Differentially Private Network Data Release via Structural Inference

Qian Xiao, NUS
Rui Chen, HKBU
Kian-Lee Tan, NUS

KDD 2014
Idea Spotlight

Perfect Queries ➔ Perfect Answers
Idea Spotlight

Perfect Queries \rightarrow Perfect Answers

Not always true if under Differential Privacy!
Idea Spotlight

Perfect Queries \Rightarrow Perfect Answers

Not always true if under Differential Privacy

Queries not that Perfect

Good Answers + Privacy + Social Good
Why Privacy-aware Network Data Release ???

- Increasing Demands on Network Data for Exploratory Data Analysis

Privacy Concerns
- Social Contacts
- Personal opinions
- Private communication records

Researches on human interaction

Targeted Advertisements

Government Surveillance
Why Privacy-aware Network Data Release ???

- **Emerging Privacy Standard:**
 - Differential Privacy [Dwork06]
 - Resilient to attacks with *arbitrary* side information
 - **Worst case guarantee**
 - Rigorous mathematical formulation

- **Prevalent Randomization Techniques** to generate noisy results while satisfying DP:
 - Laplacian noise (for counting queries)
 - Exponential mechanism (for selecting discrete query outcomes)
Problem Statement

Given an original simple graph $G = (V, E)$, find a random sanitized graph \tilde{G} to release.

The goal is to

- Approximate G’s statistical properties of in \tilde{G} as much as possible to preserve essential structural information.
- Satisfy edge Differential Privacy (ϵ-DP) to hide each user’s connections to others.
Problem Statement

DP requires:

A randomized algorithm \mathcal{A} is ϵ-differential privacy if for any two neighboring graphs G and G', and for any output $O \in \text{Range}(\mathcal{A})$,

$$\Pr[\mathcal{A}(G) \in O] \leq e^\epsilon \times \Pr[\mathcal{A}(G') \in O]$$

Outcome with my connection in G Outcome without my connection in G'

Output distribution shall not change much if any single edge is missing, that is, the sensitivity of \mathcal{A} shall be limited.
To find a reasonable balance between privacy and data utility, we need to limit the query sensitivity (the dependence of noise required by DP on network size n)
State-of-the-art Approaches

- To satisfy ϵ-DP:
 - dK-2 series:
 Global sensitivity is $O(n)$ [Sala11, Wang13]
 - Spectral graph analysis:
 Global sensitivity is $O(\sqrt{n})$ [Wang13]
Our Approach: Differentially Private Network Data Release via Structural Inference

- Transform edges to connection probabilities via Hierarchical Random Graph (HRG)
- Our approach’s sensitivity is $O(\log n)$

<table>
<thead>
<tr>
<th>Edges</th>
<th>Connection Probabilities</th>
</tr>
</thead>
</table>

- Highly sensitive \(\Rightarrow\) Prohibitive noise
- Not that sensitive in a graph of moderate or large size
Outline

- Motivation
- Hierarchical Random Graph (HRG)
- Structural inference under DP with MCMC
- Sensitivity Analysis
- Experimental evaluation
- Conclusion
Hierarchical Random Graph

Likelihood of an HRG T:

$$
\mathcal{L}(T, \{p_r\}) = \prod_{r \in T} p_r^{e_r} (1 - p_r)^{n_{LR} n_{RR} - e_r}
$$

An HRG example in [Clauset07,08]
Why HRG?

G

best-fitting HRG T_1, $\mathcal{L}(T_1) = 0.0433...$
Why HRG?

One edge missing → Completely different best-fitting HRG

T_1 is not the best any more!

$\mathcal{L}(T_1) = 0.0108...$

Best-fitting HRG T_2

$\mathcal{L}(T_2) = 0.0491...$
Why HRG?

One edge missing only affects one probability

\[\mathcal{L}(T_1) = 0.0108... \]

Likelihood of an HRG \(T \):

\[\mathcal{L}(T, \{p_r\}) = \prod_{r \in T} p_r^{e_r} (1 - p_r)^{n_{lr} n_{rr} - e_r} \]

An HRG example in [Clauset07,08]
HRG space \mathbb{T}

G

best-fitting HRG T_1

$\mathcal{L}(T_1) = 0.0433...$

good-fitting HRG T_4

$\mathcal{L}(T_0) = 0.00165...$

$\mathcal{L}(T_2) = 0.00165...$

$\mathcal{L}(T_4) = 0.00206...$
HRG space \mathbb{T}

$|\mathbb{T}|$ is

$(2n-3)!! \approx \sqrt{2} (2n)^{n-1} e^{-n}$

Super-exponential, prohibitively expensive to apply Exponential Mechanism directly

$\mathcal{L}(T_1) = 0.0433...$

$\mathcal{L}(T_0) = 0.00165...$

$\mathcal{L}(T_4) = 0.00206...$

$\mathcal{L}(T_3) = 0.00014...$
Outline

- Motivation
- Hierarchical Random Graph (HRG)
- Structural inference under DP with MCMC
- Sensitivity Analysis
- Experimental evaluation
- Conclusion
What to do with HRG?

MCMC process - 1

Randomly pick an arbitrary HRG as the initial state T_0

$\mathcal{L}(T_0)=0.00165...$

$\mathcal{L}(T_1)=0.0433...$

$\mathcal{L}(T_2)=0.00165...$

$\mathcal{L}(T_3)=0.00014...$

$\mathcal{L}(T_4)=0.00206...$
What to do with HRG?

MCMC process - 2

Update at i^{th} step with the rule:

$$T_i = \begin{cases} T' & \text{with probability } \alpha \\ T_{i-1} & \text{with probability } 1 - \alpha \end{cases}$$

where the acceptance ratio

$$\alpha = \min \left(1, \frac{\exp \left(\frac{\epsilon_1}{2\Delta u} \cdot \log \mathcal{L}(T') \right)}{\exp \left(\frac{\epsilon_1}{2\Delta u} \cdot \log \mathcal{L}(T_{i-1}) \right)} \right)$$

Given:

- $\mathcal{L}(T_1) = 0.0433$...
- $\mathcal{L}(T_4) = 0.00206$...
- $\mathcal{L}(T_3) = 0.00014$...
- $\mathcal{L}(T_2) = 0.00165$...

- $\mathcal{L}(T_0) = 0.00165$...
What to do with HRG?

MCMC process - 3

\[\mathcal{L}(T_1) = 0.0433... \]
\[\mathcal{L}(T_0) = 0.00165... \]
\[\mathcal{L}(T_4) = 0.00206... \]
\[\mathcal{L}(T_3) = 0.00014... \]

Randomly sample a good-fitting \(T \) after MCMC converges.

A good-fitting HRG \(T_4 \)

\[\mathcal{L}(T_2) = 0.00165... \]
Step 1. Use MCMC to sample a good-fitting HRG T with privacy budget ϵ_1. MCMC does the job of Exponential Mechanism. It satisfies DP. [Shen13]
Structure Inference under DP with MCMC

Step 1. Use MCMC to sample a good-fitting HRG T with privacy budget ϵ_1

Step 2. Perturb connection probabilities with privacy budget ϵ_2

Add Laplacian noise
Structure Inference under DP with MCMC

Step 1. Use MCMC to sample a good-fitting HRG T with privacy budget ϵ_1

Step 2. Perturb connection probabilities with privacy budget ϵ_2

Step 3. Re-generate a random graph \tilde{G}
Structure Inference under DP with MCMC

Step 1. Use MCMC to sample a good-fitting HRG T with privacy budget ϵ_1

Step 2. Perturb connection probabilities with privacy budget ϵ_2

Step 3. Re-generate a random graph \tilde{G}

With composition theorem, our approach achieve ϵ-DP, where $\epsilon = \epsilon_1 + \epsilon_2$
Outline

- Motivation
- Hierarchical Random Graph (HRG)
- Structural inference under DP with MCMC
- Sensitivity Analysis
- Experimental evaluation
- Conclusion
Sensitivity Analysis

Global sensitivity:
\[\Delta u = \max_{T \in \mathbb{T}, G, G'} |\log \mathcal{L}(T, G') - \log \mathcal{L}(T, G)| \]

\[\Delta u \text{ is } O(\log n) \]
Outline

- Motivation
- Hierarchical Random Graph (HRG)
- Structural inference under DP with MCMC
- Sensitivity Analysis
- Experimental evaluation
- Conclusion
Datasets

Network dataset statistics

<table>
<thead>
<tr>
<th>Dataset</th>
<th>#Nodes</th>
<th>#Edges</th>
<th>Max Degree Pair</th>
</tr>
</thead>
<tbody>
<tr>
<td>polblogs</td>
<td>1,224</td>
<td>16,715</td>
<td>(351, 277)</td>
</tr>
<tr>
<td>wiki-Vote</td>
<td>7,115</td>
<td>100,762</td>
<td>(1065, 773)</td>
</tr>
<tr>
<td>ca-HepPh</td>
<td>12,008</td>
<td>118,489</td>
<td>(491, 486)</td>
</tr>
<tr>
<td>ca-AstroPh</td>
<td>18,772</td>
<td>198,050</td>
<td>(504, 420)</td>
</tr>
</tbody>
</table>

All are real-life data
MCMC Convergence Study on $\log \mathcal{L}$

Trace of $\log \mathcal{L}$ as a function of the number of MCMC steps, normalized by n
MCMC Convergence Study on $\log \mathcal{L}$

Trace of $\log \mathcal{L}$ as a function of the number of MCMC steps, normalized by n
Degree distribution

Wiki-Vote
Shortest path length distribution

![Graph showing shortest path length distribution with various labels and data points.](image)
Overlap of top-k vertices

Wiki-Vote
Mean absolute error of top-\(k\) vertices

Wiki-Vote
Outline

- Motivation
- Hierarchical Random Graph (HRG)
- Structural inference under DP with MCMC
- Sensitivity Analysis
- Experimental evaluation
- Conclusion
Conclusion

- We propose to infer connection probabilities with HRG for data sanitization under DP
- Our approach’s sensitivity is $O(\log n)$
- Direct applying exponential mechanism on the huge space of HRG is prohibitively expensive. We overcome this challenge via doing sampling HRG space via MCMC
- Empirical experiments show our approach can effectively preserve many statistical properties in the network data
References

Thank you!

Q&A