KDD 2014

The continuous bidding activity The unchanged bidding pattern

The unchanged budget allocation 
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Future Work
• Reserve price optimisation

– Audience data integration 
(Because the demand side is doing it!)

– Finding better fitting distributions

• A unified supply side optimisation framework for big players

– Enough volume for various online tests

– Dynamic allocation of inventories 
(programmatic guarantee, private/public exchange, etc.)

(Bowei Chen, Shuai Yuan, Jun Wang, 

A Dynamic Pricing Model for Unifying Programmatic Guarantee and Real-Time Bidding in 

Display Advertising, 

ADKDD 2014)

– Joint optimisation

17



Q & A

• Thanks for your time!

• Shuai Yuan

• s.yuan@cs.ucl.ac.uk

• www.yuan-shuai.info
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