Pivota

A NEW PLATFORM FOR A NEW ERA

Unveiling Clusters of Events for Alert and Incident Management in Large-Scale Enterprise IT

Derek Lin*, Rashmi Raghu, Vivek Ramamurthy, Jin Yu, Regunathan Radhakrishnan – Pivotal Joseph Fernandez – Visa Inc. KDD 2014, 8/26/2014

Motivation

- Enterprise network is complex
 - Different technology components with lots of dependency
- Role of Reliability Engineering
 - Ensure 24x7 uptime, network monitoring and quick resolution
- Alerts are high volume; eyes-on-glass operation
 - Event logs, performance metric log, incident tickets
- What intelligence can we mine from data to improve operational efficiency for Reliability Engineering?

IT Infrastructure and Data Sources

Pivotal

Business Goal

- Improve operational efficiency of IT Support & Help Desk
- Method: Analyze and cluster historical alert and incident data :
 - To profile clusters in volume or mean-time-to-resolve
 - To recommend incident resolution
 - To predict infrastructure failures before they occur

Challenges

Data

- Large volume: 10 million alerts and incidents in 6 months from just one business service. There are numerous services – debit processing, fraud detection, etc..
- Multi-structured: Semistructured and unstructured text
- No labeled data

Analytics

- Alerts/incidents have short text
- Clustering techniques at scale for incidents
- Cluster interpretability for qualitative evaluation

Approaches

- Unsupervised learning based approach
- Represent alerts as bag-of-words; Define a distance metric to compare any two alerts and perform clustering.

Clustering of Semi-Structured Text Alerts

- Distance metric
 - Jaccard Index, dist(A,B) = $1 (|A \cap B| / |A \cup B|)$
- Given NxN, create a graph, establish an edge between nodes (alerts) if the distance < h
- Clustering
 - Connected components detection
 - Graph partitioning

Clusters From Each Alert Group

© Copyright 2013

Mean-Time-To-Resolve for Clusters

Unix Open Systems	Alert Counts		MTTR*	Total MTTR*	
Space utilization issue	<mark>e</mark> 1,407		4,248	1,486	964,414
AIX Hardware error	● 835	1,902		691	154,093
Process X is not running, please restart	• 270 1,206			825	105,600
Process X may have missed an execution interval	e 820			1,286	489,966
CPU Utilization Issue	• 55 805			512	12,288
Server booted, ensure critical apps are running	<u> </u>			1,208	105,096
Splunk Agent unavailable	685			769	66,134
Connection failed issue) 17 591			2,774	11,096
LDAP connectivity issue	25 444			979	7,832
Net Backup: History file process failure	434			1,535	46,050
Windows Open Systems				12,065	1,962,569
Health Service heartbeat failure	<mark>)</mark> 330		3,950	234	48,204
Process X is not running, please restart	<mark>.</mark> 749	2,911		519	181,131
Web session emulator process hung issue	9	2,837		1,845	16,605
Hyperion Foundation Services is not running	12	2,280		571	3,426
Website / URL unavailable	370 1,352			557	75,752
Symantec critical system protection service is not running	1,093			494	2,470
Server booted, ensure critical apps are running	628 1,060			542	115,988
Web Service / Probe URL unavailable	2 4 983			1,098	13,176
CPU Utilization Issue	<mark>)</mark> 151 737			1,978	94,944
Playspan Issue	4 94			60	8,220
Agent is not running	17 453			1,061	11,671
Hard disk free space issue	<mark>-</mark> 427			1,030	158,620
				9,989	730,207

Clustering Unstructured Text Incidents

- Distance metric
 - Dist(A,B)= Const |A ∩ B|
- Clustering
 - Use of non-negative matrix factorization to find latent representation of incidents
 - KD tree for coarse space partitioning
 - Hierarchical clustering: complete-linkage
 - Refine by merging clusters
 - Choose a prototype for cluster representation
 - An examplar with the shortest distance to its farthest member in a cluster

Takeaways And Lesson Learned

- Understand where your alerts/incidents are coming from is an important step in improving infrastructure support
 - Profiling classes of alerts for business intelligence
 - Resolution recommendation
 - Application or hardware failure prediction
- MPP computing architecture + proper algorithm choice are needed to deal with scalability
- Tuning iterations require good cluster visualization
- Future direction: leverage temporal info.

Pivota

A NEW PLATFORM FOR A NEW ERA