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Bayesian Regression

• Likelihood methods interested in how likely the data is
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Bayesian Regression

• Likelihood methods interested in how likely the data is
given our model and associated parameters p(t|X,w, σ)

• But we really want to know about the model parameters
given the data then the quantity we should concerned
with is p(w, σ|X, t).

• From our likelihood p(t|X,w, σ) we can obtain
p(w, σ|X, t) via Bayes rule

• Let’s then look at our linear regression model within the
Bayesian formalism
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• We know the value of σ and the input data X is given,
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target values t and the parameters w so the joint
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Bayesian Regression

• For simplicity assume that we know the noise level σ

• We know the value of σ and the input data X is given,
so no uncertainty in these, we only reason about the
target values t and the parameters w so the joint
probability of everything associated with our model can
be written as...

p(t,w|X, σ) = p(t|X,w, σ)p(w) = p(w|t,X, σ)p(t|X, σ)

• Using the expressions above using Bayes theorem we can
invert our probabilities to obtain

p(w|t,X, σ) = p(t|X,w, σ)
p(w)

p(t|X, σ)
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Bayesian Regression

• The probability p(w) is the probability distribution of the
parameters prior to observing any data - refered to as
the prior

• The conditional probability p(t|X,w, σ) we have met
previously and is the data likelihood

• The distribution p(w|t,X, σ) is obtained after observing
data (post observation) and is called the posterior
distribution

• Note for p(w) there is no conditioning on X or σ as we
set the prior before seeing any data

• The term p(t|X, σ) which is called the marginal
likelihood as p(t|X, σ) =

∫

p(t|w,X, σ)p(w)dw where
we integrate out or marginalise the model parameters
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Bayesian Regression

• So our posterior distribution for the parameters can be
seen as the prior belief being updated after we observe
our data so in other words.

posterior =
likelihood × prior

marginal likelihood
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Bayesian Regression

• So our posterior distribution for the parameters can be
seen as the prior belief being updated after we observe
our data so in other words.

posterior =
likelihood × prior

marginal likelihood

• The form of the likelihood has been previously defined
now we have to consider the form of the prior
distribution over the parameter values
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Setting the Prior

• We are perfectly free to make whatever assumptions are
most appropriate at this point
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• We are perfectly free to make whatever assumptions are
most appropriate at this point

• These assumptions can be encoded in a prior distribution

• Let’s say that before seeing any data we would prefer
some parameter values to be small, this is a sensible
strategy especially when there are many possibly
redundant parameter values.
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Setting the Prior

• We are perfectly free to make whatever assumptions are
most appropriate at this point

• These assumptions can be encoded in a prior distribution

• Let’s say that before seeing any data we would prefer
some parameter values to be small, this is a sensible
strategy especially when there are many possibly
redundant parameter values.

• So assume that all our parameter values will follow a
Gaussian distribution with a mean of zero and a
standard deviation of α.
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Setting the Prior

• We also assume that the parameters are a priori

independent of each other so w0 ∼ N (0, α) and likewise
w1 ∼ N (0, α).
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To the Posterior

• The likelihood is an N -dimensional multivariate Gaussian
∏N

n=1 Ntn
(wT

xn, σ) = Nt(Xw, σI) and so we can write
the posterior as

p(w|t,X, σ, α) =
Nt(Xw, σI)Nw(0,Λ)

∫

Nt(Xw, σI)Nw(0,Λ)dw
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To the Posterior

• The likelihood is an N -dimensional multivariate Gaussian
∏N

n=1 Ntn
(wT

xn, σ) = Nt(Xw, σI) and so we can write
the posterior as

p(w|t,X, σ, α) =
Nt(Xw, σI)Nw(0,Λ)

∫

Nt(Xw, σI)Nw(0,Λ)dw

• Miraculously the posterior is also a Normal distribution

p(w|t,X, σ, α) = N (µ,Σ)

where

µ =

(

X
T
X +

σ2

α
I

)−1

X
T
t and Σ = σ2

(

X
T
X +

σ2

α
I

)−1
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To the Posterior
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Figure 1: Top Left shows the prior distribution with the black-spot highlighting the

true parameter values. The top right plot shows the likelihood and we can see that it is

concentrated around the true values. The bottom left shows the corresponding posterior

and finally the bottom right shows the data the true function and the estimated one when

σ is known and α, the prior variance, is set to unity.
Lecture Six January 18, 2006 – p. 9/13



To the Posterior

w
1

w
0

Prior 

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

w
1

w
0

Likelihood

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

w
1

w
0

Posterior

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−0.5 0 0.5
−0.2

0

0.2

0.4

0.6
Data and Linear Functions

Figure 2: Top Left shows the prior distribution with the black-spot highlighting the

true parameter values. The top right plot shows the likelihood and we can see that it is

concentrated around the true values. The bottom left shows the corresponding posterior

and finally the bottom right shows the data the true function and the estimated one when

σ is known and α, the prior variance, is set to unity.
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Figure 3: Top Left shows the prior distribution with the black-spot highlighting the

true parameter values. The top right plot shows the likelihood and we can see that it is

concentrated around the true values. The bottom left shows the corresponding posterior

and finally the bottom right shows the data the true function and the estimated one when

σ is known and α, the prior variance, is set to unity.
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To the Posterior
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Figure 4: Top Left shows the prior distribution with the black-spot highlighting the

true parameter values. The top right plot shows the likelihood and we can see that it is

concentrated around the true values. The bottom left shows the corresponding posterior

and finally the bottom right shows the data the true function and the estimated one when

σ is known and α, the prior variance, is set to unity.
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Posterior Inference

• Maximum Likelihood framework the MLE is plugged in
to obtain predicted target values for a new data point
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Posterior Inference

• Maximum Likelihood framework the MLE is plugged in
to obtain predicted target values for a new data point

• Bayesian framework we can use our posterior distribution
to average (or integrate) over our uncertainty in the
possible parameter values
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Posterior Inference

Ep(w|t,X,σ,α) {tnew|xnew} = Ep(w|t,X,σ,α)

{

x
T
neww

}

= x
T
new

∫

wp(w|t,X, σ, α)dw

= x
T
newµ = x

T
new

(

X
T
X +

σ2

α
I

)−1

X
T
t
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Posterior Inference

Ep(w|t,X,σ,α) {tnew|xnew} = Ep(w|t,X,σ,α)

{

x
T
neww

}

= x
T
new

∫

wp(w|t,X, σ, α)dw

= x
T
newµ = x

T
new

(

X
T
X +

σ2

α
I

)−1

X
T
t

and var(tnew|xnew)

= Ep(w|t,X,σ,α)

{

t2new|xnew

}

− E2
p(w|t,X,σ,α) {tnew|xnew}

= x
T
newEp(w|t,X,σ)

{

ww
T
}

xnew −
(

x
T
newEp(w|t,X,σ) {w}

)2

= x
T
newΣxnew = σ2
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T
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(
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T
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Effect of Prior

• Now as α → ∞ then we will recover the MLE prediction
and this makes sense because the width of our Gaussian
prior p(w|α) will increase as α increases which means
that we will become less precise about the prior values
which the parameters should take and in the limit they
will all become equally likely a priori.
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Effect of Prior

• Now as α → ∞ then we will recover the MLE prediction
and this makes sense because the width of our Gaussian
prior p(w|α) will increase as α increases which means
that we will become less precise about the prior values
which the parameters should take and in the limit they
will all become equally likely a priori.

• Effect of prior on solution introduces bias what effect
does this have on predictive power?
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Effect of Prior
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Figure 5: The top chart shows the in-sample likelihood as a function of the prior

variance and we can see a drop in likelihood as the regularising effect of the prior becomes

significant. The bottom chart shows how the out-of-sample predictive likelihood varies

with α with a significant increase in performance at a specific α value. This is a nice

example of the effect that bias & variance has on a predictive model.
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