Machine Learning

Lecture. 5.

Mark Girolami
girolami@dcs.gla.ac.uk

Department of Computing Science
University of Glasgow

Probabilistic Regression

- Probabilistic view of Linear Regression

Probabilistic Regression

- Probabilistic view of Linear Regression
- Likelihood Principle.

Probabilistic Regression

- Probabilistic view of Linear Regression
- Likelihood Principle.
- Maximum Likelihood Parameter Estimation

Probabilistic Regression

- Probabilistic view of Linear Regression
- Likelihood Principle.
- Maximum Likelihood Parameter Estimation
- Uncertainty in Estimates \& Prediction

Probabilistic Regression

- The data model which we have explored so far is of the form

$$
t=f(x ; \mathbf{w})+\epsilon
$$

Probabilistic Regression

- The data model which we have explored so far is of the form

$$
t=f(x ; \mathbf{w})+\epsilon
$$

- Model based on a deterministic function of inputs, $f(x ; \mathbf{w})$

Probabilistic Regression

- The data model which we have explored so far is of the form

$$
t=f(x ; \mathbf{w})+\epsilon
$$

- Model based on a deterministic function of inputs, $f(x ; \mathbf{w})$
- Contaminated by noise or some error defined by ϵ

Noise Distribution

- Noise term can be assumed to be Normally distributed with mean zero and some variance σ i.e. $\epsilon \sim \mathcal{N}(0, \sigma)$

Noise Distribution

- Noise term can be assumed to be Normally distributed with mean zero and some variance σ i.e. $\epsilon \sim \mathcal{N}(0, \sigma)$
- So noise sits on top of, and corrupts, model output $f(x ; \mathbf{w})$ to give t

Noise Distribution

- Noise term can be assumed to be Normally distributed with mean zero and some variance σ i.e. $\epsilon \sim \mathcal{N}(0, \sigma)$
- So noise sits on top of, and corrupts, model output $f(x ; \mathbf{w})$ to give t
- This can be written as

$$
t \mid x \sim \mathcal{N}(f(x ; \mathbf{w}), \sigma)
$$

Noise Distribution

- Noise term can be assumed to be Normally distributed with mean zero and some variance σ i.e. $\epsilon \sim \mathcal{N}(0, \sigma)$
- So noise sits on top of, and corrupts, model output $f(x ; \mathbf{w})$ to give t
- This can be written as

$$
t \mid x \sim \mathcal{N}(f(x ; \mathbf{w}), \sigma)
$$

- Likewise we can write

$$
p(t \mid x)=\mathcal{N}(f(x ; \mathbf{w}), \sigma)
$$

which reads as the conditional probability distribution of t given x is Gaussian distribution with mean $f(x ; \mathbf{w})$ and variance σ

Probabilistic Regression

- The question that we ask is How likely is it that I would have observed the outputs given the inputs and model parameters

Probabilistic Regression

- The question that we ask is How likely is it that I would have observed the outputs given the inputs and model parameters
- The likelihood of observing the data point, t, is the conditional probability of making that observation i.e. $p(t \mid x, \mathbf{w})$

Probabilistic Regression

- The question that we ask is How likely is it that I would have observed the outputs given the inputs and model parameters
- The likelihood of observing the data point, t, is the conditional probability of making that observation i.e. $p(t \mid x, \mathbf{w})$
- For N observations $\left(x_{1}, t_{1}\right), \cdots,\left(x_{N}, t_{N}\right)=(\mathbf{x}, \mathbf{t})$

Probabilistic Regression

- The question that we ask is How likely is it that I would have observed the outputs given the inputs and model parameters
- The likelihood of observing the data point, t, is the conditional probability of making that observation i.e. $p(t \mid x, \mathbf{w})$
- For N observations $\left(x_{1}, t_{1}\right), \cdots,\left(x_{N}, t_{N}\right)=(\mathbf{x}, \mathbf{t})$
- Want the joint probability of all the outputs conditioned on all the input values and model parameters i.e. $p\left(t_{1}, t_{2}, \cdots, t_{N} \mid x_{1}, x_{2}, \cdots, x_{N}, \mathbf{w}\right)=p(\mathbf{t} \mid \mathbf{x}, \mathbf{w})$

Probabilistic Regression

- The question that we ask is How likely is it that I would have observed the outputs given the inputs and model parameters
- The likelihood of observing the data point, t, is the conditional probability of making that observation i.e. $p(t \mid x, \mathbf{w})$
- For N observations $\left(x_{1}, t_{1}\right), \cdots,\left(x_{N}, t_{N}\right)=(\mathbf{x}, \mathbf{t})$
- Want the joint probability of all the outputs conditioned on all the input values and model parameters i.e. $p\left(t_{1}, t_{2}, \cdots, t_{N} \mid x_{1}, x_{2}, \cdots, x_{N}, \mathbf{w}\right)=p(\mathbf{t} \mid \mathbf{x}, \mathbf{w})$
- This joint probability is the data likelihood

Probabilistic Regression

- Assume observations made independently of each other. Measurement just made does not affect the following measurement to be made. Essentially assuming statistical independence between measurements.

Probabilistic Regression

- Assume observations made independently of each other. Measurement just made does not affect the following measurement to be made. Essentially assuming statistical independence between measurements.
- Assume noise corrupting measurements always comes from the same distribution so outputs will be identically distributed

Probabilistic Regression

- Assume observations made independently of each other. Measurement just made does not affect the following measurement to be made. Essentially assuming statistical independence between measurements.
- Assume noise corrupting measurements always comes from the same distribution so outputs will be identically distributed
- Assumptions can be stated as we assume that the data is Independent and Identically Distributed often denoted as IID

Probabilistic Regression

- With IID assumption joint probability of measurements takes factored form i.e.

$$
p(\mathbf{t} \mid \mathbf{x}, \mathbf{w}, \sigma)=\prod_{n=1}^{N} p\left(t_{n} \mid x_{n}, \mathbf{w}, \sigma\right)=\prod_{n=1}^{N} \mathcal{N}\left(f\left(x_{n} ; \mathbf{w}\right), \sigma\right)
$$

Probabilistic Regression

- With IID assumption joint probability of measurements takes factored form i.e.

$$
p(\mathbf{t} \mid \mathbf{x}, \mathbf{w}, \sigma)=\prod_{n=1}^{N} p\left(t_{n} \mid x_{n}, \mathbf{w}, \sigma\right)=\prod_{n=1}^{N} \mathcal{N}\left(f\left(x_{n} ; \mathbf{w}\right), \sigma\right)
$$

- This is our likelihood function

Probabilistic Regression

- With IID assumption joint probability of measurements takes factored form i.e.

$$
p(\mathbf{t} \mid \mathbf{x}, \mathbf{w}, \sigma)=\prod_{n=1}^{N} p\left(t_{n} \mid x_{n}, \mathbf{w}, \sigma\right)=\prod_{n=1}^{N} \mathcal{N}\left(f\left(x_{n} ; \mathbf{w}\right), \sigma\right)
$$

- This is our likelihood function
- We see that the likelihood function depends on the parameters of our model

Probabilistic Regression

- With IID assumption joint probability of measurements takes factored form i.e.

$$
p(\mathbf{t} \mid \mathbf{x}, \mathbf{w}, \sigma)=\prod_{n=1}^{N} p\left(t_{n} \mid x_{n}, \mathbf{w}, \sigma\right)=\prod_{n=1}^{N} \mathcal{N}\left(f\left(x_{n} ; \mathbf{w}\right), \sigma\right)
$$

- This is our likelihood function
- We see that the likelihood function depends on the parameters of our model
- The parameters can then be tuned to make the data more likely under the model

Maximum Likelihood

- Select model parameters \mathbf{w} \& σ which will make our observations most likely

Maximum Likelihood

- Select model parameters $\mathbf{w} \& \sigma$ which will make our observations most likely
- Need to find maximum of likelihood function with respect to model parameters

Maximum Likelihood

- Select model parameters $\mathbf{w} \& \sigma$ which will make our observations most likely
- Need to find maximum of likelihood function with respect to model parameters
- Maximise the logarithm of the likelihood function as the log-likelihood is often more convenient to work with analytically

Maximum Likelihood

- Select model parameters $\mathbf{w} \& \sigma$ which will make our observations most likely
- Need to find maximum of likelihood function with respect to model parameters
- Maximise the logarithm of the likelihood function as the log-likelihood is often more convenient to work with analytically
- Need to take derivatives of the log-likelihood function

Maximum Likelihood

Log Likelihood $\mathcal{L}=\log p(\mathbf{t} \mid \mathbf{x}, \mathbf{w}, \sigma)$ can be written as

$$
\begin{aligned}
& =\sum_{n=1}^{N} \log p\left(t_{n} \mid x_{n}, \mathbf{w}, \sigma\right) \\
& =\sum_{n=1}^{N} \log \mathcal{N}\left(f\left(x_{n} ; \mathbf{w}\right), \sigma\right) \\
& =\sum_{n=1}^{N} \log \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}\left|t_{n}-f\left(x_{n} ; \mathbf{w}\right)\right|^{2}\right) \\
& =-\frac{N}{2} \log 2 \pi-N \log \sigma-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left|t_{n}-f\left(x_{n} ; \mathbf{w}\right)\right|^{2}
\end{aligned}
$$

Maximum Likelihood

UNIVERSITY

- Stationary points with respect to \mathbf{w} follows as

$$
\frac{\partial \mathcal{L}}{\partial \mathbf{w}}=\frac{1}{\sigma^{2}}\left(\mathbf{X}^{\top} \mathbf{t}-\mathbf{X}^{\top} \mathbf{X} \mathbf{w}\right)=0
$$

Maximum Likelihood

- Stationary points with respect to w follows as

$$
\frac{\partial \mathcal{L}}{\partial \mathbf{w}}=\frac{1}{\sigma^{2}}\left(\mathbf{X}^{\top} \mathbf{t}-\mathbf{X}^{\boldsymbol{\top}} \mathbf{X} \mathbf{w}\right)=0
$$

- Matrix of second-order partial derivatives

$$
\frac{\partial^{2} \mathcal{L}}{\partial \mathbf{w} \partial \mathbf{w}^{\top}}=-\frac{1}{\sigma^{2}} \mathbf{X}^{\top} \mathbf{X}
$$

which is strictly negative and so we have indeed obtained the maximum of the likelihood.

Maximum Likelihood

- Stationary points with respect to w follows as

$$
\frac{\partial \mathcal{L}}{\partial \mathbf{w}}=\frac{1}{\sigma^{2}}\left(\mathbf{X}^{\top} \mathbf{t}-\mathbf{X}^{\boldsymbol{\top}} \mathbf{X} \mathbf{w}\right)=0
$$

- Matrix of second-order partial derivatives

$$
\frac{\partial^{2} \mathcal{L}}{\partial \mathbf{w} \partial \mathbf{w}^{\top}}=-\frac{1}{\sigma^{2}} \mathbf{X}^{\top} \mathbf{X}
$$

which is strictly negative and so we have indeed obtained the maximum of the likelihood.

- Maximum-likelihood solution is $\widehat{\mathrm{w}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}$.

Maximum Likelihood

- Stationary points with respect to w follows as

$$
\frac{\partial \mathcal{L}}{\partial \mathbf{w}}=\frac{1}{\sigma^{2}}\left(\mathbf{X}^{\top} \mathbf{t}-\mathbf{X}^{\top} \mathbf{X} \mathbf{w}\right)=0
$$

- Matrix of second-order partial derivatives

$$
\frac{\partial^{2} \mathcal{L}}{\partial \mathbf{w} \partial \mathbf{w}^{\top}}=-\frac{1}{\sigma^{2}} \mathbf{X}^{\top} \mathbf{X}
$$

which is strictly negative and so we have indeed obtained the maximum of the likelihood.

- Maximum-likelihood solution is $\widehat{\mathbf{w}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}$.
- Look familiar?

Estimate Uncertainty

UNIVERSITY

- Stationary points with respect to σ left as tutorial exercise.

Estimate Uncertainty

- Stationary points with respect to σ left as tutorial exercise.
- What can we say about how certain we are in our ML estimates?.

Estimate Uncertainty

- Stationary points with respect to σ left as tutorial exercise.
- What can we say about how certain we are in our ML estimates?.
- If $\widehat{\mathbf{w}}$ is our estimate then what variance is there around this estimate?.

Estimate Uncertainty

- Stationary points with respect to σ left as tutorial exercise.
- What can we say about how certain we are in our ML estimates?.
- If $\widehat{\mathbf{w}}$ is our estimate then what variance is there around this estimate?.
- The smaller the variance the more certain we are of our estimate - need expression for estimate variance.

Estimate Uncertainty

- ML estimate $\widehat{\mathbf{w}}$ is a vector so can we obtain covariance?

Estimate Uncertainty

- ML estimate $\widehat{\mathbf{w}}$ is a vector so can we obtain covariance?
- Remember that covariance of vector defined as

$$
E\left\{(\widehat{\mathbf{w}}-E\{\widehat{\mathbf{w}}\})(\widehat{\mathbf{w}}-E\{\widehat{\mathbf{w}}\})^{\top}\right\}=E\left\{\widehat{\mathbf{w}} \widehat{\mathbf{w}}^{\top}\right\}-E\{\widehat{\mathbf{w}}\} E\left\{\widehat{\mathbf{w}}^{\top}\right\}
$$

Estimate Uncertainty

- ML estimate $\widehat{\mathbf{w}}$ is a vector so can we obtain covariance?
- Remember that covariance of vector defined as

$$
E\left\{(\widehat{\mathbf{w}}-E\{\widehat{\mathbf{w}}\})(\widehat{\mathbf{w}}-E\{\widehat{\mathbf{w}}\})^{\top}\right\}=E\left\{\widehat{\mathbf{w}} \widehat{\mathbf{w}}^{\top}\right\}-E\{\widehat{\mathbf{w}}\} E\left\{\widehat{\mathbf{w}}^{\top}\right\}
$$

- Now ML and LS estimators unbiased so $E\{\widehat{\mathbf{w}}\}=\mathbf{w}$ true model parameters

Estimate Uncertainty

- ML estimate $\widehat{\mathbf{w}}$ is a vector so can we obtain covariance?
- Remember that covariance of vector defined as

$$
E\left\{(\widehat{\mathbf{w}}-E\{\widehat{\mathbf{w}}\})(\widehat{\mathbf{w}}-E\{\widehat{\mathbf{w}}\})^{\top}\right\}=E\left\{\widehat{\mathbf{w}} \widehat{\mathbf{w}}^{\top}\right\}-E\{\widehat{\mathbf{w}}\} E\left\{\widehat{\mathbf{w}}^{\top}\right\}
$$

- Now ML and LS estimators unbiased so $E\{\widehat{\mathbf{w}}\}=\mathbf{w}$ true model parameters
- So require expression for $E\left\{\widehat{\mathbf{w}} \widehat{\mathbf{w}}^{\top}\right\}$

Estimate Uncertainty

- As $\widehat{\mathbf{w}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}$ then the outer product of the two vectors is $\widehat{\mathbf{w}} \widehat{\mathbf{w}}^{\top}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t t}^{\top} \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}$

Estimate Uncertainty

- As $\widehat{\mathbf{w}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}$ then the outer product of the two vectors is $\widehat{\mathbf{w}} \widehat{\mathbf{w}}^{\top}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t t}^{\top} \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}$
- Take the required expectation and $E\left\{\widehat{\mathbf{w}} \widehat{\mathbf{w}}^{\top}\right\}=\left(\mathbf{X}^{\boldsymbol{\top}} \mathbf{X}\right)^{-1} \mathbf{X}^{\boldsymbol{\top}} E\left\{\mathbf{t t}^{\top}\right\} \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}$

Estimate Uncertainty

- As $\widehat{\mathbf{w}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}$ then the outer product of the two vectors is $\widehat{\mathbf{w}} \widehat{\mathbf{w}}^{\top}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t t}^{\top} \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}$
- Take the required expectation and $E\left\{\widehat{\mathbf{w}} \widehat{\mathbf{w}}^{\top}\right\}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} E\left\{\mathbf{t t}^{\top}\right\} \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}$
- Now require expression for $E\left\{\mathbf{t t}^{\top}\right\}$.

Estimate Uncertainty

- As $\mathbf{t}=\mathbf{X w}+\boldsymbol{\epsilon}$ then

$$
\begin{aligned}
E\left\{\mathbf{t t}^{\top}\right\} & =E\left\{(\mathbf{X} \mathbf{w}+\boldsymbol{\epsilon})(\mathbf{X} \mathbf{w}+\boldsymbol{\epsilon})^{\top}\right\} \\
& =E\left\{\mathbf{X} \mathbf{w}^{\top} \mathbf{X}^{\top}+2 \boldsymbol{\epsilon} \mathbf{w}^{\top} \mathbf{X}+\boldsymbol{\epsilon} \boldsymbol{\epsilon}^{\top}\right\} \\
& =\mathbf{X} \mathbf{w} \mathbf{w}^{\top} \mathbf{X}^{\top}+2 E\{\boldsymbol{\epsilon}\} \mathbf{w}^{\top} \mathbf{X}+E\left\{\boldsymbol{\epsilon} \boldsymbol{\epsilon}^{\top}\right\} \\
& =\mathbf{X} \mathbf{w} \mathbf{w}^{\top} \mathbf{X}^{\top}+\sigma^{2} \mathbf{I}
\end{aligned}
$$

Estimate Uncertainty

UNIVERSITY
GLASGOW

- As $\mathbf{t}=\mathbf{X w}+\boldsymbol{\epsilon}$ then

$$
\begin{aligned}
E\left\{\mathbf{t t}^{\top}\right\} & =E\left\{(\mathbf{X} \mathbf{w}+\boldsymbol{\epsilon})(\mathbf{X} \mathbf{w}+\boldsymbol{\epsilon})^{\top}\right\} \\
& =E\left\{\mathbf{X} \mathbf{w} \mathbf{w}^{\top} \mathbf{X}^{\top}+2 \boldsymbol{\epsilon} \mathbf{w}^{\top} \mathbf{X}+\boldsymbol{\epsilon} \boldsymbol{\epsilon}^{\top}\right\} \\
& =\mathbf{X} \mathbf{w} \mathbf{w}^{\top} \mathbf{X}^{\top}+2 E\{\boldsymbol{\epsilon}\} \mathbf{w}^{\top} \mathbf{X}+E\left\{\boldsymbol{\epsilon} \boldsymbol{\epsilon}^{\top}\right\} \\
& =\mathbf{X} \mathbf{w} \mathbf{w}^{\top} \mathbf{X}^{\top}+\sigma^{2} \mathbf{I}
\end{aligned}
$$

- So

$$
\begin{aligned}
E\left\{\widehat{\mathbf{w}} \widehat{\mathbf{w}}^{\top}\right\} & =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} E\left\{\mathbf{t} \mathbf{t}^{\top}\right\} \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \\
& =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{w} \mathbf{w}^{\top} \mathbf{X}^{\top}+\sigma^{2} \mathbf{I}\right) \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \\
& =\mathbf{w} \mathbf{w}^{\top}+\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}
\end{aligned}
$$

Estimate Uncertainty

Finlly

- Finally the covariance matrix for our estimates is given as

$$
\begin{aligned}
E\left\{\widehat{\mathbf{w}} \widehat{\mathbf{w}}^{\top}\right\}-E\{\widehat{\mathbf{w}}\} E\left\{\widehat{\mathbf{w}}^{\top}\right\} & =\mathbf{w} \mathbf{w}^{\top}+\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}-\mathbf{w} \mathbf{w}^{\top} \\
& =\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}
\end{aligned}
$$

Estimate Uncertainty

- Fi
- Finally the covariance matrix for our estimates is given as

$$
\begin{aligned}
E\left\{\widehat{\mathbf{w}} \widehat{\mathbf{w}}^{\top}\right\}-E\{\widehat{\mathbf{w}}\} E\left\{\widehat{\mathbf{w}}^{\top}\right\} & =\mathbf{w w}^{\top}+\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}-\mathbf{w}^{\top} \\
& =\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}
\end{aligned}
$$

- Very important result as now we can assess the variance associated with our ML estimates

Estimate Uncertainty

- Finally the covariance matrix for our estimates is gisiascow
- Finally the covariance matrix for our estimates is given as

$$
\begin{aligned}
E\left\{\widehat{\mathbf{w}} \widehat{\mathbf{w}}^{\top}\right\}-E\{\widehat{\mathbf{w}}\} E\left\{\widehat{\mathbf{w}}^{\top}\right\} & =\mathbf{w w}^{\top}+\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}-\mathbf{w}^{\top} \\
& =\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}
\end{aligned}
$$

- Very important result as now we can assess the variance associated with our ML estimates
- Expression for matrix of partial derivatives gives

$$
E\left\{\widehat{\mathbf{w}} \widehat{\mathbf{w}}^{\top}\right\}-E\{\widehat{\mathbf{w}}\} E\left\{\widehat{\mathbf{w}}^{\top}\right\}=-\left(\frac{\partial^{2} \mathcal{L}}{\partial \mathbf{w} \partial \mathbf{w}^{\top}}\right)^{-1}
$$

Small curvature of likelihood \Rightarrow high variance in estimate \Rightarrow parameter possibly irrelevant

Estimate Uncertainty

- To make a new prediction then our maximum-likelihood estimate and the associated variance around this estimate gives $\widehat{t}_{\text {new }} \pm \sigma_{\text {new }}^{2}$

Estimate Uncertainty

- To make a new prediction then our maximum-likelihood estimate and the associated variance around this estimate gives $\widehat{t}_{\text {new }} \pm \sigma_{\text {new }}^{2}$
- Where

$$
\begin{aligned}
\widehat{t}_{n e w} & =\mathbf{x}_{\text {new }}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t} \\
\sigma_{n e w}^{2} & =\widehat{\sigma}^{2} \mathbf{x}_{n e w}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{x}_{n e w}
\end{aligned}
$$

with $\widehat{\sigma}^{2}=\frac{1}{N}\left(\mathbf{t}^{\top} \mathbf{t}-\mathbf{t}^{\top} \hat{\mathbf{t}}\right)$

Estimate Uncertainty

(a)

(b)

Figure 1: The blue solid line indicates the true noise free functions and the black dots are the actual observed noisy realisations of the data. The solid red line indicates the estimated function with the error-bars indicating the variance (uncertainty) in the estimated functional response at each of the data points ie $\widehat{t}_{n} \pm \sigma_{n}^{2}$.

Likelihood

UNIVERSITY of GLASGOW

Figure 2: The Maximum Likelihood score for polynomial models from $K=1$ to $K=10$. Perhaps unsurprisingly the likelihood score monotonically increases with K.

