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Probabilistic Regression

• Probabilistic view of Linear Regression
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Probabilistic Regression

• Probabilistic view of Linear Regression

• Likelihood Principle.

• Maximum Likelihood Parameter Estimation

• Uncertainty in Estimates & Prediction
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Probabilistic Regression

• The data model which we have explored so far is of the
form

t = f(x;w) + ε
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Probabilistic Regression

• The data model which we have explored so far is of the
form

t = f(x;w) + ε

• Model based on a deterministic function of inputs,
f(x;w)

• Contaminated by noise or some error defined by ε
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Noise Distribution

• Noise term can be assumed to be Normally distributed
with mean zero and some variance σ i.e. ε ∼ N (0, σ)
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Noise Distribution

• Noise term can be assumed to be Normally distributed
with mean zero and some variance σ i.e. ε ∼ N (0, σ)

• So noise sits on top of, and corrupts, model output
f(x;w) to give t

• This can be written as

t|x ∼ N (f(x;w), σ)

• Likewise we can write

p(t|x) = N (f(x;w), σ)

which reads as the conditional probability distribution of
t given x is Gaussian distribution with mean f(x;w) and
variance σ
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Probabilistic Regression

• The question that we ask is How likely is it that I would

have observed the outputs given the inputs and model

parameters
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Probabilistic Regression

• The question that we ask is How likely is it that I would

have observed the outputs given the inputs and model

parameters

• The likelihood of observing the data point, t, is the
conditional probability of making that observation i.e.
p(t|x,w)

• For N observations (x1, t1), · · · , (xN , tN ) = (x, t)

• Want the joint probability of all the outputs conditioned
on all the input values and model parameters i.e.
p(t1, t2, · · · , tN |x1, x2, · · · , xN ,w) = p(t|x,w)

• This joint probability is the data likelihood
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Probabilistic Regression

• Assume observations made independently of each other.
Measurement just made does not affect the following
measurement to be made. Essentially assuming
statistical independence between measurements.
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Probabilistic Regression

• Assume observations made independently of each other.
Measurement just made does not affect the following
measurement to be made. Essentially assuming
statistical independence between measurements.

• Assume noise corrupting measurements always comes
from the same distribution so outputs will be identically

distributed

• Assumptions can be stated as we assume that the data

is Independent and Identically Distributed often denoted
as IID
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Probabilistic Regression

• With IID assumption joint probability of measurements
takes factored form i.e.

p(t|x,w, σ) =
N∏

n=1

p(tn|xn,w, σ) =
N∏

n=1

N (f(xn;w), σ)
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Probabilistic Regression

• With IID assumption joint probability of measurements
takes factored form i.e.

p(t|x,w, σ) =
N∏

n=1

p(tn|xn,w, σ) =
N∏

n=1

N (f(xn;w), σ)

• This is our likelihood function

• We see that the likelihood function depends on the
parameters of our model

• The parameters can then be tuned to make the data
more likely under the model
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Maximum Likelihood

• Select model parameters w & σ which will make our
observations most likely
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Maximum Likelihood

• Select model parameters w & σ which will make our
observations most likely

• Need to find maximum of likelihood function with
respect to model parameters

• Maximise the logarithm of the likelihood function as the
log-likelihood is often more convenient to work with
analytically

• Need to take derivatives of the log-likelihood function
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Maximum Likelihood

Log Likelihood L = log p(t|x,w, σ) can be written as

=
N∑

n=1

log p(tn|xn,w, σ)

=
N∑

n=1

logN (f(xn;w), σ)

=
N∑

n=1

log
1√
2πσ

exp

(
− 1

2σ2
|tn − f(xn;w)|2

)

= −N

2
log 2π − N log σ − 1

2σ2

N∑

n=1

|tn − f(xn;w)|2
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Maximum Likelihood

• Stationary points with respect to w follows as

∂L
∂w

=
1

σ2
(XT

t − X
T
Xw) = 0
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Maximum Likelihood

• Stationary points with respect to w follows as

∂L
∂w

=
1

σ2
(XT

t − X
T
Xw) = 0

• Matrix of second-order partial derivatives

∂2L
∂w∂wT

= − 1

σ2
X

T
X

which is strictly negative and so we have indeed obtained
the maximum of the likelihood.
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Maximum Likelihood

• Stationary points with respect to w follows as

∂L
∂w

=
1

σ2
(XT

t − X
T
Xw) = 0

• Matrix of second-order partial derivatives

∂2L
∂w∂wT

= − 1

σ2
X

T
X

which is strictly negative and so we have indeed obtained
the maximum of the likelihood.

• Maximum-likelihood solution is ŵ =
(
X

T
X

)
−1

X
T
t.

• Look familiar?
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Estimate Uncertainty

• Stationary points with respect to σ left as tutorial
exercise.
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• What can we say about how certain we are in our ML
estimates?.

• If ŵ is our estimate then what variance is there around
this estimate?.
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Estimate Uncertainty

• Stationary points with respect to σ left as tutorial
exercise.

• What can we say about how certain we are in our ML
estimates?.

• If ŵ is our estimate then what variance is there around
this estimate?.

• The smaller the variance the more certain we are of our
estimate - need expression for estimate variance.
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Estimate Uncertainty

• ML estimate ŵ is a vector so can we obtain covariance?
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Estimate Uncertainty

• ML estimate ŵ is a vector so can we obtain covariance?

• Remember that covariance of vector defined as

E{(ŵ−E{ŵ})(ŵ−E{ŵ})T} = E{ŵŵ
T}−E{ŵ}E{ŵT}

Lecture Five January 18, 2006 – p. 12/18



Estimate Uncertainty
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Estimate Uncertainty

• ML estimate ŵ is a vector so can we obtain covariance?

• Remember that covariance of vector defined as

E{(ŵ−E{ŵ})(ŵ−E{ŵ})T} = E{ŵŵ
T}−E{ŵ}E{ŵT}

• Now ML and LS estimators unbiased so E{ŵ} = w true
model parameters

• So require expression for E{ŵŵ
T}
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Estimate Uncertainty

• As ŵ =
(
X

T
X

)
−1

X
T
t then the outer product of the

two vectors is ŵŵ
T =

(
X

T
X

)
−1

X
T
tt

T
X

(
X

T
X

)
−1
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T} =

(
X

T
X

)
−1

X
TE{ttT}X

(
X

T
X

)
−1

Lecture Five January 18, 2006 – p. 13/18



Estimate Uncertainty

• As ŵ =
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two vectors is ŵŵ
T =
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X
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X
T
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• Take the required expectation and

E{ŵŵ
T} =

(
X

T
X

)
−1

X
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(
X

T
X

)
−1

• Now require expression for E{ttT}.
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Estimate Uncertainty

• As t = Xw + ε then

E{ttT} = E{(Xw + ε)(Xw + ε)T}
= E{Xww

T
X

T + 2εwT
X + εε

T}
= Xww

T
X

T + 2E{ε}wT
X + E{εεT}

= Xww
T
X

T + σ2
I
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Estimate Uncertainty

• As t = Xw + ε then

E{ttT} = E{(Xw + ε)(Xw + ε)T}
= E{Xww

T
X

T + 2εwT
X + εε

T}
= Xww

T
X

T + 2E{ε}wT
X + E{εεT}

= Xww
T
X

T + σ2
I

• So

E{ŵŵ
T} =

(
X

T
X

)
−1

X
TE{ttT}X

(
X

T
X

)
−1

=
(
X

T
X

)
−1

X
T(Xww

T
X

T + σ2
I)X

(
X

T
X

)
−1

= ww
T + σ2

(
X

T
X

)
−1

Lecture Five January 18, 2006 – p. 14/18



Estimate Uncertainty

• Finally the covariance matrix for our estimates is given as

E{ŵŵ
T} − E{ŵ}E{ŵT} = ww

T + σ2
(
X

T
X

)
−1 − ww

T

= σ2
(
X

T
X

)
−1
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Estimate Uncertainty

• Finally the covariance matrix for our estimates is given as

E{ŵŵ
T} − E{ŵ}E{ŵT} = ww

T + σ2
(
X

T
X

)
−1 − ww

T

= σ2
(
X

T
X

)
−1

• Very important result as now we can assess the variance
associated with our ML estimates
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Estimate Uncertainty

• Finally the covariance matrix for our estimates is given as

E{ŵŵ
T} − E{ŵ}E{ŵT} = ww

T + σ2
(
X

T
X

)
−1 − ww

T

= σ2
(
X

T
X

)
−1

• Very important result as now we can assess the variance
associated with our ML estimates

• Expression for matrix of partial derivatives gives

E{ŵŵ
T} − E{ŵ}E{ŵT} = −

(
∂2L

∂w∂wT

)
−1

Small curvature of likelihood ⇒ high variance in
estimate ⇒ parameter possibly irrelevant
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Estimate Uncertainty

• To make a new prediction then our maximum-likelihood
estimate and the associated variance around this
estimate gives t̂new ± σ2

new
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Estimate Uncertainty

• To make a new prediction then our maximum-likelihood
estimate and the associated variance around this
estimate gives t̂new ± σ2

new

• Where

t̂new = x
T
new

(
X

T
X

)
−1

X
T
t

σ2

new = σ̂2
x

T
new

(
X

T
X

)
−1

xnew

with σ̂2 = 1

N

(
t
T
t − t

T
t̂
)
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Estimate Uncertainty
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Figure 1: The blue solid line indicates the true noise free functions and the black

dots are the actual observed noisy realisations of the data. The solid red line indicates

the estimated function with the error-bars indicating the variance (uncertainty) in the

estimated functional response at each of the data points ie

�

tn ± σ
2
n

.
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Likelihood
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Figure 2: The Maximum Likelihood score for polynomial models from K = 1 to

K = 10. Perhaps unsurprisingly the likelihood score monotonically increases with K.
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