

Machine Learning

Lecture. 7.

Mark Girolami

girolami@dcs.gla.ac.uk

Department of Computing Science University of Glasgow

Lecture Seven January 19, 2006 - p. 1/3

• A large class of problems which Machine Learning techniques are applied to are classification problems

- A large class of problems which Machine Learning techniques are applied to are classification problems
- Object Location Image Processing

- A large class of problems which Machine Learning techniques are applied to are classification problems
- Object Location Image Processing
- Protein Fold Prediction Bioinformatics

- A large class of problems which Machine Learning techniques are applied to are classification problems
- Object Location Image Processing
- Protein Fold Prediction Bioinformatics
- Gesture Recognition HCI

- A large class of problems which Machine Learning techniques are applied to are classification problems
- Object Location Image Processing
- Protein Fold Prediction Bioinformatics
- Gesture Recognition HCI
- Intrusion Detection Networks & Systems

- A large class of problems which Machine Learning techniques are applied to are classification problems
- Object Location Image Processing
- Protein Fold Prediction Bioinformatics
- Gesture Recognition HCI
- Intrusion Detection Networks & Systems
- All are essentially classification problems

Example

As a simple example lets try and build a classifier which will predict whether a person is male or female based on their measured height alone.

Figure 1: The distributions of measured height for both males and females in a population.

• The class variable C will take on two values so we can encode male by the value 1 and female by the value 0.

- The class variable C will take on two values so we can encode male by the value 1 and female by the value 0.
- Now within the general population there is an approximate equal number of male and females.

- The class variable C will take on two values so we can encode male by the value 1 and female by the value 0.
- Now within the general population there is an approximate equal number of male and females.
- In that case the probability of class male occurring will be defined simply as P(C = 1) and the probability of class female occuring will be P(C = 0).

- The class variable C will take on two values so we can encode male by the value 1 and female by the value 0.
- Now within the general population there is an approximate equal number of male and females.
- In that case the probability of class male occurring will be defined simply as P(C = 1) and the probability of class female occuring will be P(C = 0).
- Now these probabilities are set **prior** to making any measurements and hence are called the **prior probabilities** of class membership.

• If these are well balanced i.e. P(C = 0) = P(C = 1) = 0.5 then it is equally likely to observe either class.

- If these are well balanced i.e. P(C = 0) = P(C = 1) = 0.5 then it is equally likely to observe either class.
- However in applications such as medical diagnostics or intrusion detection the prior probabilities of one class e.g. network intrusion or cancer are much smaller than the other e.g. normal traffic or not cancer.

- If these are well balanced i.e. P(C = 0) = P(C = 1) = 0.5 then it is equally likely to observe either class.
- However in applications such as medical diagnostics or intrusion detection the prior probabilities of one class e.g. network intrusion or cancer are much smaller than the other e.g. normal traffic or not cancer.
- In this case then we can make a prediction before seeing any data that is more likely to be correct based on the prior probabilities alone.

• There will be a natural distribution of the height of males and females, so in other words there will be a class conditional distribution of the measured features, in this case height.

of GLASGOW

Class Conditioned Likelihood

UNIVERSITY of GLASGOW

- There will be a natural distribution of the height of males and females, so in other words there will be a class conditional distribution of the measured features, in this case height.
- We can write these class conditional distributions as p(h|C=1) and p(h|C=0) form male and female classes respectively.

Class Conditioned Likelihood

UNIVERSITY of GLASGOW

- There will be a natural distribution of the height of males and females, so in other words there will be a class conditional distribution of the measured features, in this case height.
- We can write these class conditional distributions as p(h|C=1) and p(h|C=0) form male and female classes respectively.
- This likelihood can be used to obtain a posterior over the class variable.

Class Posterior

UNIVERSITY of GLASGOW

From Bayes rule can obtain posterior probability of class membership by noting

$$P(h, C = 1) = p(h|C = 1)P(C = 1) = P(C = 1|h)p(h)$$

and so

$$P(C = 1|h) = \frac{p(h|C = 1)P(C = 1)}{p(h)}$$

and the marginal likelihood of our measurement, p(h), is the probability of measuring a height h irrespective of the class and so

$$p(h) = p(h|C = 1)P(C = 1) + p(h|C = 0)P(C = 0)$$

which means that the class posteriors will also sum to one, P(C = 1|h) + P(C = 1|h) = 1.

• The first thing to notice is that there is a distinct difference in the location of the distributions and they can be separated to a large extent (males are typically taller than females)

- The first thing to notice is that there is a distinct difference in the location of the distributions and they can be separated to a large extent (males are typically taller than females)
- However there is a region where the two distributions overlap and it is here that classification errors can be made

of

- The first thing to notice is that there is a distinct difference in the location of the distributions and they can be separated to a large extent (males are typically taller than females)
- However there is a region where the two distributions overlap and it is here that classification errors can be made
- The region of intersection where P(C = 1|h) = P(C = 0|h) is important as it defines our decision boundary

- The first thing to notice is that there is a distinct difference in the location of the distributions and they can be separated to a large extent (males are typically taller than females)
- However there is a region where the two distributions overlap and it is here that classification errors can be made
- The region of intersection where P(C = 1|h) = P(C = 0|h) is important as it defines our decision boundary
- If we make a measurement of 69 inches then P(C = 1|h) > P(C = 0|h) there is some probability that this is a rather tall female, to minimise unavoidable errors then decision should be based on the largest posterior probability. Lecture Seven January 19, 2006 - p. 8/3

UNIVERSITY of GLASGOW

• We can then define a discriminant function based on our posterior probabilities

UNIVERSITY of GLASGOW

- We can then define a discriminant function based on our posterior probabilities
- One such function could be the ratio of posterior probabilities for both classes

UNIVERSITY of GLASGOW

- We can then define a discriminant function based on our posterior probabilities
- One such function could be the ratio of posterior probabilities for both classes
- If we take the logarithm of this ratio then the general discriminant function

$$f(h) = \log \frac{P(C=1|h)}{P(C=0|h)}$$

would define the rules that h would be assigned to C = 1 (male) if f(h) > 0 and if f(h) < 0 the assignment would be to C = 0 (female)

• Use general notation $\mathbf{x} = [x_1, \cdots, x_D]^\mathsf{T}$ representing *D*-dimensional vector of *D* features available for classification purposes.

$$\log \frac{P(C=1|\mathbf{x})}{P(C=0|\mathbf{x})}$$

 Use general notation x = [x₁, ··· , x_D]^T representing D-dimensional vector of D features available for classification purposes.

$$\log \frac{P(C=1|\mathbf{x})}{P(C=0|\mathbf{x})}$$

Ratio P(C = 1|x) & P(C = 0|x) lies on positive real line i.e. [0 + ∞) so log-likelihood ratio will take values between -∞ and +∞.

• Use general notation $\mathbf{x} = [x_1, \cdots, x_D]^\mathsf{T}$ representing *D*-dimensional vector of *D* features available for classification purposes.

$$\log \frac{P(C=1|\mathbf{x})}{P(C=0|\mathbf{x})}$$

- Ratio P(C = 1|x) & P(C = 0|x) lies on positive real line i.e. [0 + ∞) so log-likelihood ratio will take values between -∞ and +∞.
- Model ratio using a linear-model, now employ explicit basis expansion of input $\phi(\mathbf{x}) = [\phi_1(\mathbf{x}, \dots, \phi_M(\mathbf{x})]^\mathsf{T},$ and each $\phi_m(\mathbf{x})$ defines the *m*'th basis function applied to the data vector \mathbf{x} .

UNIVERSITY of GLASGOW

• Back to the log-likelihood ratio and our linear model of it

$$\log \frac{P(C=1|\mathbf{x})}{P(C=0|\mathbf{x})} = \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x})$$

UNIVERSITY of GLASGOW

• Back to the log-likelihood ratio and our linear model of it

$$\log \frac{P(C=1|\mathbf{x})}{P(C=0|\mathbf{x})} = \mathbf{w}^{\mathsf{T}}\phi(\mathbf{x})$$

• As $P(C = 1|\mathbf{x}) + P(C = 0|\mathbf{x}) = 1$ then a tiny bit of algebra shows that

$$P(C = 1 | \mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}))}$$
$$= \frac{\exp(\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}))}{1 + \exp(\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}))}$$

• The likelihood for each data point (input-output pair) (\mathbf{x}_n, t_n) will simply be the posterior probability $P(C = t_n | \mathbf{x}_n)$.

- Komment
 With the second seco
- The likelihood for each data point (input-output pair) (\mathbf{x}_n, t_n) will simply be the posterior probability $P(C = t_n | \mathbf{x}_n)$.
- Now we can write the likelihood component for each n as $P(C = t_n | \mathbf{x}_n, \mathbf{w})$ which equals

$$P(C = 1 | \mathbf{x}_n, \mathbf{w})^{t_n} \times (1 - P(C = 1 | \mathbf{x}_n, \mathbf{w}))^{1 - t_n}$$

$$= \left[\frac{1}{1 + \exp(-\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_n))} \right]^{t_n} \left[\frac{1}{1 + \exp(\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_n))} \right]^{1 - t_n}$$

$$= \frac{\exp(\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_n))^{t_n}}{1 + \exp(\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_n))}$$

Bayesian Classification

• Let us be bold and take a Bayesian viewpoint straightaway (you know it makes sense!) so we will place a Gaussian prior on our coefficients such that $p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{0}, \alpha^{-1}\mathbf{I})$ and we assume that each t_n is sampled i.i.d (remember this from last week?) in which case our likelihood will be

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}) = \prod_{n=1}^{N} P(C = t_n | \mathbf{x}_n, \mathbf{w})$$

Bayesian Classification

• Let us be bold and take a Bayesian viewpoint straightaway (you know it makes sense!) so we will place a Gaussian prior on our coefficients such that $p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{0}, \alpha^{-1}\mathbf{I})$ and we assume that each t_n is sampled i.i.d (remember this from last week?) in which case our likelihood will be

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}) = \prod_{n=1}^{N} P(C = t_n | \mathbf{x}_n, \mathbf{w})$$

Bayesian Classification

 Now that we are all good Bayesians we immediately want to define the posterior over the parameters and so we need the joint-likelihood formed by the likelihood and the prior

$$p(\mathbf{t}, \mathbf{w} | \mathbf{X}, \alpha) = p(\mathbf{t} | \mathbf{X}, \mathbf{w}) p(\mathbf{w} | \alpha)$$
$$= \prod_{n=1}^{N} \frac{\exp\left(\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_{n})\right)^{t_{n}}}{1 + \exp\left(\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_{n})\right)} \mathcal{N}_{\mathbf{w}}(\mathbf{0}, \alpha^{-1} \mathbf{I})$$

 Now that we are all good Bayesians we immediately want to define the posterior over the parameters and so we need the joint-likelihood formed by the likelihood and the prior

$$p(\mathbf{t}, \mathbf{w} | \mathbf{X}, \alpha) = p(\mathbf{t} | \mathbf{X}, \mathbf{w}) p(\mathbf{w} | \alpha)$$
$$= \prod_{n=1}^{N} \frac{\exp\left(\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_{n})\right)^{t_{n}}}{1 + \exp\left(\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_{n})\right)} \mathcal{N}_{\mathbf{w}}(\mathbf{0}, \alpha^{-1} \mathbf{I})$$

• To obtain our posterior we require the following

$$p(\mathbf{w}|\mathbf{t}, \mathbf{X}, \alpha) = p(\mathbf{t}|\mathbf{X}, \mathbf{w}) p(\mathbf{w}|\alpha) \frac{1}{p(\mathbf{t}|\mathbf{X}, \alpha)}$$

where the marginal likelihood

$$p(\mathbf{t}|\mathbf{X}, \alpha) = \int p(\mathbf{t}|\mathbf{X}, \mathbf{w}) p(\mathbf{w}|\alpha) d\mathbf{w}$$
$$= \int \prod_{n=1}^{N} \frac{\exp\left(\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_{n})\right)^{t_{n}}}{1 + \exp\left(\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_{n})\right)} \mathcal{N}_{\mathbf{w}}(\mathbf{0}, \alpha^{-1}\mathbf{I}) d\mathbf{w}$$

• The multi-dimensional integral cannot be computed analytically.

- The multi-dimensional integral cannot be computed analytically.
- Unlike the regression problem where a fully analytic expression for the posterior was available in the classification setting we run into some small degree of difficulty.

- The multi-dimensional integral cannot be computed analytically.
- Unlike the regression problem where a fully analytic expression for the posterior was available in the classification setting we run into some small degree of difficulty.
- Compute integral numerically using MCMC

- The multi-dimensional integral cannot be computed analytically.
- Unlike the regression problem where a fully analytic expression for the posterior was available in the classification setting we run into some small degree of difficulty.
- Compute integral numerically using MCMC
- Approximate the posterior with a tractable distribution multivariate Gaussian

• Assume the posterior is multivariate Gaussian.

- Assume the posterior is multivariate Gaussian.
- With mean value at maximum of posterior.

- Assume the posterior is multivariate Gaussian.
- With mean value at maximum of posterior.
- With covariance proportional to curvature of posterior around mean

- Assume the posterior is multivariate Gaussian.
- With mean value at maximum of posterior.
- With covariance proportional to curvature of posterior around mean
- In other words if we define the parameters at the maximum of the posterior as \mathbf{w}_{MAP} and the covariance of the approximation as \mathbf{C} , where

$$\mathbf{C} = -\left(\frac{\partial^2}{\partial \mathbf{w} \partial \mathbf{w}^{\mathsf{T}}} \log p(\mathbf{t}, \mathbf{w} | \mathbf{X}, \alpha)\right)^{-1}$$

where the right-hand side is computed at the MAP value \mathbf{w}_{MAP}

UNIVERSITY of GLASGOW

• In which case we can write

$$p(\mathbf{w}|\mathbf{t}, \mathbf{X}, \alpha) = p(\mathbf{t}|\mathbf{X}, \mathbf{w}) p(\mathbf{w}|\alpha) \frac{1}{p(\mathbf{t}|\mathbf{X}, \alpha)} \approx \mathcal{N}_{\mathbf{w}}(\mathbf{w}_{MAP}, \mathbf{C})$$

of GLASGOW

In which case we can write

$$p(\mathbf{w}|\mathbf{t}, \mathbf{X}, \alpha) = p(\mathbf{t}|\mathbf{X}, \mathbf{w}) p(\mathbf{w}|\alpha) \frac{1}{p(\mathbf{t}|\mathbf{X}, \alpha)} \approx \mathcal{N}_{\mathbf{w}}(\mathbf{w}_{MAP}, \mathbf{C})$$

• Need to somehow estimate the *Maximum a Posteriori* parameter value as well as compute the curvature of the posterior at that point

UNIVERSITY of GLASGOW

• In which case we can write

$$p(\mathbf{w}|\mathbf{t}, \mathbf{X}, \alpha) = p(\mathbf{t}|\mathbf{X}, \mathbf{w}) p(\mathbf{w}|\alpha) \frac{1}{p(\mathbf{t}|\mathbf{X}, \alpha)} \approx \mathcal{N}_{\mathbf{w}}(\mathbf{w}_{MAP}, \mathbf{C})$$

- Need to somehow estimate the *Maximum a Posteriori* parameter value as well as compute the curvature of the posterior at that point
- Note that we need to find the parameter values which maximise the posterior and we can do this by maximising the logarithm of the joint likelihood as the normalising term (the marginal) does not depend on the parameters

UNIVERSITY of

 So as before let us write out the logarithm of the joint likelihood which follows as

$$\mathcal{L} = \log p(\mathbf{t}, \mathbf{w} | \mathbf{X}, \alpha) = \sum_{n=1}^{N} t_n \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_n) - \log \left(1 + \exp \left(\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_n) \right) \right) - \frac{1}{\alpha} \mathbf{w}^{\mathsf{T}} \mathbf{w} - \frac{D}{2} \log(2\pi\alpha^2)$$

this is clearly not as nice an expression as we had for the linear regression models we have already met

of

• Take first and second derivatives with respect to all the parameter values w.

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = \sum_{n=1}^{N} t_n \phi(\mathbf{x}_n) - P(C = 1 | \mathbf{x}_n) \phi(\mathbf{x}_n) - \frac{1}{\alpha} \mathbf{w}$$
$$= \mathbf{\Phi}^{\mathsf{T}} \mathbf{t} - \mathbf{\Phi}^{\mathsf{T}} \mathbf{p} - \frac{1}{\alpha} \mathbf{w}$$

where the $N \times 1$ vector of class-membership probabilities is defined as $\mathbf{p} = [P(C = 1 | \mathbf{x}_1), \cdots, P(C = 1 | \mathbf{x}_N)]^T$ and the $N \times M$ matrix $\boldsymbol{\Phi}$ composed of basis functions

of GLASGOW

• The second-derivatives follows as before $\frac{\partial^2 \mathcal{L}}{\partial \mathbf{w} \partial \mathbf{w}^{\mathsf{T}}}$

$$= -\sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^{\mathsf{T}} P(C = 1 | \mathbf{x}_n) (1 - P(C = 1 | \mathbf{x}_n)) - \frac{1}{\alpha}$$
$$= -\Phi^{\mathsf{T}} \mathbf{V} \Phi - \frac{1}{\alpha} \mathbf{I}$$

where V is an $N \times N$ dimensional diagonal matrix defined as $diag(v_{11}, \cdots, v_{NN})$

of GLASGOW

• The second-derivatives follows as before $\frac{\partial^2 \mathcal{L}}{\partial \mathbf{w} \partial \mathbf{w}^{\mathsf{T}}}$

$$= -\sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^{\mathsf{T}} P(C=1|\mathbf{x}_n) \left(1 - P(C=1|\mathbf{x}_n)\right) - \frac{1}{\alpha}$$
$$= -\Phi^{\mathsf{T}} \mathbf{V} \Phi - \frac{1}{\alpha} \mathbf{I}$$

where V is an $N \times N$ dimensional diagonal matrix defined as $diag(v_{11}, \dots, v_{NN})$

• Now then we can define the covariance matrix of the *approximate* posterior as

$$\mathbf{C} = \left(\mathbf{\Phi}^{\mathsf{T}} \mathbf{V} \mathbf{\Phi} + \frac{1}{\alpha} \mathbf{I} \right)^{-1}$$

 The MAP value for the parameters does not follow in the nice closed form by setting the gradients to zero and solving for w as in the standard linear regression model as each element of the vector p i.e. P(C = 1|x_n) is itself a nonlinear function of w. We now need to resort to optimisation techniques.

- The MAP value for the parameters does not follow in the nice closed form by setting the gradients to zero and solving for w as in the standard linear regression model as each element of the vector p i.e. P(C = 1|x_n) is itself a nonlinear function of w. We now need to resort to optimisation techniques.
- We need to find the parameter values \mathbf{w}_{MAP} which will yield the maximum so make moves in parameter space which will yield the largest change in the criterion to be maximised, in this case the joint likelihood.

• To find the roots of functions f(x) = 0 from an initial guess of x_0 . The next guess is given as

$$x_{k+1} \leftarrow x_k - \frac{f(x_k)}{f'(x_k)}$$

• To find the roots of functions f(x) = 0 from an initial guess of x_0 . The next guess is given as

$$x_{k+1} \leftarrow x_k - \frac{f(x_k)}{f'(x_k)}$$

• Seek stationary points $\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = \mathbf{0}$ so take Newton method to find roots of a single variable function and extend to multiple variables

$$\mathbf{w} \leftarrow \mathbf{w} - \left(\frac{\partial^2 \mathcal{L}}{\partial \mathbf{w} \partial \mathbf{w}^{\mathsf{T}}}\right)^{-1} \frac{\partial \mathcal{L}}{\partial \mathbf{w}}$$

 Employing our expressions for the 1st & 2nd derivatives then

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{C} \left(\mathbf{\Phi}^{\mathsf{T}} \mathbf{t} - \mathbf{\Phi}^{\mathsf{T}} \mathbf{p} - \frac{1}{\alpha} \mathbf{w} \right)$$
$$= \mathbf{C} \left(\mathbf{C}^{-1} \mathbf{w} + \mathbf{\Phi}^{\mathsf{T}} \mathbf{t} - \mathbf{\Phi}^{\mathsf{T}} \mathbf{p} - \frac{1}{\alpha} \mathbf{w} \right)$$
$$= \left(\mathbf{\Phi}^{\mathsf{T}} \mathbf{V} \mathbf{\Phi} + \frac{1}{\alpha} \mathbf{I} \right)^{-1} \mathbf{\Phi}^{\mathsf{T}} \left(\mathbf{V} \mathbf{\Phi} \mathbf{w} + \mathbf{t} - \mathbf{p} \right)$$

 Employing our expressions for the 1st & 2nd derivatives then

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{C} \left(\mathbf{\Phi}^{\mathsf{T}} \mathbf{t} - \mathbf{\Phi}^{\mathsf{T}} \mathbf{p} - \frac{1}{\alpha} \mathbf{w} \right)$$
$$= \mathbf{C} \left(\mathbf{C}^{-1} \mathbf{w} + \mathbf{\Phi}^{\mathsf{T}} \mathbf{t} - \mathbf{\Phi}^{\mathsf{T}} \mathbf{p} - \frac{1}{\alpha} \mathbf{w} \right)$$
$$= \left(\mathbf{\Phi}^{\mathsf{T}} \mathbf{V} \mathbf{\Phi} + \frac{1}{\alpha} \mathbf{I} \right)^{-1} \mathbf{\Phi}^{\mathsf{T}} \left(\mathbf{V} \mathbf{\Phi} \mathbf{w} + \mathbf{t} - \mathbf{p} \right)$$

• At each step ${\bf w}$ is updated, using new values ${\bf w}$ elements of both ${\bf p}$ and ${\bf V}$ are updated then next Newton step re-applied until convergence

Laplace Demo

Figure 2: The blue circles are examples from class C = 0 and the solid red dots are examples from class C = 1. The green line shows the decision boundary $P(C = 1|\mathbf{x}) = 0.5$ obtained from the estimated \mathbf{w}_{MAP} using the Newton routine described above.

Laplace Demo

GLASGOW

Figure 3: The three contour plots above show the negative logarithm of parameter probability distributions where the left-hand plot shows the distribution of the parameter values $\mathbf{w} = [w_1 \ w_2]^T$ under the defined prior. The middle plot shows the negative log-likelihood which is distinctly non-Gaussian and the right-hand plot shows the joint likelihood (un-normalised posterior). The large solid blue dot shows the point in parameter space where the posterior is a maximum and the lines of small dark dots shows the evolution of the Newton algorithm towards this point starting from and initial point of $\mathbf{w} = [0 \ 0]$, ten steps are required to achieve this optimum.

Figure 4: The left-plot shows the negative log-posterior whilst the right-plot shows the Laplace approximation. The first thing to note is that the location of the maximum has been reasonably well identified. The second point is to note that the positive curvature of the posterior (as both parameter values increase they become *a posteriori* more probable. We can observe this curvature in our Laplace approximation, however, note that as we move away from the MAP value the approximation is not so good.)

0

0

• Now to make predictions we want the following distribution $P(C = 1 | \mathbf{x}_{new}, \alpha, \mathbf{X}, \mathbf{t})$ which is

$$\int P(C=1|\mathbf{x}_{new},\mathbf{w})p(\mathbf{w}|\mathbf{X},\mathbf{t},\alpha)d\mathbf{w}$$

• Now to make predictions we want the following distribution $P(C = 1 | \mathbf{x}_{new}, \alpha, \mathbf{X}, \mathbf{t})$ which is

$$\int P(C=1|\mathbf{x}_{new},\mathbf{w})p(\mathbf{w}|\mathbf{X},\mathbf{t},\alpha)d\mathbf{w}$$

Assume posterior is sharply peaked around MAP value
 ⇒ class predictions made using the approximate predictive posterior probability

$$P(C = 1 | \mathbf{x}_{new}, \alpha, \mathbf{X}, \mathbf{t}) \approx P(C = 1 | \mathbf{x}_{new}, \mathbf{w}_{MAP}, \alpha, \mathbf{X}, \mathbf{t})$$
$$= \frac{1}{1 + \exp(-\mathbf{w}_{MAP}^{\mathsf{T}}\phi(\mathbf{x}_{new}))}$$

 Now to make predictions we want the following distribution $P(C = 1 | \mathbf{x}_{new}, \alpha, \mathbf{X}, \mathbf{t})$ which is

$$\int P(C=1|\mathbf{x}_{new},\mathbf{w})p(\mathbf{w}|\mathbf{X},\mathbf{t},\alpha)d\mathbf{w}$$

 Assume posterior is sharply peaked around MAP value \Rightarrow class predictions made using the approximate predictive posterior probability

$$P(C = 1 | \mathbf{x}_{new}, \alpha, \mathbf{X}, \mathbf{t}) \approx P(C = 1 | \mathbf{x}_{new}, \mathbf{w}_{MAP}, \alpha, \mathbf{X}, \mathbf{t})$$
$$= \frac{1}{1 + \exp(-\mathbf{w}_{MAP}^{\mathsf{T}} \phi(\mathbf{x}_{new}))}$$

 So the discriminant function is $P(C = 1 | \mathbf{x}_{new}, \alpha, \mathbf{X}, \mathbf{t}) > 0.5$ then \mathbf{x}_{new} is assigned to Class C = 1 and C = 0 otherwise. Lecture Seven January 19, 2006 - p. 28/3

Figure 5: Top-left: two-dimensional data. Right hand plot shows posterior probability of class membership for linear model and decision boundary $P(C = 1|\mathbf{x}) = 0.5$ is shown in the bottom left plot. Magnitude of weighting coefficients normalised by the square-root of the Hessian matrix in bottom right plot, small values indicate irrelevant weights.

Bayesian Classification UNIVERSITY of **GLASGOW** Contour of Posterior P(C=1|x) 1.2 0.8 0.6 0.5 0.4 0.2 -0.2--1.5 -0.5 -0.5 -0.5 0.5 -1 0 0.5 0 1 _1 Decision Boundary P(C=1|x) = 0.5Hessian Normalised Basis Weighting Coefficients 0.5 -0.5 -1 -0.5 0 0.5 1 2 5 7 8

3

6

Figure 6: Top-left: two-dimensional data. Right hand plot shows posterior probability of class membership for cubic model and decision boundary $P(C = 1 | \mathbf{x}) = 0.5$ is shown in the bottom left plot. Magnitude of weighting coefficients normalised by the square-root of the Hessian matrix in bottom right plot, small values indicate irrelevant weights.