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Goal/Motivation 

Goal:  
Predict whether a person will convert after seeing an ad. 

Es#mate:	  P(Conv	  |	  Ad=1,	  X=x)	  



Goal/Motivation 

Goal:  
Predict whether a person will convert after seeing an ad. 

How do you do this? 
1.  Serve ads randomly 
2.  Observe conversion 
3.  Build a data matrix 
4.  Train a model 

Es#mate:	  P(Conv	  |	  Ad=1,	  X=x)	  

UserID	   Y	   URL_1	  URL_2	  URL_3	   …	   URL_k	  
1	   1	   0	   0	   0	   …	   1	  

2	   1	   0	   1	   1	   …	   1	  

3	   0	   1	   0	   1	   …	   1	  

4	   0	   1	   0	   0	   …	   0	  

5	   1	   0	   1	   1	   …	   1	  

…	   …	   …	   …	   …	   …	   …	  
N	   0	   0	   0	   1	   …	   1	  



Goal/Motivation 

So what’s the problem? 

UserID	   Y	   URL_1	  URL_2	  URL_3	   …	   URL_k	  
1	   1	   0	   0	   0	   …	   1	  

2	   1	   0	   1	   1	   …	   1	  

3	   0	   1	   0	   1	   …	   1	  

4	   0	   1	   0	   0	   …	   0	  

5	   1	   0	   1	   1	   …	   1	  

…	   …	   …	   …	   …	   …	   …	  
N	   0	   0	   0	   1	   …	   1	  

K	  is	  large	  Y	  is	  extremely	  sparse	  

A	  large	  N	  is	  expensive	  



Goals/Motivation 

And there’s more… 

•  Cold start 

•  Need to support many models 

•  Can’t pool data across advertisers 



Our Solution 

Bayesian Transfer Learning with Adaptive Stochastic Gradient Descent 

Bayesian Transfer Learning – Modify standard L1/L2 regularization with 
an informative prior to transfer model parameters learned from one 
problem to another. 

Adaptive Stochastic Gradient Descent – Combine state-of-the-art in 
adaptive learning rates and adaptive regularization for hyper-
parameter free learning. 



Bayesian Transfer Learning 



We collect data via different data streams… 

Two Sources of Data 

Ad Serving (Target Data) 
 

UserID	   Y	   URL_1	  URL_2	  URL_3	   …	   URL_k	  
1	   1	   0	   0	   0	   …	   1	  

2	   1	   0	   1	   1	   …	   1	  

3	   0	   1	   0	   1	   …	   1	  

4	   0	   1	   0	   0	   …	   0	  

5	   1	   0	   1	   1	   …	   1	  

…	   …	   …	   …	   …	   …	   …	  
N	   0	   0	   0	   1	   …	   1	  

$$$$$$$$$$$$	  



We collect data via different data streams… 

Two Sources of Data 

Ad Serving (Target Data) 
 

UserID	   Y	   URL_1	  URL_2	  URL_3	   …	   URL_k	  
1	   1	   0	   0	   0	   …	   1	  

2	   1	   0	   1	   1	   …	   1	  

3	   0	   1	   0	   1	   …	   1	  

4	   0	   1	   0	   0	   …	   0	  

5	   1	   0	   1	   1	   …	   1	  

…	   …	   …	   …	   …	   …	   …	  
N	   0	   0	   0	   1	   …	   1	  

$$$$$$$$$$$$	  

General Web Browsing (Source Data) 
 

UserID	   Y	   URL_1	  URL_2	  URL_3	   …	   URL_k	  
1	   0	   1	   0	   1	   …	   1	  

2	   0	   0	   1	   0	   …	   1	  

3	   0	   1	   1	   1	   …	   0	  

4	   1	   0	   1	   1	   …	   0	  

5	   1	   1	   1	   0	   …	   0	  

…	   …	   …	   …	   …	   …	   …	  
N	   0	   1	   1	   0	   …	   0	  

$



Transfer Learning 

Intuition: The auxiliary model is biased but much more reliable. Use this to inform 
the real model. The algorithm can learn how much of the auxiliary data to use. 

General 
Web Browsing 
(Source) Data 

Ad Serving 
(Target) Data 

Assume is high variance and 

Solution: Use as a regularization prior for 



2 Stage Model Training 

1.  Run a logistic regression on source data (using your favorite methodology) 

2.  Use results of step 1 as informative-prior for Target model 



Scalable SGD 



Nearly Hyper-Parameter Free 



Both are approximate optimization problems 

most SGD algorithms require manual tuning of the learning
rates. The regularization factor is commonly selected based
on validation performance using auto-experimentation man-
ually or via a grid search. Both of these involve training
multiple models using di↵erent hyper-parameters, and thus
consume significant time and computational resources.

We now present a “hands-free” method that does not re-
quire manual parameter setting or expensive grid-search,
that is tailored to this data setting (extremely sparse con-
sumer behavior data), and that integrates with the transfer-
learning method described above. In particular, we present
a hyper-parameter-free SGD logistic regression training al-
gorithm based on combining and enhancing two recent de-
velopments: the NoPesky learning rates [14] and adaptive
regularization [13].

We made several enhancements to make NoPesky learn-
ing rates and adaptive regularization work together and ef-
ficiently in the current context. Specifically, we adapted the
NoPesky learning rate method so that we can 1) take advan-
tage of the sparse structure of the data to run e�cient SGD
updates, 2) explicitly integrate the regularization term in
order to make NoPesky work with adaptive regularization,
and 3) give the NoPesky algorithm a more robust starting
point when positive samples are rare.

It is helpful to start by considering the update step of
a standard SGD algorithm: at time t, we observe a new
training sample with per-sample loss
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where ⌘

t,i

is the learning rate at time t for dimension i.3

Because our algorithm works with both source and target
models, we drop the superscript S and T throughout this
section.

4.1 NoPesky Learning Rates
The NoPesky learning rate method sets the SGD learning

rates in a greedy manner by minimizing the expected value
of the average loss function f after each SGD update. It
is generally impossible to solve this minimization problem
exactly, but an approximate solution can be obtained and
works well in practice. The method utilizes the second-order
derivatives of the per-sample loss function, making it suit-
able for learning regression models with a smooth loss func-
tion, such as linear regression and logistic regression mod-
els. Out-of-the-box, SGD algorithms with NoPesky learn-
ing rates perform as well as state-of-the-art adaptive learn-
ing rate SGD algorithms such as AdaGrad [6] with their
3Our algorithm uses di↵erent learning rates for di↵erent
dimensions, rather than a global learning rate for all di-
mensions. Multiple studies suggest that dimension-specific
learning rates yield superior performance to global learning
rates, particularly for data sets with sparse features like ours
[6, 9].

best hyper-parameter settings obtained through systematic
search, thus e↵ectively eliminated the need for tuning learn-
ing rate parameters [14].
We first sketch the core steps of the original NoPesky

learning rate method that are necessary for presenting our
adaptations. The method treats the stochastic gradient r

t,i

as a random variable, and chooses a learning rate to min-

imize the expected regularized loss after one SGD update,
that is
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is a unit vector in dimension i. In order to solve
the above minimization problem, three approximations are
made. First, the average loss function f is approximated
by a quadratic function in the neighborhood of �
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is achieved by approximating its first-order derivative by
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One can then solve (6) and obtain an approximate solution,
which is set as the learning rate.

⌘

t,i

=
1

h

t,i

g

2
t,i

v

t,i

. (7)

The three approximate variables are calculated as running
averages
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where ⌧
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is an averaging window, that can be heuristically
set by ⌧1,i = 1 and
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The use of a dynamic averaging window determined by equa-
tion (9) to update equation (8) enables this method to adapt
to non-stationary data. When the data distributions change,
⌧ is automatically reset to a lower number which increases
the learning rate and enables more exploration.
To work within our system, we have made the following

enhancements to the NoPesky method:

Sparse Updates.
As discussed above, online webpage visitation data is ex-

tremely sparse. It is desirable to take advantage of this ex-
treme sparsity to speed up the SGD updates—specifically,
we would like to enhance the NoPesky method such that at
step t, we only update dimension i if x

t,i

6= 0.
In regularized logistic regression, the per-sample loss func-

tion has two components: the logistic loss function and the
regularization function. The logistic loss function `

t

(de-
fined in (1)) has a convenient property that its gradient in
dimension i is 0 if x

t,i

= 0, thus allowing for sparse updates.
Unfortunately, the regularization term �
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ally does not have zero gradients. In fact, the regularization
term is independent of x

t

and has non-zero gradient in di-
mension i as long as �

t,i

6= µ

i

. This regularization term
prevents us from running e�cient sparse updates.

1. Adaptive Learning Rate: Find the learning rate that optimizes 
next training update 

2. Adaptive Regularization: At each training update, find the 
regularization weight that optimizes test dataset 

4. ADAPTIVE REGULARIZATION
In the following, we show how the search for optimal regu-

larization values can be integrated directly into SolveOpt-

Reg (fig. 2). We start with the definition of the optimiza-
tion task for regularization values and develop a fast and
simple learning algorithm.

4.1 Optimization Task for Regularization
Typically, optimal regularization values λ∗ ∈ R

c
+ for fac-

torization models are determined using a holdout method.
Therefore the available data S is split into two disjoint data
sets: S = ST ∪ SV . On ST , the model parameters are op-
timized for the regularized loss objective (OptReg, eq. 9)
given a regularization constant λ. Using the validation set
SV , the quality of the learned model parameters can be es-
timated. As the training ST and validation SV sets are
disjoint, the quality on SV gives a reliable estimate of the
future success of the parameter setting – as long as the size
of the validation set is sufficiently large and the future data
is generated by the same process as the validation data SV .
Working with disjoint training and validation sets is one of
the core principles in machine learning. In our case, the task
is to find the regularization values λ∗ that lead to the lowest
error on the validation set

λ∗ := argmin
λ∈Rc

+

∑

(x,y)∈SV

l (ŷ(x|OptReg(ST ,λ)), y) . (14)

This is a nested optimization task where the outermost ob-
jective is to determine the best regularization values λ∗ that
minimize the loss on the validation set SV . This loss on
the validation set depends not directly on λ. Instead it de-
pends on the model equation ŷ which itself depends only on
the model parameters. However, the model parameters are
the solution of Θ∗|λ = OptReg(ST ,λ), i.e. the regularized
optimization criterion on the training data ST , thus these
optimal model parameters depend on λ. So in total, we are
looking for a λ∗ such that the corresponding optimal model
parameters Θ∗|λ∗ with respect to the regularized loss on ST

lead to a minimal error on the validation set SV .

Alternating Optimization.
A straightforward idea is to use an alternating optimiza-

tion, i.e. starting with an initial guess of (Θ,λ) and alter-
nate between improving Θ while λ is fixed and improving
λ while Θ is fixed. This process is repeated up to conver-
gence. For the first task, i.e. optimizing Θ for a given λ,
we already have a solution (alg. SolveOptReg). But the
second task (eq. 14) is not trivial. If Θ is kept constant
here, i.e. OptReg(ST ,λ) is replaced by the current model
parameters Θt, then the optimization task (eq. 14) reads

λ∗|Θt := argmin
λ∈Rc

+

∑
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l
(

ŷ(x|Θt)), y
)

. (15)

In this task the right hand side is independent of λ. This
means the gradient vanishes

∂
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L(SV ,Θt) =
∂
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∑

(x,y)∈SV

l(ŷ(x|Θt), y) = 0 (16)

and thus every value λ ∈ R would be optimal w.r.t. equation
(15) which is obviously not the right approach to solve the
original task (eq. 14).

4.2 Optimizing Future Model Parameters
Alternating optimization using eqs. (9) and (14) seems

to be impossible as the gradient of any λ vanishes when Θ
is kept constant. The problem is that λ does not appear
explicitly in the optimization formula (eq. 15). However if
we remember the role of lambda in eq. (14), it can be seen
that λ steers the search for the model parameters Θ on ST

which are then used in SV . This can also be seen in the
SGD update rule for the model parameters (eq. 10) where λ
appears. That means with a simple trick, we can reformulate
the model equation such that it depends explicitly on λ: It
is known that after the next update on θ, the value of θ will
be the one of eq. (10). This future value θt+1 depends on
λ. So the future model equation after updating the model
parameters Θ can be written as:
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That means instead of expressing the model equation with
the current parameters Θt, it can be formulated to depend
on the parameters after the next update Θt+1. Replacing
each θt+1 in eq. (17) with the right hand side of eq. (10),
results in a model equation which depends on λ:
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This future model equation ŷ(x|Θt+1) can be used in eq. (14),
which results in the following task:

λ∗|Θt := argmin
λ∈Rc

+
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ŷ(x|Θt+1), y
)

. (19)

This optimization task answers the question: What is the
best value of λ such that the next update on Θ generates
the smallest error on the validation set? Now alternating
between eqs. (9) and (19) is possible.

In general, this idea can be used for any iterative opti-
mization algorithm where the update on the model param-
eter explicitly depends on the regularization value. In the
following, we show how this can be done efficiently for SGD.

Gradients.
As the model parameters are usually optimized with SGD,

we propose to use SGD as well for optimizing λ w.r.t. the
task of eq. (19). The SGD-update for λ given a case (x, y) ∈
SV is

λt+1 = λt − α
∂
∂λ

l
(

ŷ(x|Θt+1), y
)

(20)

where the gradients of the loss function are the same as in
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4. ADAPTIVE REGULARIZATION
In the following, we show how the search for optimal regu-

larization values can be integrated directly into SolveOpt-

Reg (fig. 2). We start with the definition of the optimiza-
tion task for regularization values and develop a fast and
simple learning algorithm.

4.1 Optimization Task for Regularization
Typically, optimal regularization values λ∗ ∈ R

c
+ for fac-

torization models are determined using a holdout method.
Therefore the available data S is split into two disjoint data
sets: S = ST ∪ SV . On ST , the model parameters are op-
timized for the regularized loss objective (OptReg, eq. 9)
given a regularization constant λ. Using the validation set
SV , the quality of the learned model parameters can be es-
timated. As the training ST and validation SV sets are
disjoint, the quality on SV gives a reliable estimate of the
future success of the parameter setting – as long as the size
of the validation set is sufficiently large and the future data
is generated by the same process as the validation data SV .
Working with disjoint training and validation sets is one of
the core principles in machine learning. In our case, the task
is to find the regularization values λ∗ that lead to the lowest
error on the validation set

λ∗ := argmin
λ∈Rc

+

∑

(x,y)∈SV

l (ŷ(x|OptReg(ST ,λ)), y) . (14)

This is a nested optimization task where the outermost ob-
jective is to determine the best regularization values λ∗ that
minimize the loss on the validation set SV . This loss on
the validation set depends not directly on λ. Instead it de-
pends on the model equation ŷ which itself depends only on
the model parameters. However, the model parameters are
the solution of Θ∗|λ = OptReg(ST ,λ), i.e. the regularized
optimization criterion on the training data ST , thus these
optimal model parameters depend on λ. So in total, we are
looking for a λ∗ such that the corresponding optimal model
parameters Θ∗|λ∗ with respect to the regularized loss on ST

lead to a minimal error on the validation set SV .

Alternating Optimization.
A straightforward idea is to use an alternating optimiza-

tion, i.e. starting with an initial guess of (Θ,λ) and alter-
nate between improving Θ while λ is fixed and improving
λ while Θ is fixed. This process is repeated up to conver-
gence. For the first task, i.e. optimizing Θ for a given λ,
we already have a solution (alg. SolveOptReg). But the
second task (eq. 14) is not trivial. If Θ is kept constant
here, i.e. OptReg(ST ,λ) is replaced by the current model
parameters Θt, then the optimization task (eq. 14) reads

λ∗|Θt := argmin
λ∈Rc
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l
(
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In this task the right hand side is independent of λ. This
means the gradient vanishes
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L(SV ,Θt) =
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∑

(x,y)∈SV

l(ŷ(x|Θt), y) = 0 (16)

and thus every value λ ∈ R would be optimal w.r.t. equation
(15) which is obviously not the right approach to solve the
original task (eq. 14).

4.2 Optimizing Future Model Parameters
Alternating optimization using eqs. (9) and (14) seems

to be impossible as the gradient of any λ vanishes when Θ
is kept constant. The problem is that λ does not appear
explicitly in the optimization formula (eq. 15). However if
we remember the role of lambda in eq. (14), it can be seen
that λ steers the search for the model parameters Θ on ST

which are then used in SV . This can also be seen in the
SGD update rule for the model parameters (eq. 10) where λ
appears. That means with a simple trick, we can reformulate
the model equation such that it depends explicitly on λ: It
is known that after the next update on θ, the value of θ will
be the one of eq. (10). This future value θt+1 depends on
λ. So the future model equation after updating the model
parameters Θ can be written as:
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That means instead of expressing the model equation with
the current parameters Θt, it can be formulated to depend
on the parameters after the next update Θt+1. Replacing
each θt+1 in eq. (17) with the right hand side of eq. (10),
results in a model equation which depends on λ:
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This future model equation ŷ(x|Θt+1) can be used in eq. (14),
which results in the following task:

λ∗|Θt := argmin
λ∈Rc

+
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This optimization task answers the question: What is the
best value of λ such that the next update on Θ generates
the smallest error on the validation set? Now alternating
between eqs. (9) and (19) is possible.

In general, this idea can be used for any iterative opti-
mization algorithm where the update on the model param-
eter explicitly depends on the regularization value. In the
following, we show how this can be done efficiently for SGD.

Gradients.
As the model parameters are usually optimized with SGD,

we propose to use SGD as well for optimizing λ w.r.t. the
task of eq. (19). The SGD-update for λ given a case (x, y) ∈
SV is

λt+1 = λt − α
∂
∂λ

l
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ŷ(x|Θt+1), y
)

(20)

where the gradients of the loss function are the same as in
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mately complicates and lengthens the model training phase.
Firms that need to build hundreds or thousands of models
simultaneously, in production, face a daunting task setting
these hyper-parameters separately for each campaign.

To enable building many models with few data scientists,
and to reduce the training load on our system, we have de-
veloped a “hands-free” approach that does not require ei-
ther manual parameter setting or expensive grid-search. The
methods we present here are well suited for large and sparse
consumer behavior data and they integrate well with the
transfer-learning described above. In particular, we present
a hyper-parameter-free SGD logistic regression training al-
gorithm based on combining and enhancing two recent de-
velopments: the adaptive learning rates [14] (which we call
NoPesky) and adaptive regularization [13].

We made several enhancements to make NoPesky learn-
ing rates and adaptive regularization work together and ef-
ficiently in the current context. Specifically, we adapted the
NoPesky learning rate method so that we can 1) take advan-
tage of the sparse structure of the data to run e�cient SGD
updates, 2) explicitly integrate the regularization term in
order to make NoPesky work with adaptive regularization,
and 3) give the NoPesky algorithm a more robust starting
point when positive samples are rare.

It is helpful to start by considering the update step of
a standard SGD algorithm: at time t, we observe a new
training sample with per-sample loss
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the gradient r
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= @ft
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|
�=�t and update the dimension’s

coe�cient via
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where ⌘

t,i

is the learning rate at time t for dimension i.4

Because our algorithm works with both source and target
models, we drop the superscripts S and T throughout this
section.

4.1 NoPesky Learning Rates
The NoPesky learning rate method sets the SGD learning

rates in a greedy manner by choosing a rate that minimizes
the expected value of the average loss function f after each
SGD update. It is generally impossible to solve this mini-
mization problem exactly, but an approximate solution can
be obtained and works well in practice. The method utilizes
the second-order derivatives of the per-sample loss function,
making it suitable for learning models with a smooth loss
function, such as linear and logistic regression. Our experi-
ments validate prior research [14], showing that SGD algo-
rithms trained with the NoPesky learning rates perform as
4Our algorithm uses di↵erent learning rates for di↵erent
dimensions, rather than a global learning rate for all di-
mensions. Multiple studies suggest that dimension-specific
learning rates yield superior performance to global learning
rates, particularly for data sets with sparse features like ours
[6, 9].

well as state-of-the-art adaptive learning rate schedules such
as AdaGrad [6]. The di↵erence is that NoPesky learning re-
quire no systematic parameter tuning and thus can promote
faster learning.
We first sketch the core steps of the original NoPesky

learning rate method that are necessary for presenting our
adaptations. The method treats the stochastic gradient r

t,i

as a random variable, and chooses a learning rate to min-
imize the expected regularized loss after one SGD update,
that is:
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where e

i

is a unit vector in dimension i. In order to solve
the above minimization problem, three approximations are
made. First, the average loss function f is approximated
by a quadratic function in the neighborhood of �

t

. This
is achieved by approximating its first-order derivative by
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], and the second-order derivative by h
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]. And lastly, the second-
order moment of r
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is approximated by v
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One can then solve (6) and obtain an approximate solution,
which is set as the per-sample, dimension specific learning
rate.
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The three approximate variables are calculated as running
averages
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where ⌧

t,i

is an averaging window, that can be heuristically
set by ⌧1,i = 1 and

⌧

t+1,i = (1�
g

2
t,i

v

t,i

)⌧
t,i

+ 1. (9)

The use of a dynamic averaging window determined by equa-
tion (9) to update equation (8) enables this method to adapt
to non-stationary data. When the data distributions change,
⌧ is automatically reset to a lower number which increases
the learning rate and enables more exploration.
To work within our system, we have made the following

enhancements to the NoPesky method.

Sparse Updates.
As discussed above, online webpage visitation data is ex-

tremely sparse. It is desirable to take advantage of this ex-
treme sparsity to speed up the SGD updates—specifically,
we would like to enhance the NoPesky method such that at
step t, we only update dimension i if x

t,i

6= 0.
In regularized logistic regression, the per-sample loss func-

tion has two components: the logistic loss function and the
regularization function. The logistic loss function `

t

(de-
fined in (1)) has a convenient property that its gradient in
dimension i is 0 if x

t,i

= 0, thus allowing for sparse updates.
Unfortunately, the regularization term �

2

P
i

(�
i

�µ
i

)2 gener-
ally does not have zero gradients. In fact, the regularization
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Experimental Set Up 

Data from 100 Dstillery Campaigns 

Target	  DistribuJon	  

Source	  DistribuJon	  

Train (2 weeks) Test (1 week) 

Experimental Design 

1.  Transfer	  vs.	  No	  Transfer,	  
tradiJonal	  Grid	  Search	  

2.  Grid	  Search	  vs.	  AdapJve	  
Learning	  (with	  Transfer)	  

3.  AdapJve	  Transfer	  vs.	  No	  
Transfer	  with	  Grid	  Search	  



Grid Search vs. Adaptive Learning  

Adaptive Learning: 
 
•  Results in no statistical 

difference in 
performance 

•  Is an order of 
magnitude faster 



New Method vs. Default 

Transfer Learning w/ 
Adaptive Learning: 
 
•  Increased lift for 93% of 

tests 

•  Resulted in avg. Lift 
increase of 23% 

•  Is an order of 
magnitude faster than 
grid search 



Incremental Learning 

Q: What happens over time as target task is able to use more data? 

AUC Di↵. AUC Di↵. AUC Di↵. Lift Ratio Lift Ratio Lift Ratio

Mean % > 0 p-Value Mean % >1 p-Value

Transfer:Grid vs. No Transfer: Grid 2.07 86% < 10e�6
1.22 91% < 10e�6

Transfer:Adapt vs. Transfer: Grid -0.30 50% 0.15 1.01 65% 0.09

Transfer:Adapt vs. No Transfer: Grid 1.77 80% < 10e�6
1.23 93% < 10e�6

Table 1: Each row in this table is a comparison of two methods on the 100 campaigns shown in figure 2.

The table reports the mean di↵erence of AUC (on a 100 point scale) between the first and second variants

(listed in the first column) and the mean ratio of Lift for the first variant over the second variant across all

the campaigns. The p-Values are a result of paired t-tests under the null hypothesis that the mean AUC

di↵erence = 0 and mean Lift ratio = 1. The columns labeled ’%>k’ show the number of campaigns where

the metric reported was strictly greater than k. These results show that transfer learning overall improves

the performance (over not using it) and that the hands-free learning does not substantially reduce predictive

performance.

Figure 3: This figure shows the comparative results for three strategies for incremental training. For each day

of analysis we initialize a model from the prior day, train on campaign data for the specified day and evaluate

on campaign data for the following day. We explore 3 modeling strategies (Transfer Learning, Control A with

no prior and Control B with previous day’s model as a prior). Each point compares either Transfer Learning

or Control B variants to the Control A variant.

We then evaluate the resultant model on the following day’s
sample.

We explore three variants in this set of experiments: (1)
“Transfer Learning” – using equation 3 with µ̂

s derived from
the source data;7 (2) “Control A” – equation 3 with µ̂

s = 0
(the standard regularization case), and (3) “Control B” –
equation 3 with µ̂

s specified as the prior day’s model. This
final “Control B”variant is the methodology used by [4], and

7In this set of experiments we learn one estimate of µ̂s for
each campaign and hold that fixed throughout the 60 days
of training.

is the method most similar to our work in design.8 For each
variant, on each day, we train on just the given day’s data
using the chosen prior with adaptive regularization and op-
timize using SGD with the NoPesky adaptive learning rates.
When performing incremental updates using SGD, we found
that performance generally improves when each day’s model
is initialized with the prior day’s model and that the state
of all parameters used to compute the learning rate are per-
sisted and carried over to the next day (let’s call this the
‘warm start’).

8The work by [4] was not explicitly attempting knowledge
transfer, but can be interpreted as an instance of Bayesian
transfer, like ours except transferring across time periods.
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A: Transfer learning benefit degrades as campaign matures 



And it Works Live! 

The approaches presented here generally dominate our baseline 
methods. 

Figure 4: Snapshot of the Dstillery KPI dashboard showing median lift over an internal baseline across

all active campaigns. The ‘L99’ line is the median Lift KPI of our transfer learning algorithm across all

campaigns. The ‘NN-ALL’ line is the median Lift KPI across all campaigns of all of our learning algorithms

combined.

Figure 3 shows aggregated results of running incremen-
tal training with daily performance evaluation across 30
randomly sampled campaigns from our production system
(sampled with the one constraint that the target data had
at least 5 post-impression conversions for each day of anal-
ysis). In the top chart we show the average relative Lift
ratio between the variants Transfer Learning and Control
B over Control A. In the bottom chart we show the av-
erage di↵erence in AUC. Thus, in each chart a black dot
above the reference line means that Transfer Learning out-
performed Control A for that time period. An“X”above the
line means that Control B outperformed Control A for that
time period. A black dot above an “X” means that Trans-
fer Learning outperformed Control B for that time period.
And vice versa. From these results we can see multiple ef-
fects: (1) when comparing to Control A, the postive e↵ect of
transfer learning wears o↵ over time; (2) when comparing to
Control A, the transfer learning benefit is more pronounced
for AUC than for Lift, although for both metrics there is
a general benefit, and (3) Control B tends to underperform
both variants, and this is more dramatic in AUC.

The first trend mentioned above is something we ought
to expect - as more data is introduced into the system, and
because the models do have some form of a memory built
into them, we should expect the weights learned just with
the target data will start to converge toward an optimal
point. The second trend can possibly be explained by dif-
ferent properties of the metrics themselves. In general, Lift
can be a very high variance metric in data scenarios with
a low absolute number of positive outcomes. This variance
comes from both (i) the model, because it is more di�cult
to fit the tails of the distribution, and (ii) the evaluation
itself: since we are updating the models one day at a time,
we have less target data per model-building and evaluation
step and this increases the expected variance. As a policy,
we always review both AUC and Lift, even though Lift is
the more appropriate metric.

The third trend mentioned above might be the most un-
expected (to us at least), and the sub-optimality of Control
B warranted additional analysis. Figure 5 shows the aver-
age L2-norm of the weight vectors � learned for each variant
for each day. The general trend we see is that the average

Figure 5: Average L2-norms for the models aggre-

gated and reported in figure 3

norm of weight vectors trained using the Control B variant
is bigger than that of the other two. This trend is likely an
artifact of regularizing towards existing models. The issue
is two-fold and manifests from the fact that the regulariza-
tion prior is a moving target. Over time, the weight vector
gets closer to an optimal solution and this often coincides
with an increasing norm. Eventually the process begins to
overfit the data and the regularization is too restrictive to
let the model escape from a specific solution. Also, this reg-
ularization strategy makes it di�cult to escape optimization
valleys in non-stationary data. The NoPesky learning rate
schedule has a built-in method for adapting to changing data
distributions (i.e., by “forgetting”most of the past), but for-
getting the past is di�cult when the regularizer forces the
model to remember it. Thus, the Transfer Learning prior
might be better in our application because it doesn’t in-
crease over time and is biased enough to avoid overfitting.
It is anchored close enough to a specific day’s optimal so-
lution to be useful but not too close that it over-fits in a
generally noisy learning environment.


