Machine Learning

Lecture. 2.

Mark Girolami
girolami@dcs.gla.ac.uk

Department of Computing Science
University of Glasgow

Linear Regression

- Learning or Inferring a functional relationship between a set of attribute variables and associated response or target variables

Linear Regression

- Learning or Inferring a functional relationship between a set of attribute variables and associated response or target variables
- Motivation to use model of relationship to predict unknown target values given new values of attributes

Linear Regression

- Learning or Inferring a functional relationship between a set of attribute variables and associated response or target variables
- Motivation to use model of relationship to predict unknown target values given new values of attributes
- How to learn the relationship from finite set of observations?

Linear Regression

- Learning or Inferring a functional relationship between a set of attribute variables and associated response or target variables
- Motivation to use model of relationship to predict unknown target values given new values of attributes
- How to learn the relationship from finite set of observations?
- How to assess how good model is as a predictor?

Example Prediction Probleme

UNIVERSITY

- Predict Long Jump Gold Medal distance based on previous winning performances

Example Prediction Probleme

- Predict Long Jump Gold Medal distance based on previous winning performances
- Data available corresponds to distance and year of games

Example Prediction Probleme

- Predict Long Jump Gold Medal distance based on previous winning performances
- Data available corresponds to distance and year of games
- Many other attributes also available which are indicative of target variable

Example Prediction Problem

- Predict Long Jump Gold Medal distance based on previous winning performances
- Data available corresponds to distance and year of games
- Many other attributes also available which are indicative of target variable
- However lets see what sort of predictions, if any, can be made taking account only of time elapsed from first games

Example Prediction Probleme

- Look at data available by plotting distance against time elapsed

Example Prediction Problem

- Look at data available by plotting distance against time elapsed

Figure 1: Gold Medal Distance for the long jump from 1896 to 2004 plotted against the number of years since the first modern games were held with 1900 being 0 and 1896 being -4 . Note that the two world wars interrupt the games in 1914, 1940 \& 1944.

Linear Model

- Visually there appears to be a functional relationship between attributes and targets

Linear Model

- Visually there appears to be a functional relationship between attributes and targets
- A class of functionals which maps integers (\mathbb{Z}) to the Real line (\mathbb{R}) has to be considered such that

$$
f: \mathbb{Z} \rightarrow \mathbb{R}
$$

Linear Model

- Visually there appears to be a functional relationship between attributes and targets
- A class of functionals which maps integers (\mathbb{Z}) to the Real line (\mathbb{R}) has to be considered such that

$$
f: \mathbb{Z} \rightarrow \mathbb{R}
$$

- It seems reasonable that a linear relationship exits so assume that

$$
f\left(x ; w_{0}, w_{1}\right)=w_{1} x+w_{0}
$$

defines our model. The slope w_{1} and the intercept w_{0} are the free parameters of our model which have to be assigned

Loss Functions

- We identify the model parameters by considering a Loss Function defining the miss-match between model output $f\left(x ; w_{0}, w_{1}\right)$ and target value t

Loss Functions

- We identify the model parameters by considering a Loss Function defining the miss-match between model output $f\left(x ; w_{0}, w_{1}\right)$ and target value t
- Loss defined for all available input-output example pairs $\left(x_{n}, t_{n}\right)$ where $n=1, \cdots, N$ and in this case $N=25$, the number of game results recorded.

Loss Functions

- We identify the model parameters by considering a Loss Function defining the miss-match between model output $f\left(x ; w_{0}, w_{1}\right)$ and target value t
- Loss defined for all available input-output example pairs $\left(x_{n}, t_{n}\right)$ where $n=1, \cdots, N$ and in this case $N=25$, the number of game results recorded.
- The sample average loss is given as

$$
\frac{1}{N} \sum_{n=1}^{N} \mathcal{L}\left(t_{n}, f\left(x_{n} ; w_{0}, w_{1}\right)\right)
$$

Squared-Error Loss

- The notion of Loss is quite general and now need a specific loss function

Squared-Error Loss

- The notion of Loss is quite general and now need a specific loss function
- Squared Error Loss is a sensible choice - historical significance, also has probabilistic basis

Squared-Error Loss

- The notion of Loss is quite general and now need a specific loss function
- Squared Error Loss is a sensible choice - historical significance, also has probabilistic basis
- Robust losses based on absolute deviations can also be considered

Squared-Error Loss

- The notion of Loss is quite general and now need a specific loss function
- Squared Error Loss is a sensible choice - historical significance, also has probabilistic basis
- Robust losses based on absolute deviations can also be considered
- Sample Mean Squared Error (MSE) Loss

$$
\frac{1}{N} \sum_{n=1}^{N}\left|t_{n}-f\left(x_{n} ; w_{0}, w_{1}\right)\right|^{2}
$$

Matrix Notation

- We can define the 2×1 dimensional column vector \mathbf{w} and the $N \times 1$ dimensional column vector t such that

$$
\mathbf{w}=\left[\begin{array}{c}
w_{0} \\
w_{1}
\end{array}\right] \quad \& \quad \mathbf{t}=\left[\begin{array}{c}
t_{1} \\
\vdots \\
t_{N}
\end{array}\right]
$$

Matrix Notation

- We can define the 2×1 dimensional column vector \mathbf{w} and the $N \times 1$ dimensional column vector t such that

$$
\mathbf{w}=\left[\begin{array}{c}
w_{0} \\
w_{1}
\end{array}\right] \quad \& \quad \mathbf{t}=\left[\begin{array}{c}
t_{1} \\
\vdots \\
t_{N}
\end{array}\right]
$$

- The $N \times 2$ dimensional matrix \mathbf{X} is defined as

$$
\mathbf{X}=\left[\begin{array}{cc}
1 & x_{1} \\
\vdots & \vdots \\
1 & x_{N}
\end{array}\right]
$$

Squared-Error Loss

- Using the defined vector \& matrix notation the MSE can be written compactly as

$$
M S E=\frac{1}{N}(\mathbf{t}-\mathbf{X w})^{\boldsymbol{\top}}(\mathbf{t}-\mathbf{X w})
$$

Squared-Error Loss

- Using the defined vector \& matrix notation the MSE can be written compactly as

$$
M S E=\frac{1}{N}(\mathbf{t}-\mathbf{X w})^{\top}(\mathbf{t}-\mathbf{X w})
$$

- Tutorial exercise to show that MSE can be written as above

Squared-Error Loss

- Using the defined vector \& matrix notation the MSE can be written compactly as

$$
M S E=\frac{1}{N}(\mathbf{t}-\mathbf{X} \mathbf{w})^{\top}(\mathbf{t}-\mathbf{X} \mathbf{w})
$$

- Tutorial exercise to show that MSE can be written as above
- Now require to find value of vector, w, which minimises MSE

Minimising MSE

- Find stationary point of MSE by setting gradient of all partial derivatives to zero

Minimising MSE

- Find stationary point of MSE by setting gradient of all partial derivatives to zero

$$
\begin{aligned}
\frac{\partial M S E}{\partial \mathbf{w}} & =\left[\begin{array}{c}
\frac{\partial M S E}{\partial w_{0}} \\
\frac{\partial M S E}{\partial w_{1}}
\end{array}\right] \\
& =\left[\begin{array}{l}
-\frac{2}{N} \sum_{n=1}^{N}\left(t_{n}-f\left(x_{n} ; w_{0}, w_{1}\right)\right) \\
-\frac{2}{N} \sum_{n=1}^{N}\left(t_{n}-f\left(x_{n} ; w_{0}, w_{1}\right)\right) x_{n}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Stationary Point

- Employing vector \& matrix notation the gradient of MSE can be written neatly as

Stationary Point

- Employing vector \& matrix notation the gradient of MSE can be written neatly as

$$
\frac{\partial M S E}{\partial \mathbf{w}}=-\frac{2}{N} \mathbf{X}^{\boldsymbol{\top}}(\mathbf{t}-\mathbf{X} \mathbf{w})
$$

Stationary Point

- Employing vector \& matrix notation the gradient of MSE can be written neatly as

$$
\frac{\partial M S E}{\partial \mathbf{w}}=-\frac{2}{N} \mathbf{X}^{\boldsymbol{\top}}(\mathbf{t}-\mathbf{X} \mathbf{w})
$$

- Tutorial exercise to show this. Matrix Cookbook on Module website.

Stationary Point

- Employing vector \& matrix notation the gradient of MSE can be written neatly as

$$
\frac{\partial M S E}{\partial \mathbf{w}}=-\frac{2}{N} \mathbf{X}^{\boldsymbol{\top}}(\mathbf{t}-\mathbf{X} \mathbf{w})
$$

- Tutorial exercise to show this. Matrix Cookbook on Module website.
- Is stationary point a minimum, maximum or saddle point?

Stationary Point

- Schoolboy calculus for single variable functions if second-derivatives at stationary point strictly positive, then point is minimum of function

Stationary Point

- Schoolboy calculus for single variable functions if second-derivatives at stationary point strictly positive, then point is minimum of function
- Multi-parameter function use generalisation of above rule

Stationary Point

- Schoolboy calculus for single variable functions if second-derivatives at stationary point strictly positive, then point is minimum of function
- Multi-parameter function use generalisation of above rule
- Matrix of all partial second-derivatives, \mathbf{H}, requires to be positive-definite i.e. $\mathbf{a}^{\top} \mathbf{H a}>0$ for any \mathbf{a}

Stationary Point

- Schoolboy calculus for single variable functions if second-derivatives at stationary point strictly positive, then point is minimum of function
- Multi-parameter function use generalisation of above rule
- Matrix of all partial second-derivatives, \mathbf{H}, requires to be positive-definite i.e. $\mathbf{a}^{\top} \mathbf{H a}>0$ for any \mathbf{a}
- Require expression for Hessian matrix

Stationary Point

- Can obtain matrix of second-partial derivatives of MSE

Stationary Point

- Can obtain matrix of second-partial derivatives of MSE

$$
\begin{aligned}
\frac{\partial^{2} M S E}{\partial \mathbf{w} \partial \mathbf{w}^{\top}} & =\left[\begin{array}{ll}
\frac{\partial^{2} M S E}{\partial w_{0} \partial w_{0}} & \frac{\partial^{2} M S E}{\partial w_{0} \partial w_{1}} \\
\frac{\partial^{2} M S E}{\partial w_{1} \partial w_{0}} & \frac{\partial^{2} M S E}{\partial w_{1} \partial w_{1}}
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 & \frac{2}{N} \sum_{n=1}^{N} x_{n} \\
\frac{2}{N} \sum_{n=1}^{N} x_{n} & \frac{2}{N} \sum_{n=1}^{N} x_{n}^{2}
\end{array}\right]
\end{aligned}
$$

Stationary Point

- As will become usual in this course we can write the matrix of second-derivatives succinctly as

$$
\frac{\partial^{2} M S E}{\partial \mathbf{w} \partial \mathbf{w}^{\top}}=\frac{2}{N} \mathbf{X}^{\top} \mathbf{X}
$$

Stationary Point

- As will become usual in this course we can write the matrix of second-derivatives succinctly as

$$
\frac{\partial^{2} M S E}{\partial \mathbf{w} \partial \mathbf{w}^{\top}}=\frac{2}{N} \mathbf{X}^{\top} \mathbf{X}
$$

- If $\mathbf{X}^{\top} \mathbf{X}$ can be inverted it is positive definite

Stationary Point

- As will become usual in this course we can write the matrix of second-derivatives succinctly as

$$
\frac{\partial^{2} M S E}{\partial \mathbf{w} \partial \mathbf{w}^{\top}}=\frac{2}{N} \mathbf{X}^{\top} \mathbf{X}
$$

- If $\mathbf{X}^{\top} \mathbf{X}$ can be inverted it is positive definite
- Providing $N \geq D$ then hessian is p.d. and can be inverted

Stationary Point

- As will become usual in this course we can write the matrix of second-derivatives succinctly as

$$
\frac{\partial^{2} M S E}{\partial \mathbf{w} \partial \mathbf{w}^{\top}}=\frac{2}{N} \mathbf{X}^{\top} \mathbf{X}
$$

- If $\mathbf{X}^{\top} \mathbf{X}$ can be inverted it is positive definite
- Providing $N \geq D$ then hessian is p.d. and can be inverted
- So stationary point of MSE is indeed a minimum... phew..

Least Squares Solution

- As the matrix $\mathbf{X}^{\top} \mathbf{X}$ is positive-definite it can be inverted and so we obtain the Least-Squares estimate $\widehat{\mathbf{w}}$

Least Squares Solution

- As the matrix $\mathbf{X}^{\top} \mathbf{X}$ is positive-definite it can be inverted and so we obtain the Least-Squares estimate $\widehat{\mathbf{w}}$

$$
\widehat{\mathbf{w}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}
$$

Least Squares Solution

- As the matrix $\mathbf{X}^{\top} \mathbf{X}$ is positive-definite it can be inverted and so we obtain the Least-Squares estimate $\widehat{\mathbf{w}}$

$$
\widehat{\mathbf{w}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}
$$

- The Least-Squares solution for Long-Jump Data is

$$
\widehat{\mathbf{w}}=\left[\begin{array}{l}
w_{0} \\
w_{1}
\end{array}\right]=\left[\begin{array}{c}
276.78 \\
0.748
\end{array}\right]
$$

Least Squares Solution

- As the matrix $\mathbf{X}^{\top} \mathbf{X}$ is positive-definite it can be inverted and so we obtain the Least-Squares estimate $\widehat{\mathbf{w}}$

$$
\widehat{\mathbf{w}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}
$$

- The Least-Squares solution for Long-Jump Data is

$$
\widehat{\mathbf{w}}=\left[\begin{array}{l}
w_{0} \\
w_{1}
\end{array}\right]=\left[\begin{array}{c}
276.78 \\
0.748
\end{array}\right]
$$

- Can now employ this model to make predictions

Stationary Point

- With this parameter estimate our predictions for the given target values $\widehat{\mathbf{t}}$ follow as

$$
\widehat{\mathbf{t}}=\mathbf{X} \widehat{\mathbf{w}}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}
$$

Stationary Point

- With this parameter estimate our predictions for the given target values $\widehat{\mathbf{t}}$ follow as

$$
\widehat{\mathbf{t}}=\mathbf{X} \widehat{\mathbf{w}}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}
$$

Prediction

- What will be the winning distance at the London 2012 Olympic Games?

Prediction

- What will be the winning distance at the London 2012 Olympic Games?

$$
\widehat{t}_{2012}=\mathbf{x}_{2012}^{\top} \widehat{\mathbf{w}}=\left[\begin{array}{ll}
1 & 112
\end{array}\right] \widehat{\mathbf{w}}=\left[\begin{array}{ll}
1 & 112
\end{array}\right]\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}
$$

Prediction

- What will be the winning distance at the London 2012 Olympic Games?

$$
\widehat{t}_{2012}=\mathbf{x}_{2012}^{\top} \widehat{\mathbf{w}}=\left[\begin{array}{ll}
1 & 112
\end{array}\right] \widehat{\mathbf{w}}=\left[\begin{array}{ll}
1 & 112
\end{array}\right]\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}
$$

- Linear regression model predicts a gold medal winning distance of $276.78+0.748 \times 112=360.5$ inches in London.

Prediction

- What will be the winning distance at the London 2012 Olympic Games?

$$
\widehat{t}_{2012}=\mathbf{x}_{2012}^{\top} \widehat{\mathbf{w}}=\left[\begin{array}{ll}
1 & 112
\end{array}\right] \widehat{\mathbf{w}}=\left[\begin{array}{ll}
1 & 112
\end{array}\right]\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}
$$

- Linear regression model predicts a gold medal winning distance of $276.78+0.748 \times 112=360.5$ inches in London.
- Current Olympic record stands at 350.39 inches and the current World Record was set in 1991 a distance of 352.36 inches.

Prediction

- What will be the winning distance at the London 2012 Olympic Games?

$$
\widehat{t}_{2012}=\mathbf{x}_{2012}^{\top} \widehat{\mathbf{w}}=\left[\begin{array}{ll}
1 & 112
\end{array}\right] \widehat{\mathbf{w}}=\left[\begin{array}{ll}
1 & 112
\end{array}\right]\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}
$$

- Linear regression model predicts a gold medal winning distance of $276.78+0.748 \times 112=360.5$ inches in London.
- Current Olympic record stands at 350.39 inches and the current World Record was set in 1991 a distance of 352.36 inches.
- Our prediction seems somewhat optimistic!!!!!

Nonlinear Model

- Model is linear in parameters

Nonlinear Model

- Model is linear in parameters
- Can apply nonlinear transformation to inputs providing more flexible model

Nonlinear Model

- Model is linear in parameters
- Can apply nonlinear transformation to inputs providing more flexible model
- But still linear in parameters - provided no additional parameters associated with transform

Nonlinear Model

- Model is linear in parameters
- Can apply nonlinear transformation to inputs providing more flexible model
- But still linear in parameters - provided no additional parameters associated with transform
- For example if a cubic polynomial assumed

$$
f(x ; \mathbf{w})=w_{3} x^{3}+w_{2} x^{2}+w_{1} x+w_{0}
$$

or more generally an arbitrary K^{\prime} th order polynomial holds

$$
f(x ; \mathbf{w})=\sum_{i=0}^{K} w_{i} x^{i}
$$

Nonlinear Model

- It should be straightforward to see that by now defining the $N \times(K+1)$ dimensional matrix \mathbf{X} such that

$$
\mathbf{X}=\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{K} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
1 & x_{N} & x_{N}^{2} & \cdots & x_{N}^{K}
\end{array}\right]
$$

Nonlinear Model

- It should be straightforward to see that by now defining the $N \times(K+1)$ dimensional matrix \mathbf{X} such that

$$
\mathbf{X}=\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{K} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
1 & x_{N} & x_{N}^{2} & \cdots & x_{N}^{K}
\end{array}\right]
$$

- Least Squares solution still holds where now $\widehat{\mathbf{w}}$ will be a $(K+1) \times 1$ column vector

Nonlinear Model

- Nonlinear Model (Linear regression model!!) of order $K=9$

Nonlinear Model

- Nonlinear Model (Linear regression model!!) of order $K=9$

Nonlinear Model

- Nonlinear Model (Linear regression model!!) of order $K=9$

- Is this a better model??... Stay tuned till next week

