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Etsy is an online marketplace where people connect to 
buy and sell unique goods: Handmade, vintage, or craft supplies

E T S Y  O V E R V I E W
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E T S Y  O V E R V I E W
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40M
Users

1M
Shops

26M
Listings

9
Languages

200
Countries

How to build recommender systems 
for such a unique marketplace?

Etsy is an online marketplace where people connect to 
buy and sell unique goods: Handmade, vintage, or craft supplies
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Favorite
an item or shop, and 

add to collections with coherent 
theme/style

Follow
another user with similar 

style/interest 

Browse
(Unintentional)

via the front page, browse pages or the 
activity feed

Search 
(Intentional)
for a specific item

E T S Y  O V E R V I E W

How do people typically use Etsy?
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Purchase
an item

1 2 3

Typical E-Commerce Usage
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How do people decide what to buy? 

Function and style. Example: search results for “nightstand” - 100+ pages
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How to describe style?
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Recommendations
based on visual styles

Identify user styles and 
interests in a visually 

transparent way

Recommendations
for multiple content types

Develop unified method 
for recommending shops, 

items, users

Recommendations
for multiple intents

Enhance browsing 
experience, not just 

purchases

What Personalization Looks Like on Etsy
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Solution Overview 

D I S C O V E R I N G  U S E R  S T Y L E S
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ITEM RECS USER REC SHOP REC

Learn style profiles for 
each user using LDA

Define what each style looks like

30% 
“mid-century modern”

10% 
“surreal”

60% 
“geometric”

1 2

3 User style profiles to generate personalized content

= “mid-century modern”
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D I S C O V E R I N G  U S E R  S T Y L E S
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Assume: Each user’s favorited items 
are generated by this process:

z

“surreal”

0.28

0.37

0.49

θ

. . . 

“geometric
”

“mid-century”

“surreal”

. . . 

K

K

“geometric”
“mid-century”

“surreal”

. . . 

0.28

0.13

0.06

“geometric
”

“mid-ce
ntury”

“su
rreal”

βV

θ

Latent Dirichlet Allocation (LDA) for Discovering Styles

#101975185

#63876344

#100109163
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D I S C O V E R I N G  U S E R  S T Y L E S
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Discover popular styles on Etsy as a 
distribution over items

Represent each user as a distribution over 
popular styles, i.e. “style profile”

. . . 

V

K

“geometric” “mid-century” “surreal”

. . . K

0.38

0.13

0.02

. . . 

“geometric
”

“mid-century”

“surreal”=

Latent Dirichlet Allocation (LDA) for Discovering Styles
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Different styles discovered by LDA

D I S C O V E R I N G  U S E R  S T Y L E S
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Example of learned styles 
that contain art prints:

A = Botanical

B = Surreal landscapes

C = Whimsical 

D = Acrylic/Abstract

E = French Dolls

F = Whimsical/Abstract

G = Cities

H = Vintage
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A N I M A L S

G E O M E T R I C

M I D - C E N T U RY  M O D E R N

T E N TA C L E S

Different styles discovered by LDA
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User Recommendations 

Given that each user has an style profile: Recommend N users with most similar style profiles.

G E N E R AT I N G  R E C O M M E N D AT I O N S
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R E C O M M E N D E D
U S E R S

Brute-force K-NN is too expensive. Hash 
similar users into the same bins, and 
perform K-NN within each bin

• Locality Sensitive Hashing (LSH). Create 
hash based on which side of a series of 
random planes the user falls onto.

• “Top-K” Hashing. Create hash based on 
set of all pairs of top-k topic indices.
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Item Recommendations 

Given that each user has an style profile: Sample items most highly weighted styles

G E N E R AT I N G  R E C O M M E N D AT I O N S
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S T Y L E  # 4 2 8

S T Y L E  # 6 5 5

S T Y L E  # 5 4

S T Y L E  # 8 7

U S E R ’ S  FAV O R I T E S

I T E M  R E C O M M E N D AT I O N S
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Shop Recommendations 

Re-learn topic models substituting item ids with shop ids. Sample shops from highly weighted styles

G E N E R AT I N G  R E C O M M E N D AT I O N S
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Shop Recommendations 

Re-learn topic models substituting item ids with shop ids. Sample shops from highly weighted styles

G E N E R AT I N G  R E C O M M E N D AT I O N S
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Recommending Styles within Categories

Find how overall styles translate into specific categories

G E N E R AT I N G  R E C O M M E N D AT I O N S
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U S E R ’ S  R E C E N T  FAV O R I T E D  I T E M S R E C O M M E N D AT I O N S  I N  “ N I G H T S TA N D S ”
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Visualizing Related Topics

Learn topic correlations from users’ style-profiles.

G E N E R AT I N G  R E C O M M E N D AT I O N S
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“Bright, Whimsical”

S T Y L E  # 1 S T Y L E  # 2 S T Y L E  # 3 S T Y L E  # 4
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Visualizing Related Topics

Learn topic correlations from users’ style-profiles.

G E N E R AT I N G  R E C O M M E N D AT I O N S
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“Gothic Punk”

S T Y L E  # 1 S T Y L E  # 2 S T Y L E  # 3 S T Y L E  # 4
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G E N E R AT I N G  R E C O M M E N D AT I O N S
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S T Y L E  # 1 S T Y L E  # 2 S T Y L E  # 3 S T Y L E  # 4

Visualizing Related Topics

Learn topic correlations from users’ style-profiles.

“Sci-fi/Fantasy”
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Recommendations in the Activity Feed

G E N E R AT I N G  R E C O M M E N D AT I O N S
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S H O P  R E C

I T E M  R E C U S E R  R E C

O R G A N I C
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User Recommendation Experiments
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Side-by-Side User Study

• Randomly interleave user recs from 3 
algorithms:  (1) LDA, (2) TF-IDF w/ Cosine 
Similarity, (3) Triadic Closure

• User rated each 
recommendation
positive, neutral, 
negative

• LDA was 
overwhelming 
winner

A/B Testing in Activity Feed

Phase One:

• LDA vs. No recs

• Significantly increased all business metrics

Phase Two:

• Different variants of LDA vs. Matrix 
Factorization (using Stochastic SVD)

• Matrix factorization and LDA comparable 
across business metrics

G E N E R AT I N G  R E C O M M E N D AT I O N S
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Conclusion
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What We Did

• Identify styles across Etsy as a visual 
experience

• Generate style profiles that are visually 
transparent and capture diverse taste

• Build large-scale recommender systems:

‣ for multiple content types

‣ for enhancing browse experience

• Improve key business metrics 

More Details On

• System/hard-ware set-up

• Scaling algorithms to ~40M users

• Experimental set-up and outcomes

• Product design for recommendations

G E N E R AT I N G  R E C O M M E N D AT I O N S

Tuesday, August 26, 14



Tuesday, August 26, 14


