Style in the Long Tail

Discovering Unique Interests with Latent Variable Models in Large Scale Social E-commerce

Diane Hu, Etsy Rob Hall, Etsy Josh Attenberg, Etsy

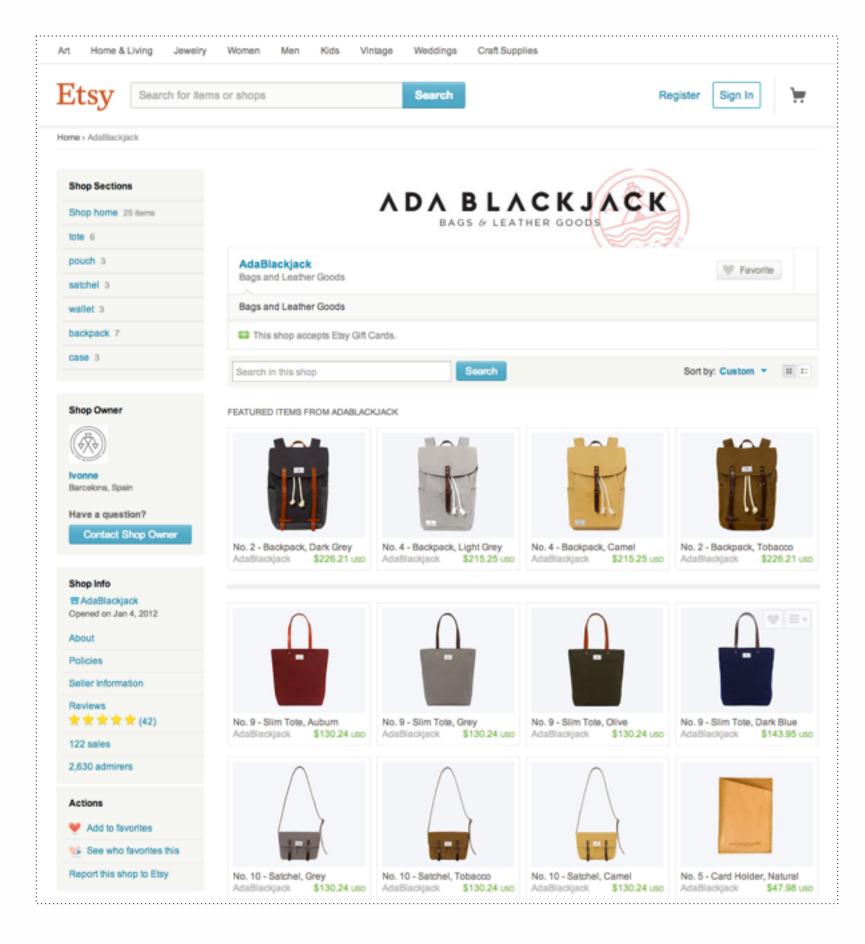
Overview

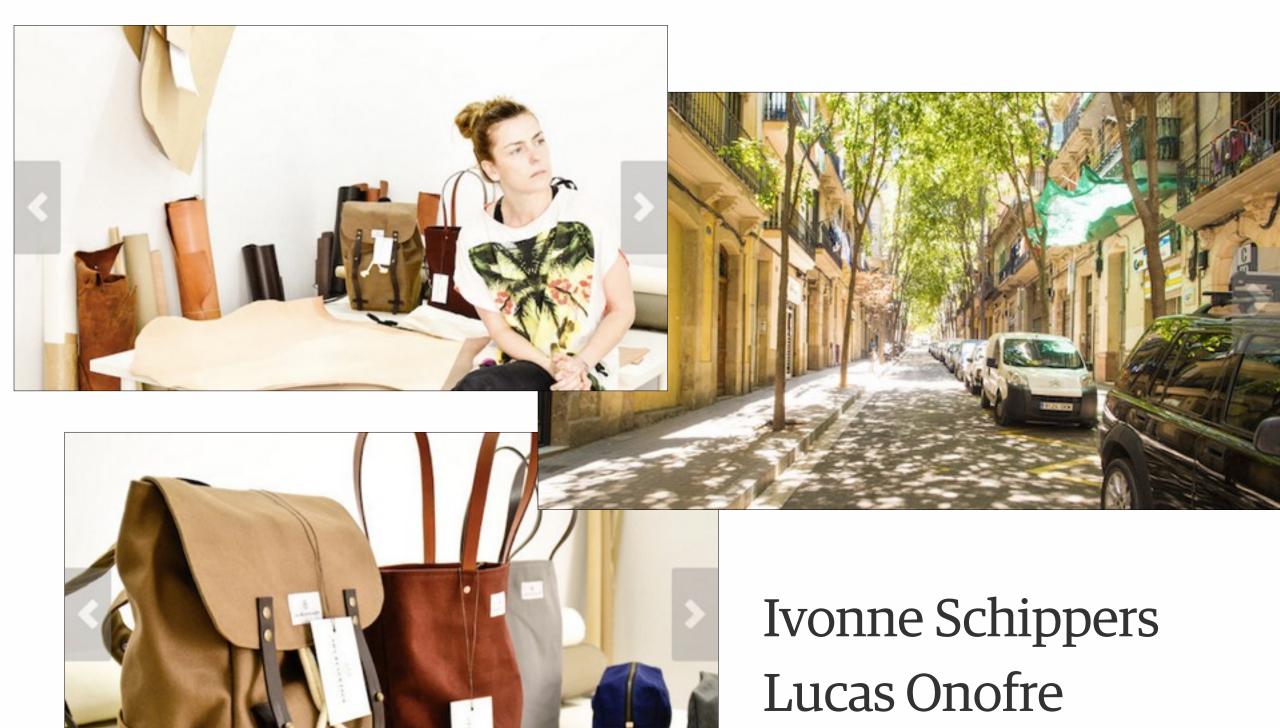
O1 | Etsy Overview

02 | Discovering User Styles

03 | Generating Recommendations

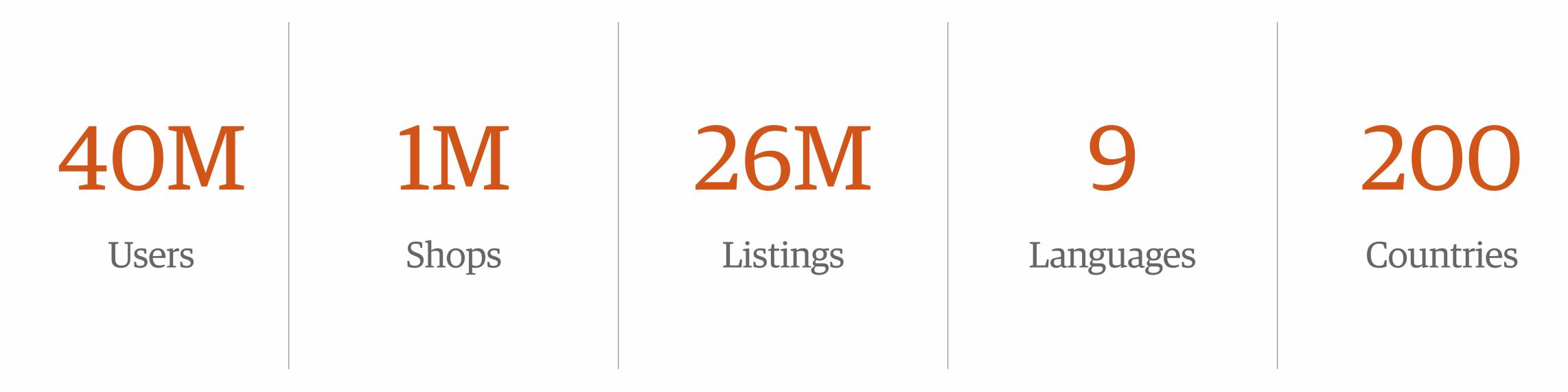
Etsy is an online marketplace where people connect to buy and sell unique goods: Handmade, vintage, or craft supplies





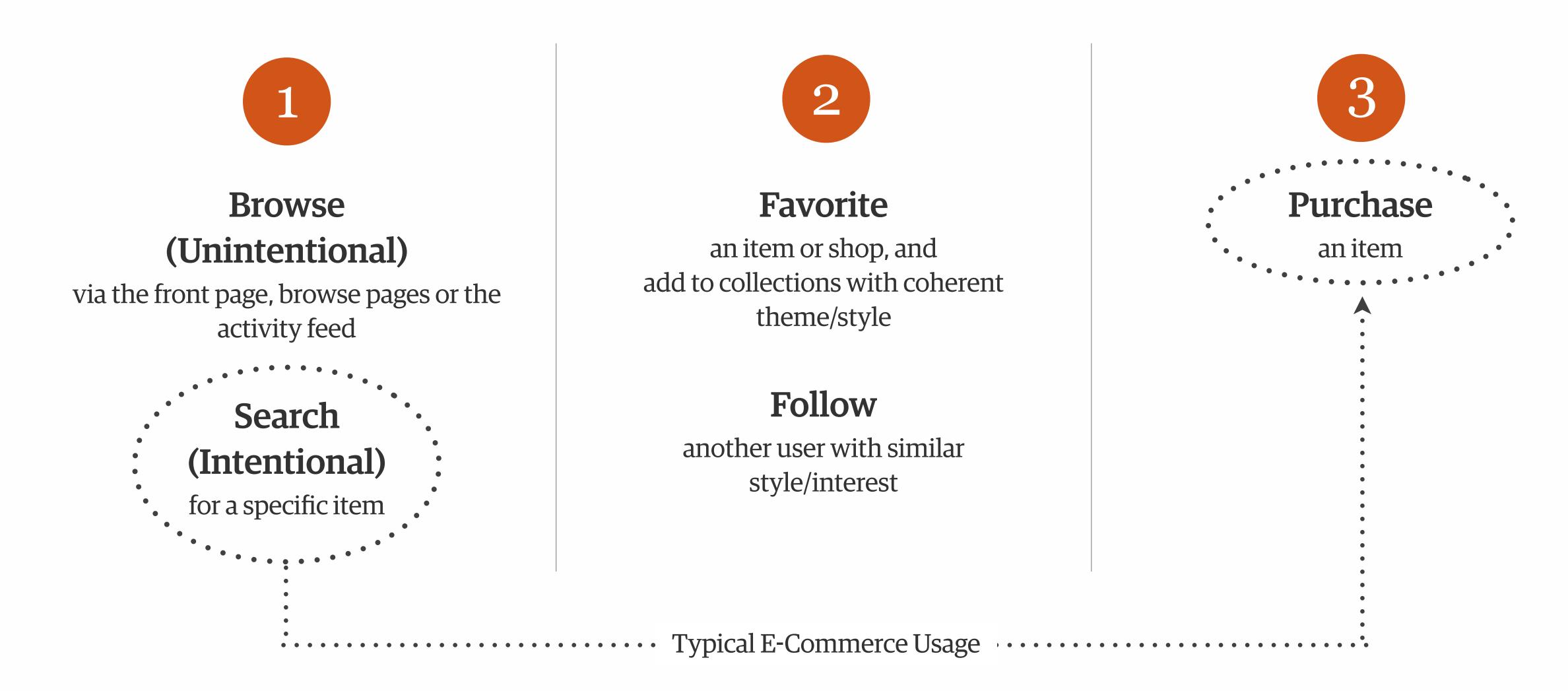
Barcelona, Spain

Etsy is an online marketplace where people connect to buy and sell unique goods: Handmade, vintage, or craft supplies

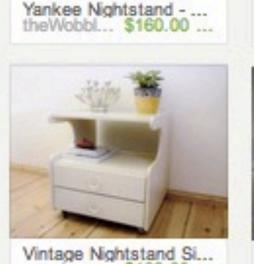


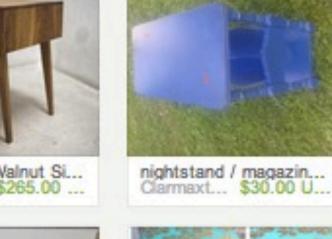
How to build recommender systems for such a unique marketplace?

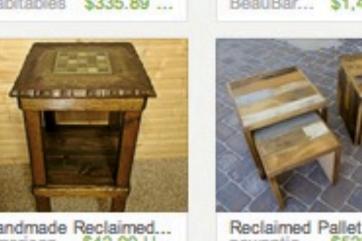
How do people typically use Etsy?

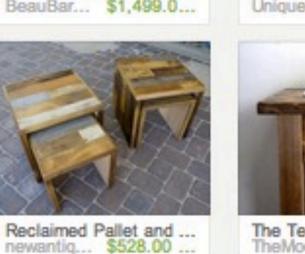


How do people decide what to buy?

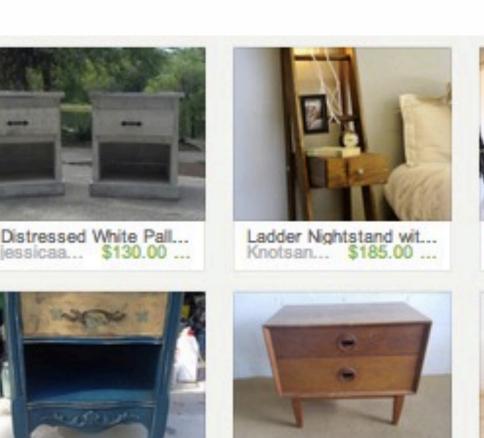








Function and style. Example: search results for "nightstand" - 100+ pages



Sold - Sweet Shabby ...

Chumleyl... \$40.00 U...

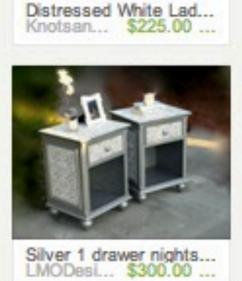
Vintage Heywood Wa... Pavonal... \$160.00 ...

Pastel Blue Nightstan... NewVinta... \$74.99 U...

Vintage French Provi...

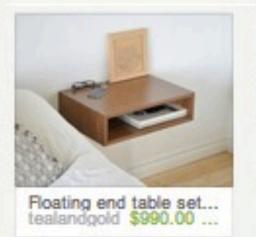
Provincia... \$399.00 ...

Vintage French Provi...

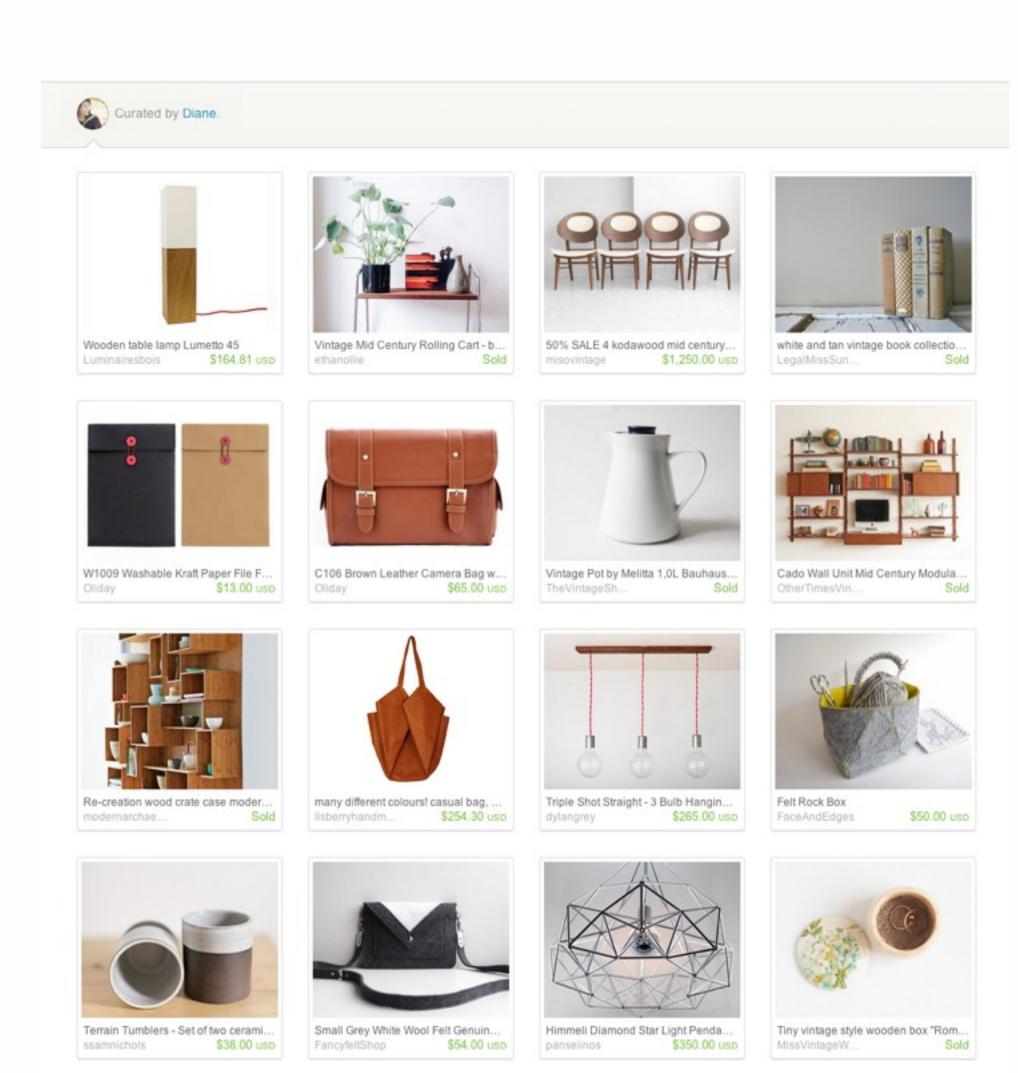


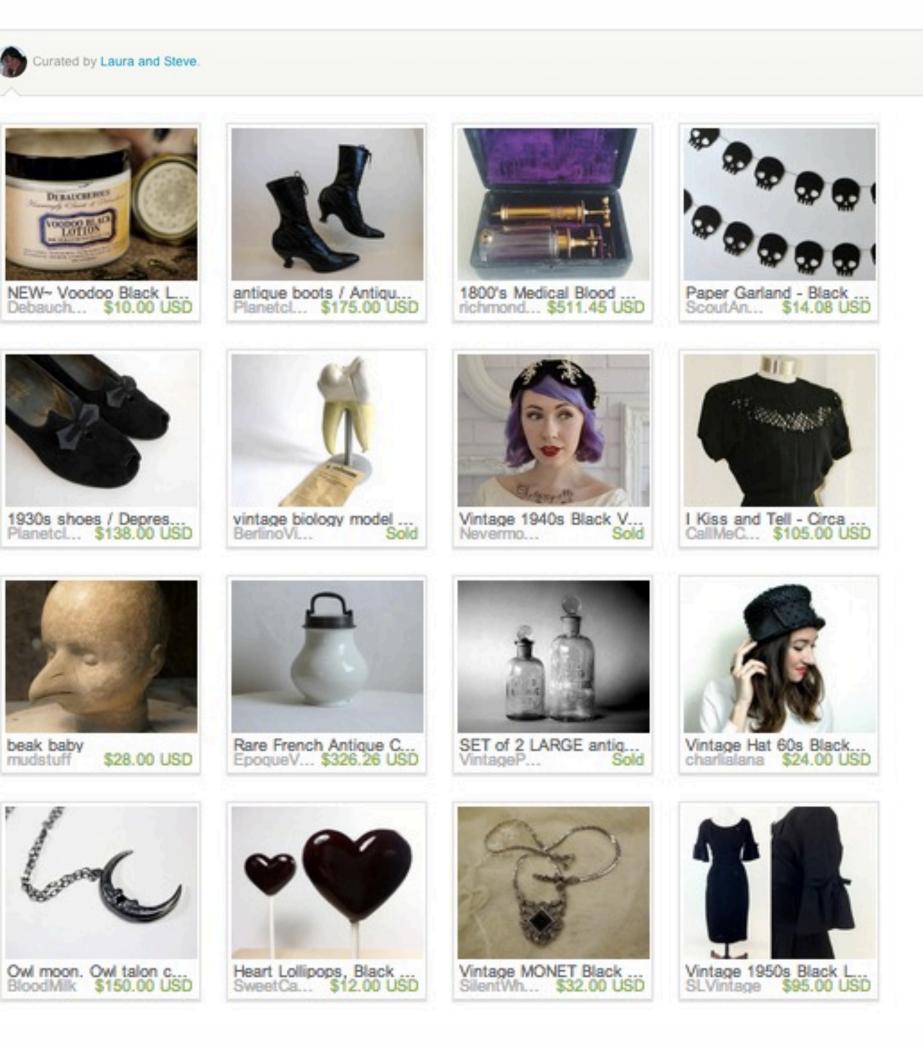
Mid Century Modern ... Jasperk... \$99.00 U...

shabbysl... \$225.00 ...



How to describe style?





What Personalization Looks Like on Etsy

Recommendations for multiple intents

Enhance browsing experience, not just purchases

Recommendations for multiple content types

Develop unified method for recommending shops, items, users

Recommendations based on visual styles

Identify user styles and interests in a visually transparent way

Overview

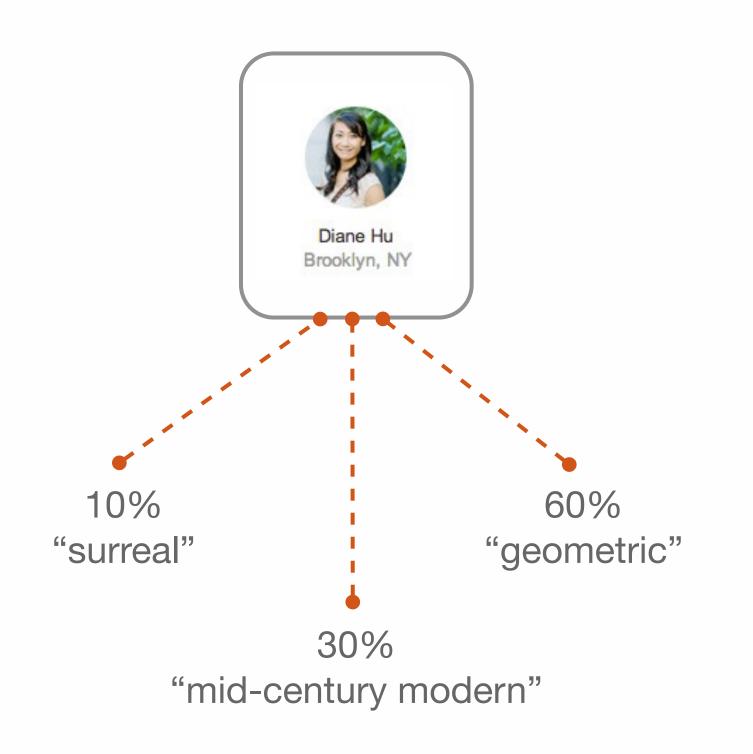
O1 | Etsy Overview

02 | Discovering User Styles

03 | Generating Recommendations

Solution Overview

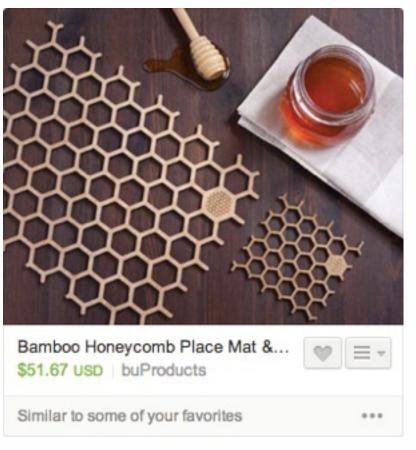
Learn style profiles for each user using LDA

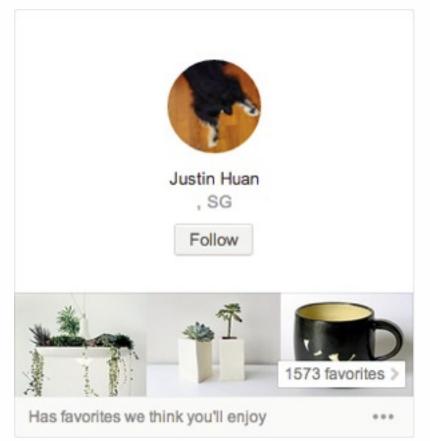


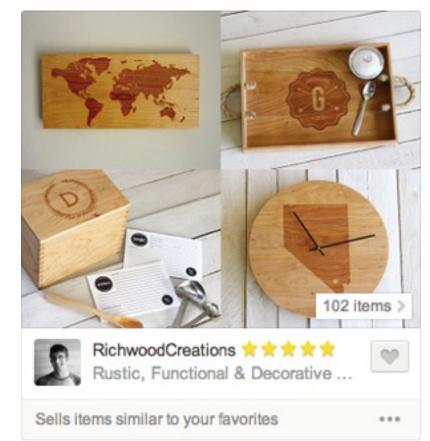
Define what each style looks like

= "mid-century modern"

User style profiles to generate personalized content







ITEM RECS

USER REC

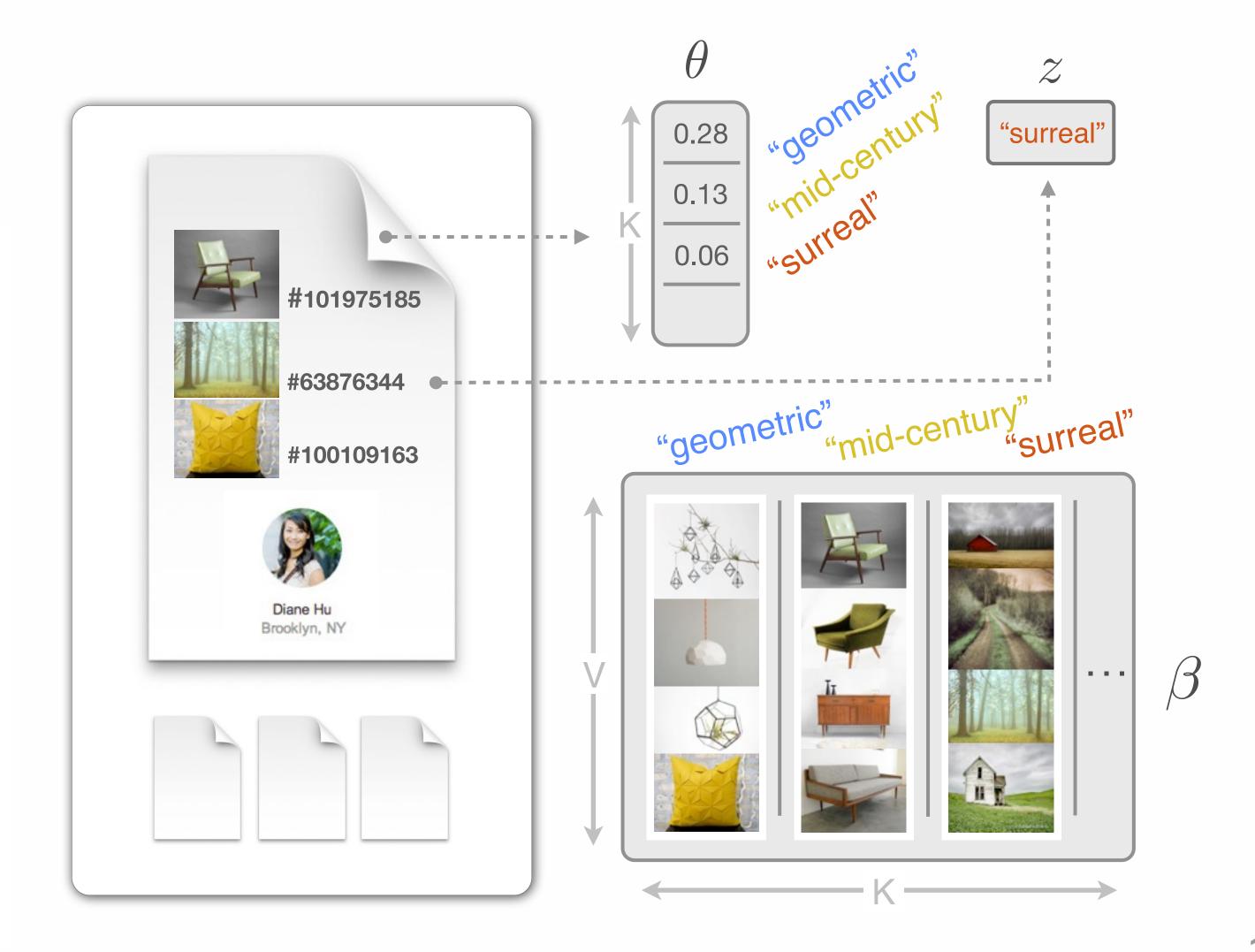
SHOP REC

Latent Dirichlet Allocation (LDA) for Discovering Styles

Assume: Each user's favorited items are generated by this process:

For each user u,

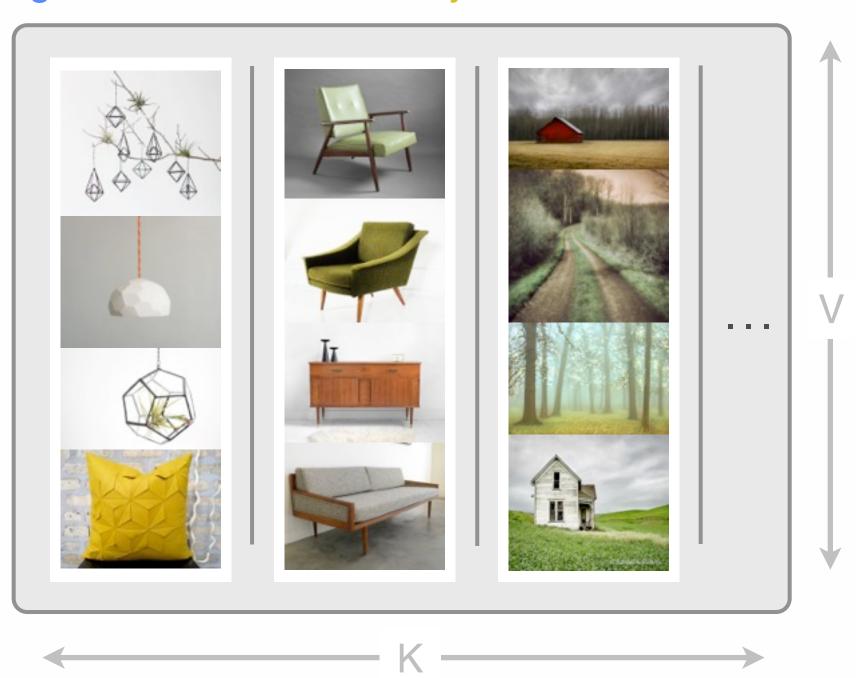
- 1. Draw a style profile: $\theta \sim Dirichlet(\alpha)$
- 2. For each item, x_n that user u has favorited,
 - (a) Draw a style: $z_n \sim Multinomial(\theta)$
 - (b) Draw an item: $x_n \sim Multinomial(\beta_{z_n})$



Latent Dirichlet Allocation (LDA) for Discovering Styles

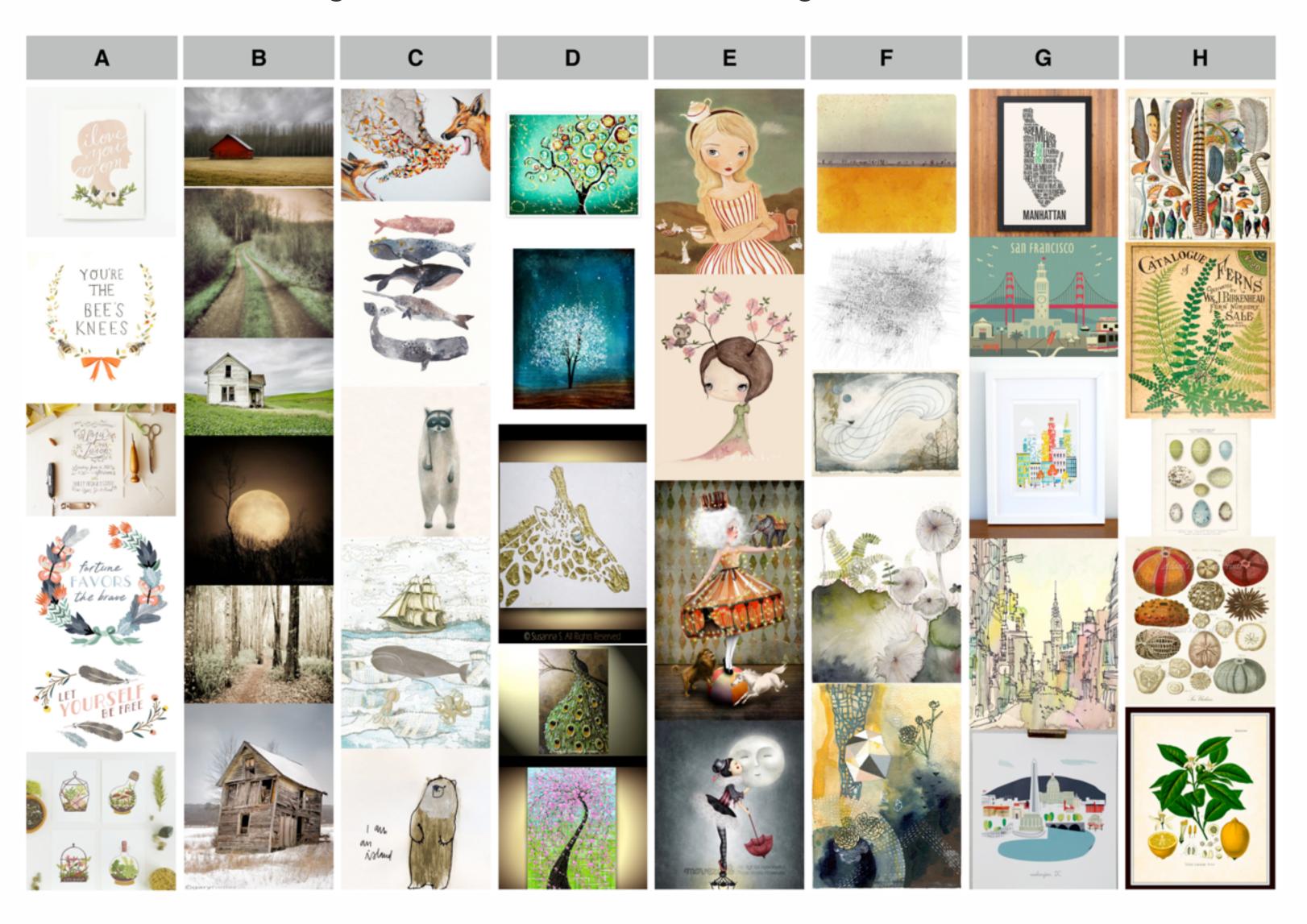
Discover popular styles on Etsy as a distribution over items

"geometric" "mid-century" "surreal"



Represent each user as a distribution over popular styles, i.e. "style profile"

Different styles discovered by LDA



Example of learned styles that contain art prints:

A = Botanical

B = Surreal landscapes

C = Whimsical

D = Acrylic/Abstract

E = French Dolls

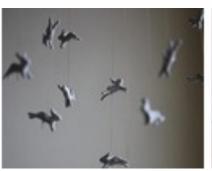
F = Whimsical/Abstract

G = Cities

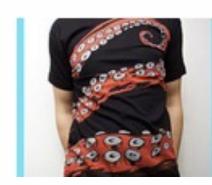
H = Vintage

Different styles discovered by LDA

ANIMALS



TENTACLES



GEOMETRIC

MID-CENTURY MODERN

Overview

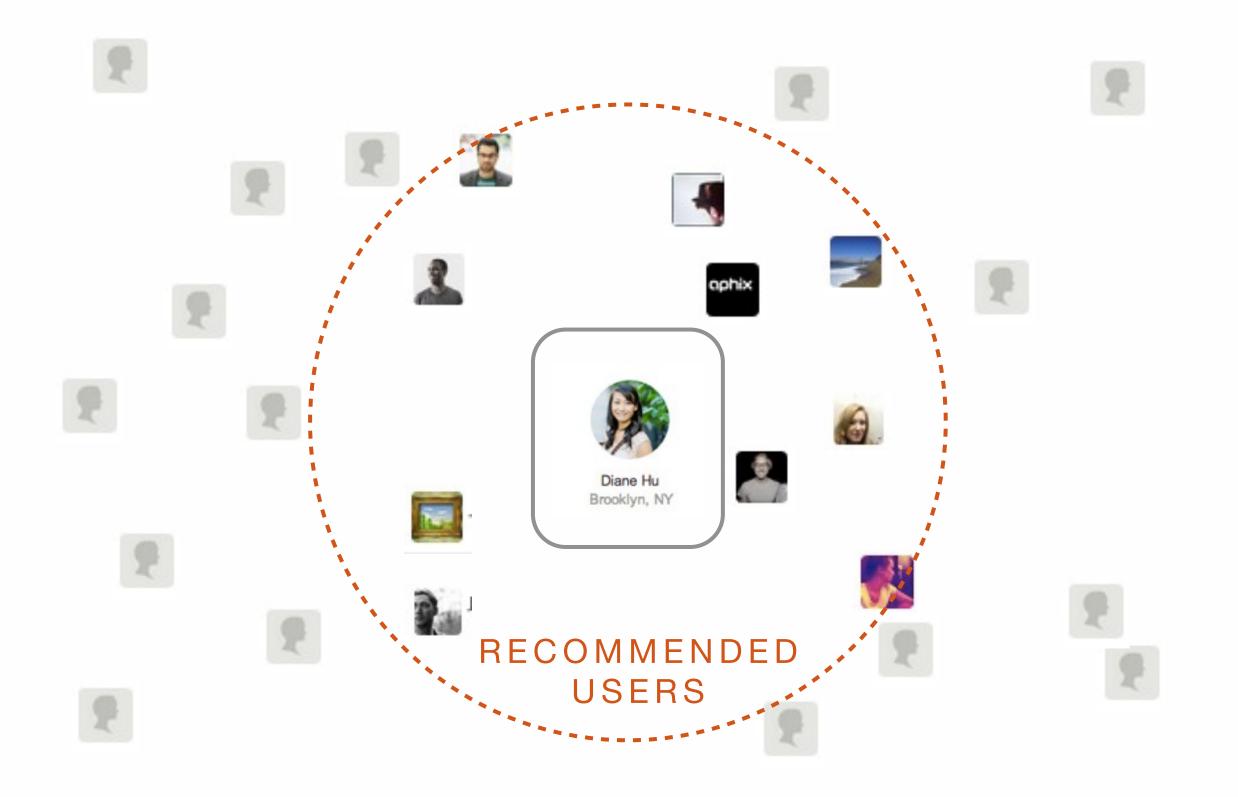
O1 | Etsy Overview

02 | Discovering User Styles

03 | Generating Recommendations

User Recommendations

Given that each user has an style profile: Recommend N users with most similar style profiles.



Brute-force K-NN is too expensive. Hash similar users into the same bins, and perform K-NN within each bin

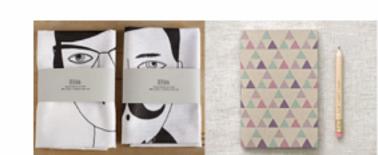
- Locality Sensitive Hashing (LSH). Create hash based on which side of a series of random planes the user falls onto.
- "Top-K" Hashing. Create hash based on set of all pairs of top-k topic indices.

Item Recommendations

Given that each user has an style profile: Sample items most highly weighted styles

USER'S FAVORITES

ITEM RECOMMENDATIONS



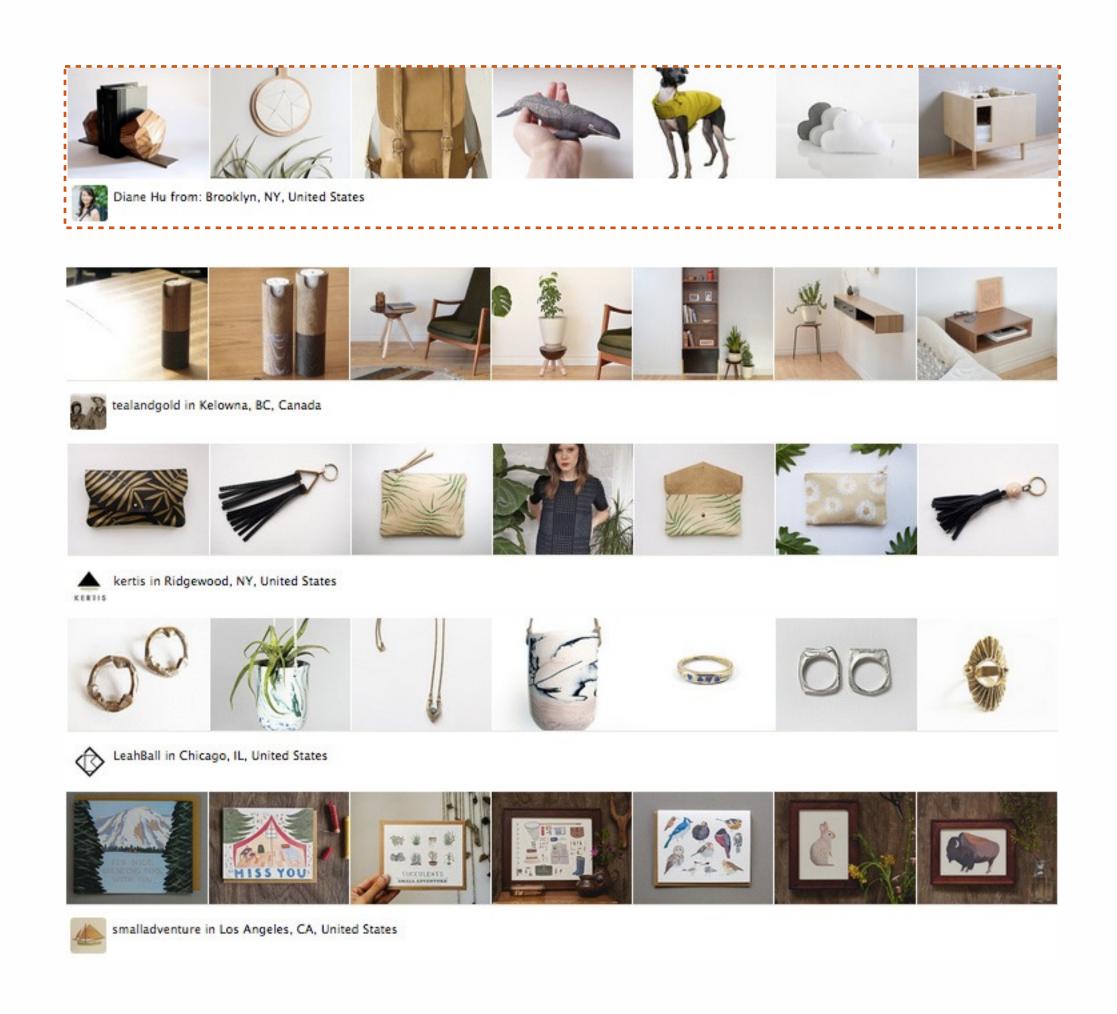
STYLE #428

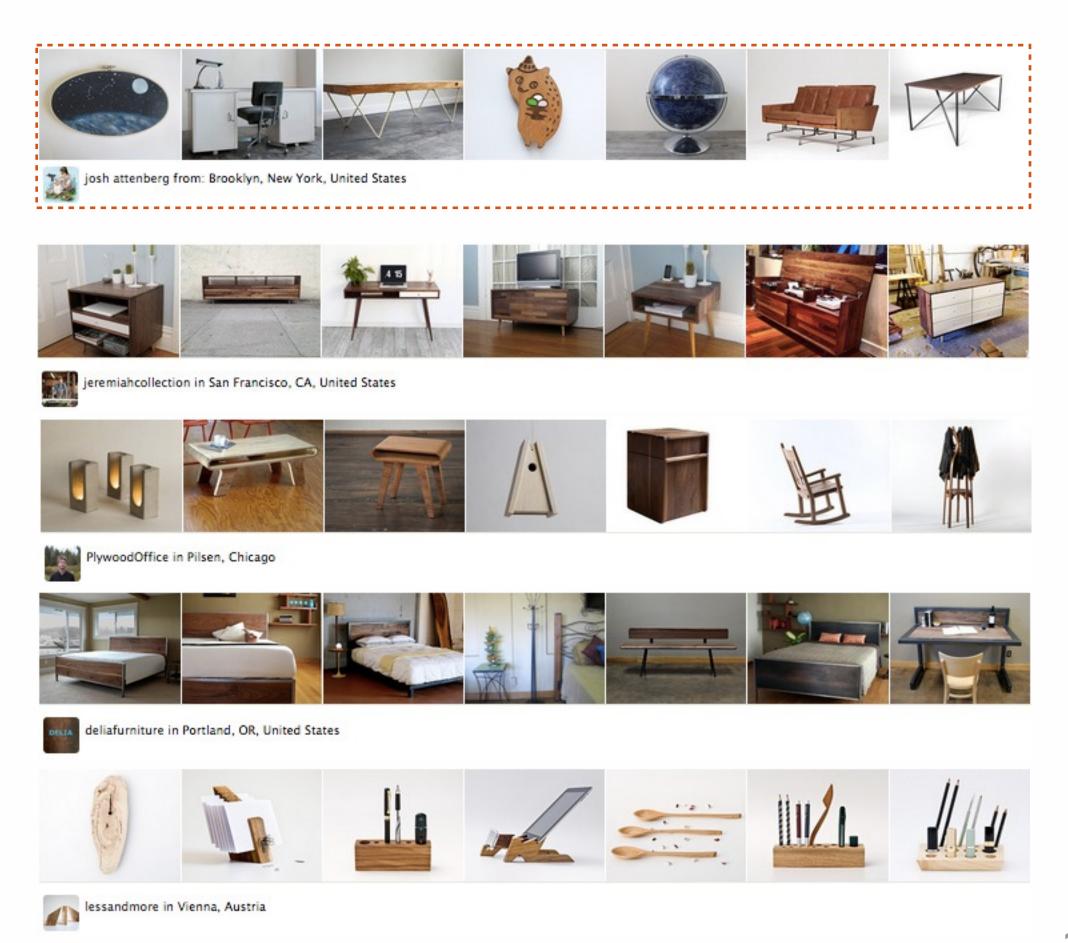
STYLE #54

STYLE #87

Shop Recommendations

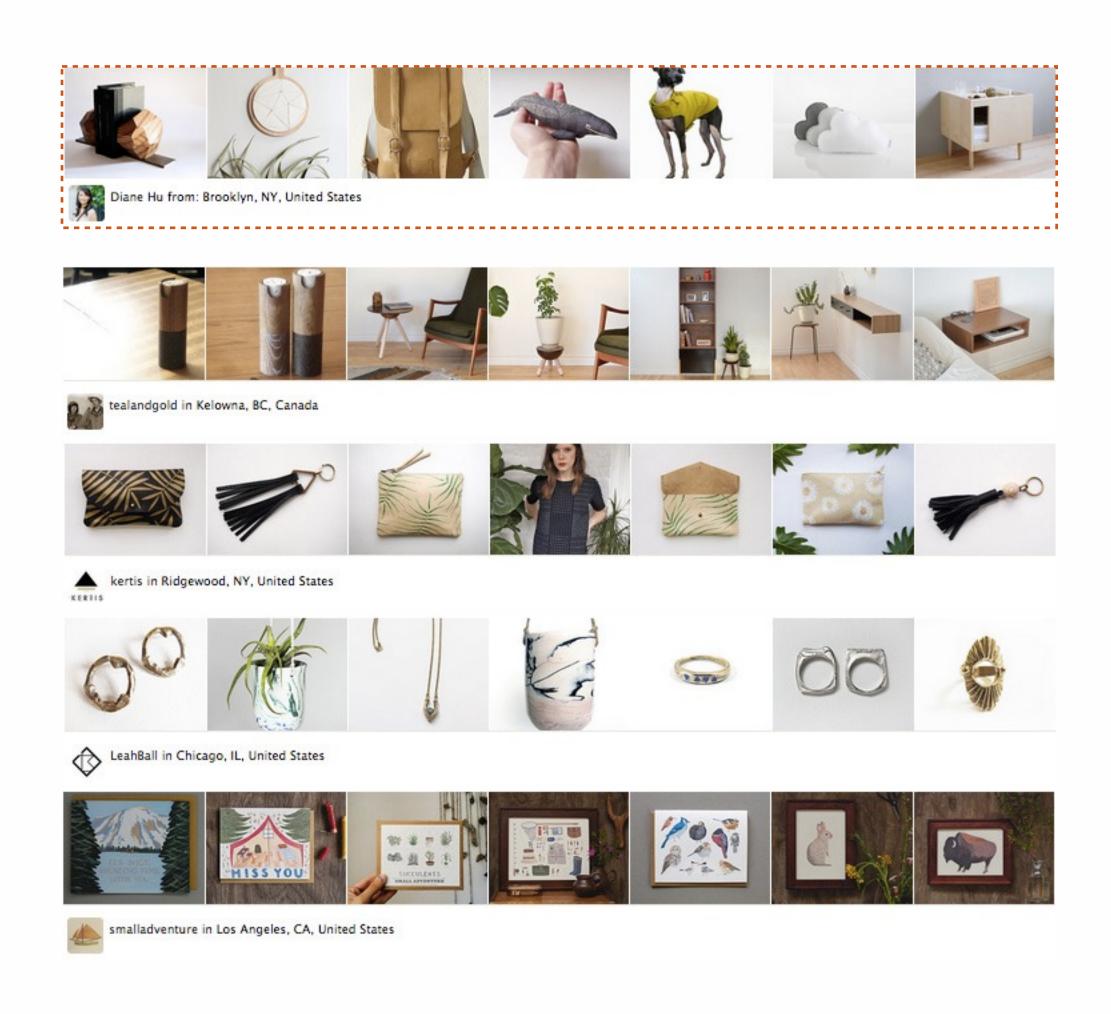
Re-learn topic models substituting item ids with shop ids. Sample shops from highly weighted styles

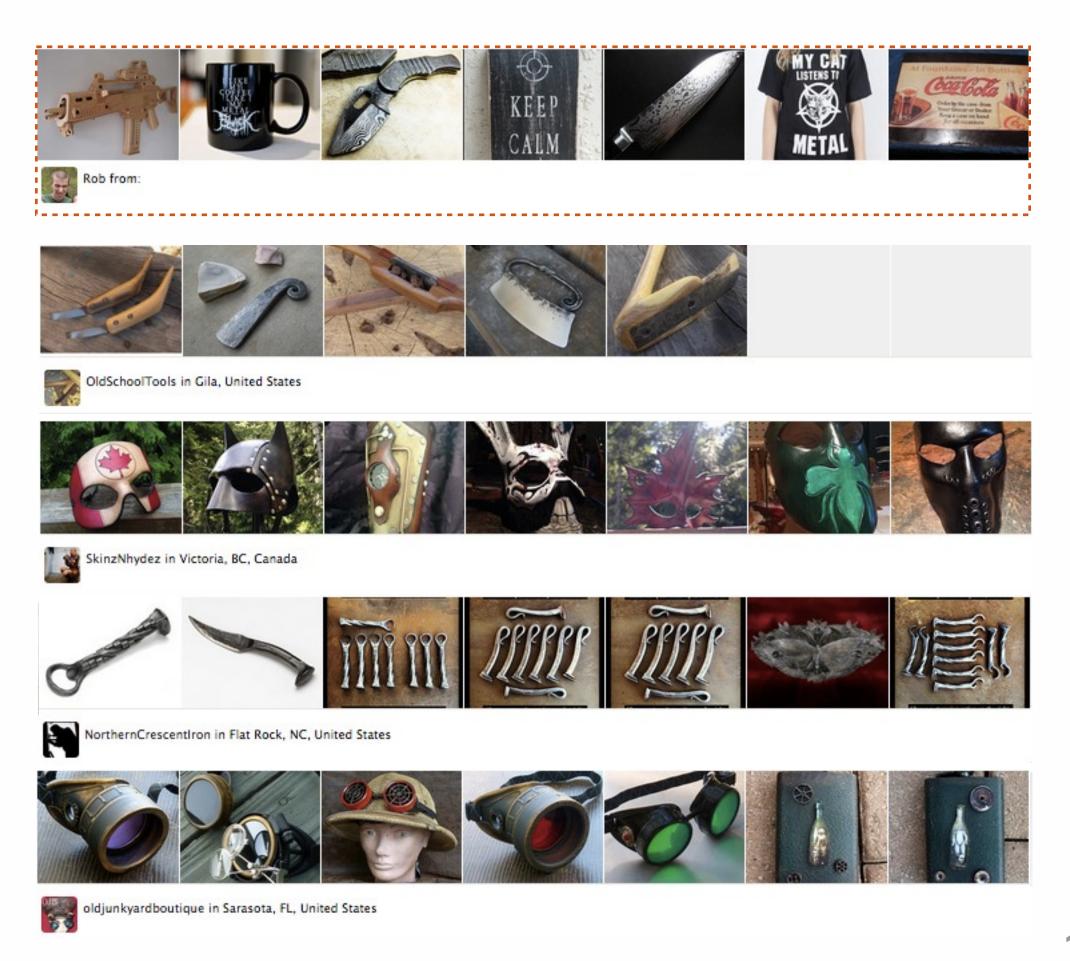




Shop Recommendations

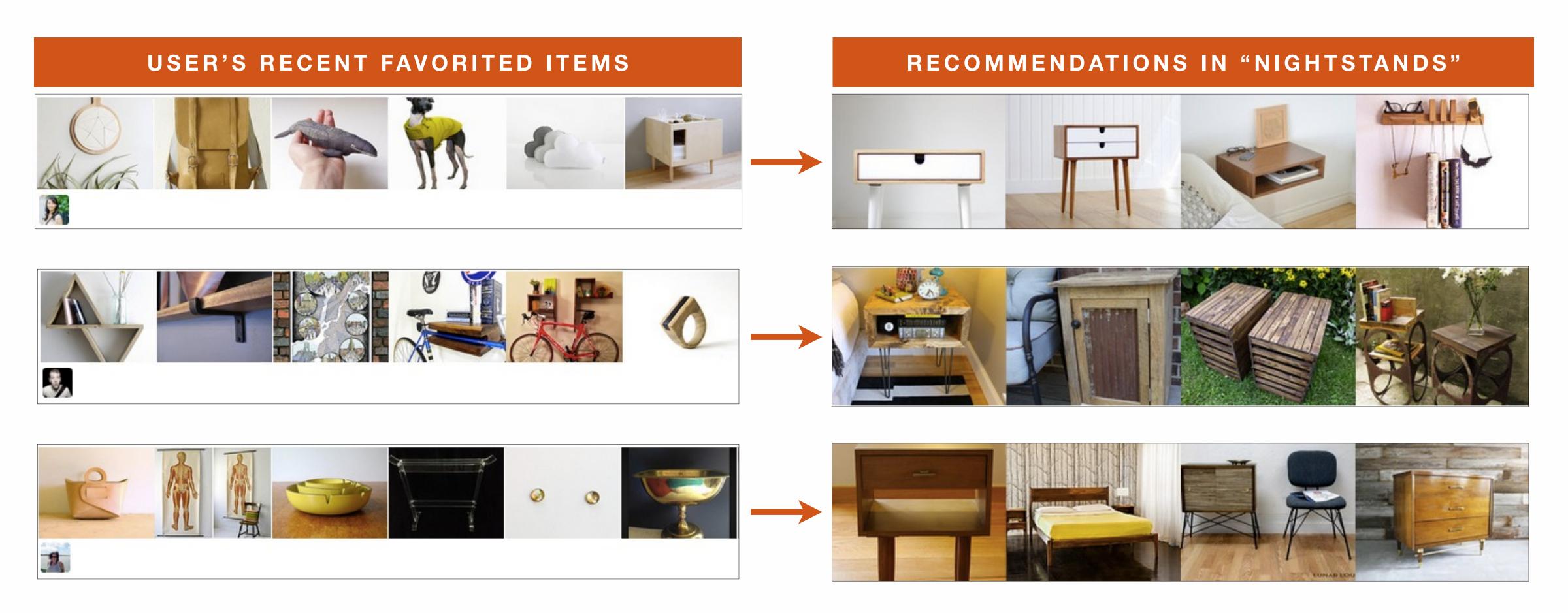
Re-learn topic models substituting item ids with shop ids. Sample shops from highly weighted styles





Recommending Styles within Categories

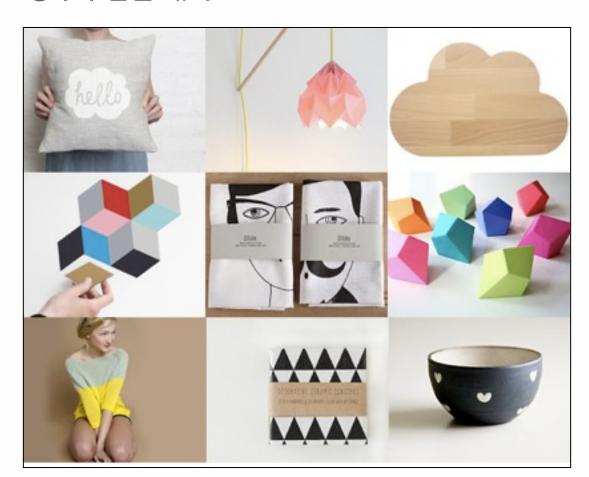
Find how overall styles translate into specific categories



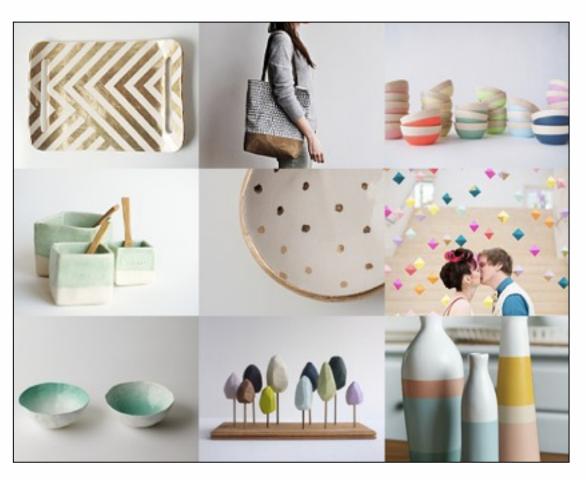
Visualizing Related Topics

Learn topic correlations from users' style-profiles.

STYLE #1



STYLE #2



STYLE #3

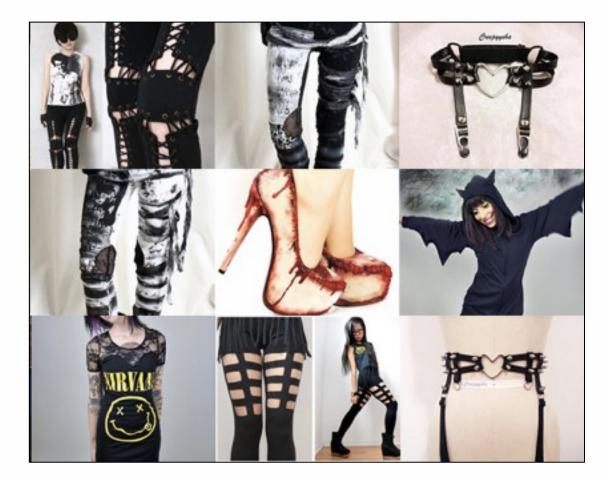
STYLE #4

"Bright, Whimsical"

Visualizing Related Topics

Learn topic correlations from users' style-profiles.

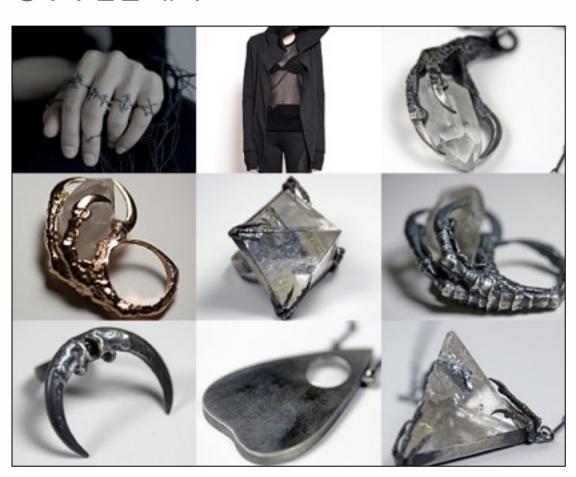
STYLE #1



STYLE #2

STYLE #3

STYLE #4

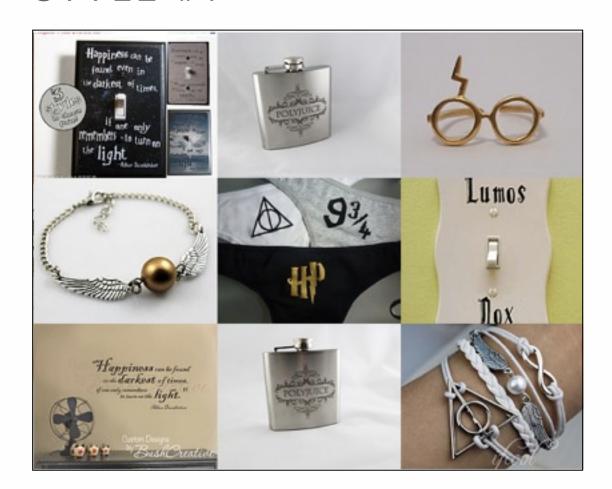


"Gothic Punk"

Visualizing Related Topics

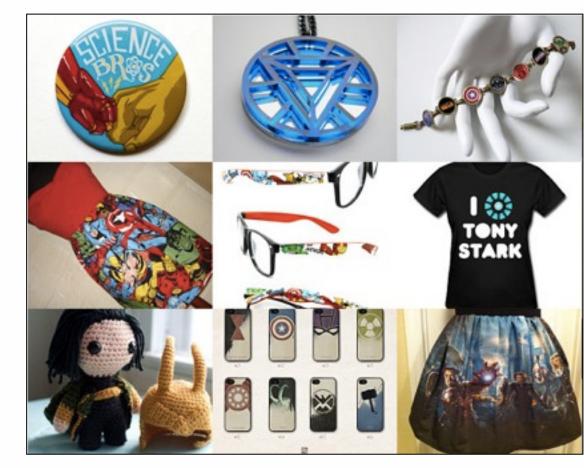
Learn topic correlations from users' style-profiles.

STYLE #1



STYLE #2

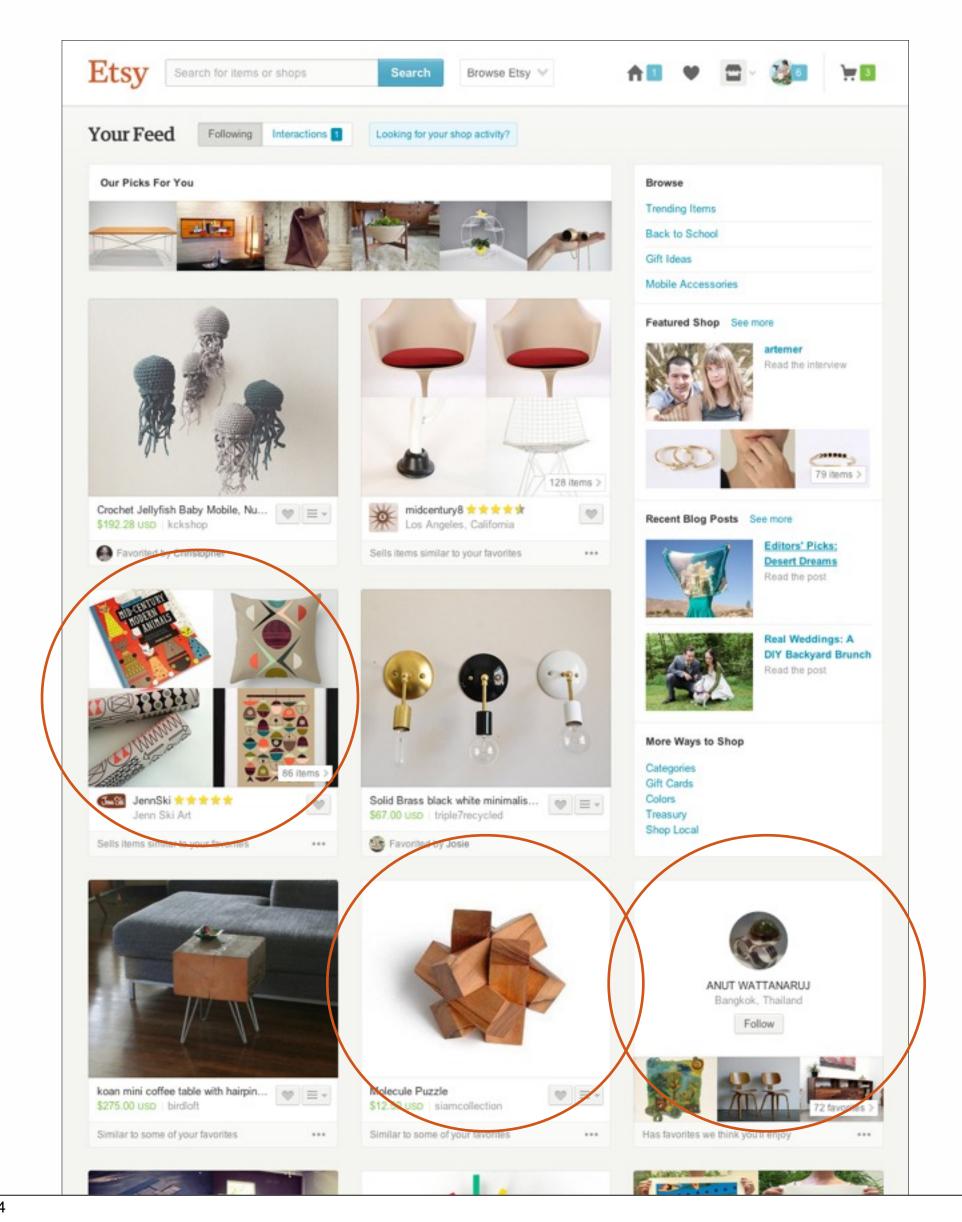
STYLE #3



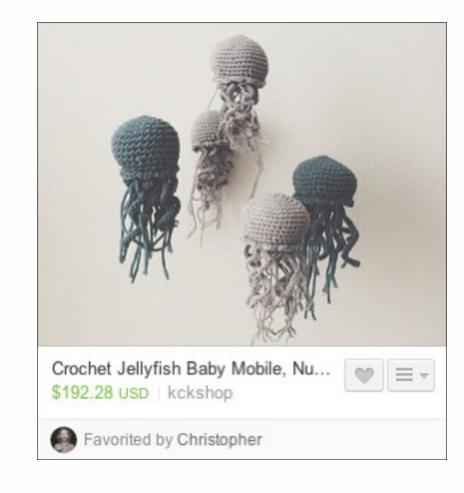
STYLE #4

"Sci-fi/Fantasy"

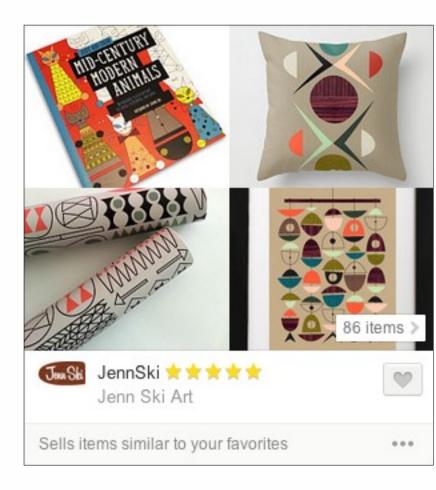
Recommendations in the Activity Feed



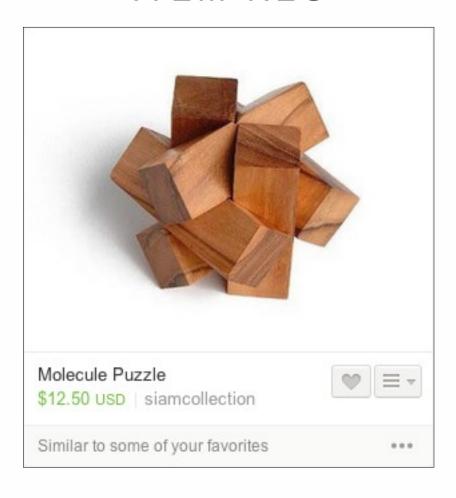
ORGANIC



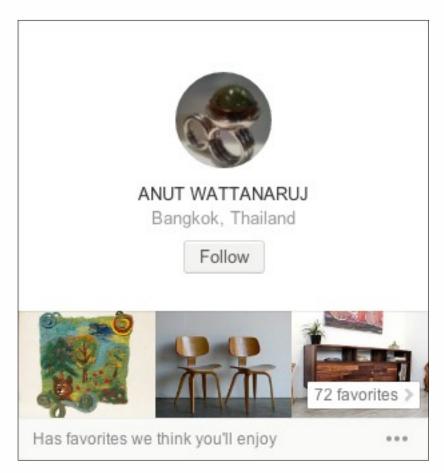
SHOP REC



ITEM REC



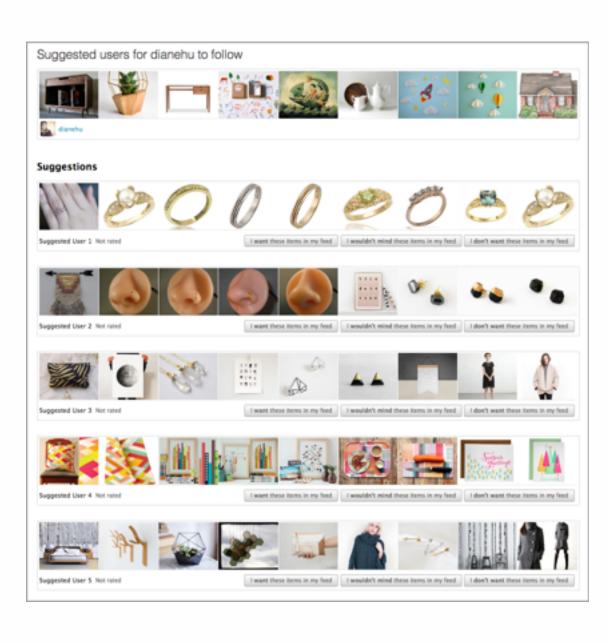
USER REC



User Recommendation Experiments

Side-by-Side User Study

- Randomly interleave user recs from 3
 algorithms: (1) LDA, (2) TF-IDF w/ Cosine
 Similarity, (3) Triadic Closure
- User rated each recommendation positive, neutral, negative
- LDA was overwhelming winner



A/B Testing in Activity Feed

Phase One:

- LDA vs. No recs
- Significantly increased all business metrics

Phase Two:

- Different variants of LDA vs. Matrix Factorization (using Stochastic SVD)
- Matrix factorization and LDA comparable across business metrics

Conclusion

What We Did

- Identify styles across Etsy as a visual experience
- Generate style profiles that are visually transparent and capture diverse taste
- Build large-scale recommender systems:
 - for multiple content types
 - for enhancing browse experience
- Improve key business metrics

More Details On

- System/hard-ware set-up
- Scaling algorithms to ~40M users
- Experimental set-up and outcomes
- Product design for recommendations

