dstillery

Scalable Hands Free Transfer Learning

Aug, 2014 Presented by: Brian d'Alessandro Developed by: Brian d'Alessandro, Daizhuo Chen, Troy Reeder, Melinda Han, Claudia Perlich, Foster Provost

Goal/Motivation

Goal: Predict whether a person will convert after seeing an ad.

Estimate: P(Conv | Ad=1, X=x)

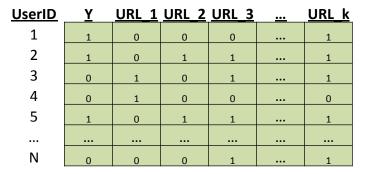
Goal/Motivation

Goal: Predict whether a person will convert after seeing an ad.

Estimate: P(Conv | Ad=1, X=x)

How do you do this?

- 1. Serve ads randomly
- 2. Observe conversion
- 3. Build a data matrix
- 4. Train a model



Goal/Motivation

So what's the problem?

Y is extremely sparse



And there's more...

Cold start

Need to support many models

Can't pool data across advertisers

Bayesian Transfer Learning with Adaptive Stochastic Gradient Descent

Bayesian Transfer Learning – Modify standard L1/L2 regularization with an informative prior to transfer model parameters learned from one problem to another.

<u>Adaptive Stochastic Gradient Descent</u> – Combine state-of-the-art in adaptive learning rates and adaptive regularization for hyper-parameter free learning.

Bayesian Transfer Learning

Two Sources of Data

We collect data via different data streams...

<u>UserID</u>	<u>Y</u>	<u>URL 1</u>	<u>URL 2</u>	<u>URL 3</u>	<u></u>	<u>URL k</u>
1	1	0	0	0		1
2	1	0	1	1		1
3	0	1	0	1		1
4	0	1	0	0		0
5	1	0	1	1		1
Ν	0	0	0	1		1

Ad Serving (Target Data) \$\$\$\$\$\$\$\$\$\$

Two Sources of Data

We collect data via different data streams...

<u>UserID</u>	<u>Y</u>	<u>URL 1</u>	<u>URL 2</u>	<u>URL 3</u>	<u></u>	<u>URL k</u>
1	1	0	0	0		1
2	1	0	1	1		1
3	0	1	0	1		1
4	0	1	0	0		0
5	1	0	1	1		1
Ν	0	0	0	1		1
·						
UsorID	v	IIRI 1	LIRI 2			
<u>UserID</u>	<u> </u>	<u>URL 1</u>	<u>URL 2</u>	<u>URL 3</u>	<u></u>	<u>URL k</u>
<u>UserID</u> 1	<u>¥</u> 0	URL 1	<u>URL 2</u> 0	URL 3	<u></u> 	URL k
1	0	1	0	1		1
1 2	0	1	0	1		1
1 2 3	0	1 0 1	0 1 1	1 0 1	 	1 1 0
1 2 3 4	0 0 0 1	1 0 1 0	0 1 1 1	1 0 1 1	 	1 1 0 0

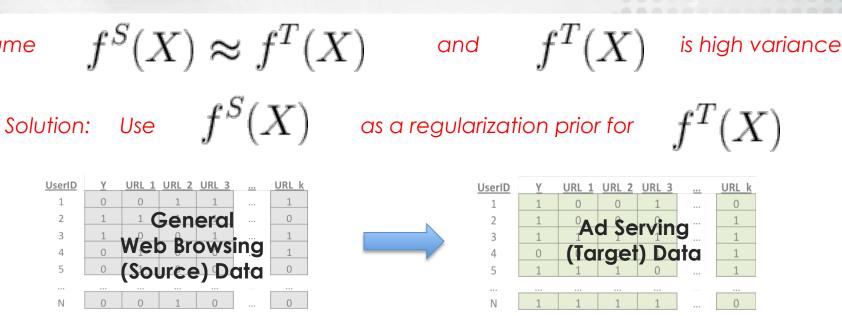
Ad Serving (Target Data) \$\$\$\$\$\$\$\$

General Web Browsing (Source Data)

\$

Transfer Learning

Assume



Intuition: The auxiliary model is biased but much more reliable. Use this to inform the real model. The algorithm can learn how much of the auxiliary data to use.

2 Stage Model Training

1. Run a logistic regression on source data (using your favorite methodology)

$$\hat{\mu} = \underset{\mu \in R^k}{\operatorname{argmin}} \ SourceLL(\mu)$$

2. Use results of step 1 as informative-prior for Target model

Scalable SGD

Nearly Hyper-Parameter Free

No More Pesky Learning Rates

Tom Schaul Sixin Zhang Yann LeCun Courant Institute of Mathematical Sciences New York University 715 Broadway, New York, NY 10003, USA SCHAUL@CIMS.NYU.EDU ZSX@CIMS.NYU.EDU YANN@CIMS.NYU.EDU

Learning Recommender Systems with Adaptive Regularization

Steffen Rendle Social Network Analysis University of Konstanz 78457 Konstanz, Germany steffen.rendle@uni-konstanz.de

Both are approximate optimization problems

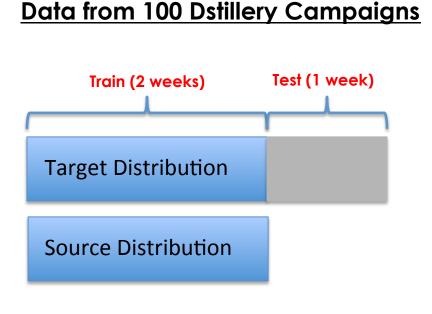
1. Adaptive Learning Rate: Find the learning rate that optimizes next training update

2. Adaptive Regularization: At each training update, find the regularization weight that optimizes test dataset

0

Experiments

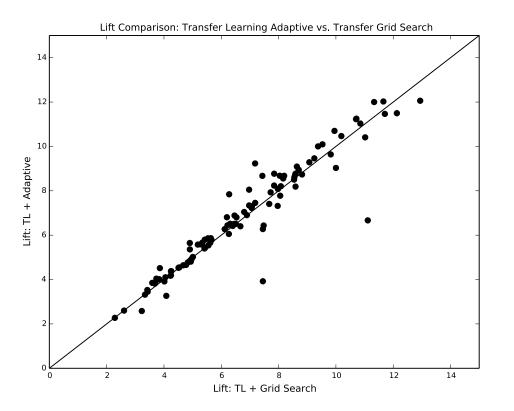
Experimental Set Up



Experimental Design

- 1. Transfer vs. No Transfer, traditional Grid Search
- 2. Grid Search vs. Adaptive Learning (with Transfer)
- 3. Adaptive Transfer vs. No Transfer with Grid Search

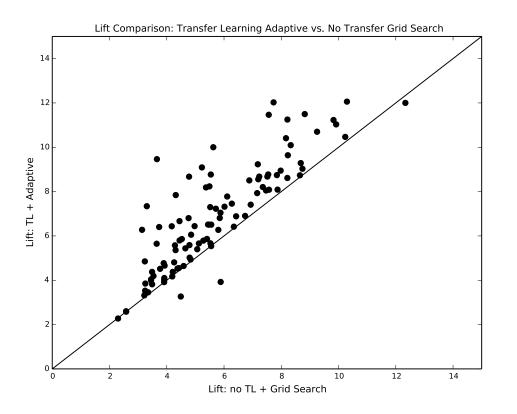
Grid Search vs. Adaptive Learning



Adaptive Learning:

- Results in no statistical difference in performance
- Is an order of magnitude faster

New Method vs. Default



<u>Transfer Learning w/</u> <u>Adaptive Learning:</u>

- Increased lift for 93% of tests
- Resulted in avg. Lift increase of 23%
- Is an order of magnitude faster than grid search

Incremental Learning

Q: What happens over time as target task is able to use more data?



A: Transfer learning benefit degrades as campaign matures

And it Works Live!

The approaches presented here generally dominate our baseline methods.

