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Linear Regression

• Learning or Inferring a functional relationship between a
set of attribute variables and associated response or
target variables
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Linear Regression

• Learning or Inferring a functional relationship between a
set of attribute variables and associated response or
target variables

• Motivation to use model of relationship to predict
unknown target values given new values of attributes

• How to learn the relationship from finite set of
observations?

• How to assess how good model is as a predictor?
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Example Prediction Problem

• Predict Long Jump Gold Medal distance based on
previous winning performances

Lecture One January 9, 2006 – p. 3/11



Example Prediction Problem

• Predict Long Jump Gold Medal distance based on
previous winning performances

• Data available corresponds to distance and year of
games

Lecture One January 9, 2006 – p. 3/11



Example Prediction Problem

• Predict Long Jump Gold Medal distance based on
previous winning performances

• Data available corresponds to distance and year of games

• Many other attributes also available which are indicative
of target variable

Lecture One January 9, 2006 – p. 3/11



Example Prediction Problem

• Predict Long Jump Gold Medal distance based on
previous winning performances

• Data available corresponds to distance and year of games

• Many other attributes also available which are indicative
of target variable

• However lets see what sort of predictions, if any, can be
made taking account only of time elapsed from first
games
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Example Prediction Problem

• Look at data available by plotting distance against time
elapsed
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Example Prediction Problem

• Look at data available by plotting distance against time
elapsed
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Figure 1: Gold Medal Distance for the long jump from 1896 to 2004 plotted

against the number of years since the first modern games were held with 1900 being 0

and 1896 being -4. Note that the two world wars interrupt the games in 1914, 1940 &

1944.
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Linear Model

•• Visually there appears to be a functional relationship
between attributes and targets
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f : Z → R

Lecture One January 9, 2006 – p. 5/11



Linear Model

• Visually there appears to be a functional relationship
between attributes and targets

• A class of functionals which maps integers (Z) to the
Real line (R) has to be considered such that

f : Z → R

• It seems reasonable that a linear relationship exits so
assume that

f(x;w0, w1) = w1x + w0

defines our model. The slope w1 and the intercept w0

are the free parameters of our model which have to be
assigned
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Loss Functions

• We identify the model parameters by considering a Loss

Function defining the miss-match between model output
f(x;w0, w1) and target value t
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Function defining the miss-match between model output
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• Loss defined for all available input-output example pairs
(xn, tn) where n = 1, · · · , N and in this case N = 25,
the number of game results recorded.
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Loss Functions

• We identify the model parameters by considering a Loss

Function defining the miss-match between model output
f(x;w0, w1) and target value t

• Loss defined for all available input-output example pairs
(xn, tn) where n = 1, · · · , N and in this case N = 25,
the number of game results recorded.

• The sample average loss is given as

1

N

N∑

n=1

L(tn, f(xn;w0, w1))
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Squared-Error Loss

• The notion of Loss is quite general and now need a
specific loss function
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Squared-Error Loss

• The notion of Loss is quite general and now need a
specific loss function

• Squared Error Loss is a sensible choice - historical
significance, also has probabilistic basis

• Robust losses based on absolute deviations can also be
considered

• Sample Mean Squared Error (MSE) Loss

1

N

N∑

n=1

|tn − f(xn;w0, w1)|
2
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Matrix Notation

• We can define the 2 × 1 dimensional column vector w

and the N × 1 dimensional column vector t such that

w =

[
w0

w1

]
& t =




t1
...

tN



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Matrix Notation

• We can define the 2 × 1 dimensional column vector w

and the N × 1 dimensional column vector t such that

w =

[
w0

w1

]
& t =




t1
...

tN




• The N × 2 dimensional matrix X is defined as

X =




1 x1

...
...

1 xN



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Squared-Error Loss

• Using the defined vector & matrix notation the MSE can
be written compactly as

MSE =
1

N
(t − Xw)T(t − Xw)
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1

N
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above
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Squared-Error Loss

• Using the defined vector & matrix notation the MSE can
be written compactly as

MSE =
1

N
(t − Xw)T(t − Xw)

• Tutorial exercise to show that MSE can be written as
above

• Now require to find value of vector, w, which minimises
MSE
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Minimising MSE

• Find stationary point of MSE by setting gradient of all
partial derivatives to zero
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Minimising MSE

• Find stationary point of MSE by setting gradient of all
partial derivatives to zero

∂MSE

∂w
=




∂MSE

∂w0

∂MSE

∂w1




=




− 2

N

∑N

n=1
(tn − f(xn;w0, w1))

− 2

N

∑N

n=1
(tn − f(xn;w0, w1))xn


 =

[
0

0

]
= 0
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Stationary Point

• Employing vector & matrix notation the gradient of
MSE can be written neatly as
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Stationary Point

• Employing vector & matrix notation the gradient of
MSE can be written neatly as

∂MSE

∂w
= −

2

N
X

T(t −Xw)
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Stationary Point

• Employing vector & matrix notation the gradient of
MSE can be written neatly as

∂MSE

∂w
= −

2

N
X

T(t −Xw)

• Tutorial exercise to show this. Matrix Cookbook on
Module website.
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Stationary Point

• Employing vector & matrix notation the gradient of
MSE can be written neatly as

∂MSE

∂w
= −

2

N
X

T(t −Xw)

• Tutorial exercise to show this. Matrix Cookbook on
Module website.

• Is stationary point a minimum, maximum or saddle
point?
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Stationary Point

• Schoolboy calculus for single variable functions if
second-derivatives at stationary point strictly positive,
then point is minimum of function
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Stationary Point

• Schoolboy calculus for single variable functions if
second-derivatives at stationary point strictly positive,
then point is minimum of function

• Multi-parameter function use generalisation of above rule

• Matrix of all partial second-derivatives, H, requires to be
positive-definite i.e. a

T
Ha > 0 for any a
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Stationary Point

• Schoolboy calculus for single variable functions if
second-derivatives at stationary point strictly positive,
then point is minimum of function

• Multi-parameter function use generalisation of above rule

• Matrix of all partial second-derivatives, H, requires to be
positive-definite i.e. a

T
Ha > 0 for any a

• Require expression for Hessian matrix
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Stationary Point

• Can obtain matrix of second-partial derivatives of MSE
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Stationary Point

• Can obtain matrix of second-partial derivatives of MSE

∂2MSE

∂w∂wT
=




∂
2
MSE

∂w0∂w0

∂
2
MSE

∂w0∂w1

∂
2
MSE

∂w1∂w0

∂
2
MSE

∂w1∂w1




=




2 2

N

∑N

n=1
xn

2

N

∑N

n=1
xn

2

N

∑N

n=1
x2

n



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Stationary Point

• As will become usual in this course we can write the
matrix of second-derivatives succinctly as

∂2MSE

∂w∂wT
=

2

N
X

T
X
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Stationary Point

• As will become usual in this course we can write the
matrix of second-derivatives succinctly as

∂2MSE

∂w∂wT
=

2

N
X

T
X

• If X
T
X can be inverted it is positive definite
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Stationary Point

• As will become usual in this course we can write the
matrix of second-derivatives succinctly as

∂2MSE

∂w∂wT
=

2

N
X

T
X

• If X
T
X can be inverted it is positive definite

• Providing N ≥ D then hessian is p.d. and can be
inverted
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Stationary Point

• As will become usual in this course we can write the
matrix of second-derivatives succinctly as

∂2MSE

∂w∂wT
=

2

N
X

T
X

• If X
T
X can be inverted it is positive definite

• Providing N ≥ D then hessian is p.d. and can be
inverted

• So stationary point of MSE is indeed a minimum...
phew..
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Least Squares Solution

• As the matrix X
T
X is positive-definite it can be inverted

and so we obtain the Least-Squares estimate ŵ
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Least Squares Solution

• As the matrix X
T
X is positive-definite it can be inverted

and so we obtain the Least-Squares estimate ŵ

ŵ =
(
X

T
X

)
−1

X
T
t
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Least Squares Solution

• As the matrix X
T
X is positive-definite it can be inverted

and so we obtain the Least-Squares estimate ŵ

ŵ =
(
X

T
X

)
−1

X
T
t

• The Least-Squares solution for Long-Jump Data is

ŵ =

[
w0

w1

]
=

[
276.78

0.748

]
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Least Squares Solution

• As the matrix X
T
X is positive-definite it can be inverted

and so we obtain the Least-Squares estimate ŵ

ŵ =
(
X

T
X

)
−1

X
T
t

• The Least-Squares solution for Long-Jump Data is

ŵ =

[
w0

w1

]
=

[
276.78

0.748

]

• Can now employ this model to make predictions

Lecture One January 9, 2006 – p. 15/11



Stationary Point

• With this parameter estimate our predictions for the

given target values t̂ follow as

t̂ = Xŵ = X
(
X

T
X

)
−1

X
T
t
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Stationary Point

• With this parameter estimate our predictions for the

given target values t̂ follow as

t̂ = Xŵ = X
(
X

T
X

)
−1

X
T
t
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Prediction

• What will be the winning distance at the London 2012
Olympic Games?
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Prediction

• What will be the winning distance at the London 2012
Olympic Games?

t̂2012 = x
T
2012ŵ = [1 112]ŵ = [1 112]

(
X

T
X

)
−1

X
T
t
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Prediction

• What will be the winning distance at the London 2012
Olympic Games?

t̂2012 = x
T
2012ŵ = [1 112]ŵ = [1 112]

(
X

T
X

)
−1

X
T
t

• Linear regression model predicts a gold medal winning
distance of 276.78 + 0.748 × 112 = 360.5 inches in
London.
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Prediction

• What will be the winning distance at the London 2012
Olympic Games?

t̂2012 = x
T
2012ŵ = [1 112]ŵ = [1 112]

(
X

T
X

)
−1

X
T
t

• Linear regression model predicts a gold medal winning
distance of 276.78 + 0.748 × 112 = 360.5 inches in
London.

• Current Olympic record stands at 350.39 inches and the
current World Record was set in 1991 a distance of
352.36 inches.
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Prediction

• What will be the winning distance at the London 2012
Olympic Games?

t̂2012 = x
T
2012ŵ = [1 112]ŵ = [1 112]

(
X

T
X

)
−1

X
T
t

• Linear regression model predicts a gold medal winning
distance of 276.78 + 0.748 × 112 = 360.5 inches in
London.

• Current Olympic record stands at 350.39 inches and the
current World Record was set in 1991 a distance of
352.36 inches.

• Our prediction seems somewhat optimistic!!!!
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Nonlinear Model

• Model is linear in parameters
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more flexible model

• But still linear in parameters - provided no additional
parameters associated with transform
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Nonlinear Model

• Model is linear in parameters

• Can apply nonlinear transformation to inputs providing
more flexible model

• But still linear in parameters - provided no additional
parameters associated with transform

• For example if a cubic polynomial assumed

f(x;w) = w3x
3 + w2x

2 + w1x + w0

or more generally an arbitrary K’th order polynomial
holds

f(x;w) =
K∑

i=0

wix
i

Lecture One January 9, 2006 – p. 18/11



Nonlinear Model

• It should be straightforward to see that by now defining
the N × (K + 1) dimensional matrix X such that

X =




1 x1 x2
1

· · · xK
1

...
...

... · · ·
...

1 xN x2

N
· · · xK

N



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Nonlinear Model

• It should be straightforward to see that by now defining
the N × (K + 1) dimensional matrix X such that

X =




1 x1 x2
1

· · · xK
1

...
...

... · · ·
...

1 xN x2

N
· · · xK

N




• Least Squares solution still holds where now ŵ will be a
(K + 1) × 1 column vector

Lecture One January 9, 2006 – p. 19/11



Nonlinear Model

• Nonlinear Model (Linear regression model!!) of order
K = 9
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Nonlinear Model

• Nonlinear Model (Linear regression model!!) of order
K = 9
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Nonlinear Model

• Nonlinear Model (Linear regression model!!) of order
K = 9
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• Is this a better model??... Stay tuned till next week
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