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• A large class of problems which Machine Learning
techniques are applied to are classification problems
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Classification

• A large class of problems which Machine Learning
techniques are applied to are classification problems

• Object Location - Image Processing

• Protein Fold Prediction - Bioinformatics

• Gesture Recognition - HCI

• Intrusion Detection - Networks & Systems

• All are essentially classification problems
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Example

As a simple example lets try and build a classifier which will
predict whether a person is male or female based on their
measured height alone.

60 65 70 75
Height Inches

Male
Female

P(F | h) P(M | h)

Figure 1: The distributions of measured height for both males and females in a

population.
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Class Priors

• The class variable C will take on two values so we can
encode male by the value 1 and female by the value 0.
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Class Priors

• The class variable C will take on two values so we can
encode male by the value 1 and female by the value 0.

• Now within the general population there is an
approximate equal number of male and females.

• In that case the probability of class male occurring will
be defined simply as P (C = 1) and the probability of
class female occuring will be P (C = 0).

• Now these probabilities are set prior to making any
measurements and hence are called the prior

probabilities of class membership.
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Class Priors

• If these are well balanced i.e.
P (C = 0) = P (C = 1) = 0.5 then it is equally likely to
observe either class.
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Class Priors

• If these are well balanced i.e.
P (C = 0) = P (C = 1) = 0.5 then it is equally likely to
observe either class.

• However in applications such as medical diagnostics or
intrusion detection the prior probabilities of one class
e.g. network intrusion or cancer are much smaller than
the other e.g. normal traffic or not cancer.

• In this case then we can make a prediction before seeing
any data that is more likely to be correct based on the
prior probabilities alone.
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Class Conditioned Likelihood

• There will be a natural distribution of the height of
males and females, so in other words there will be a
class conditional distribution of the measured
features, in this case height.
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Class Conditioned Likelihood

• There will be a natural distribution of the height of
males and females, so in other words there will be a
class conditional distribution of the measured
features, in this case height.

• We can write these class conditional distributions as
p(h|C = 1) and p(h|C = 0) form male and female
classes respectively.

• This likelihood can be used to obtain a posterior over
the class variable.
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Class Posterior

From Bayes rule can obtain posterior probability of class
membership by noting

P (h,C = 1) = p(h|C = 1)P (C = 1) = P (C = 1|h)p(h)

and so

P (C = 1|h) =
p(h|C = 1)P (C = 1)

p(h)

and the marginal likelihood of our measurement, p(h), is the
probability of measuring a height h irrespective of the class
and so

p(h) = p(h|C = 1)P (C = 1) + p(h|C = 0)P (C = 0)

which means that the class posteriors will also sum to one,
P (C = 1|h) + P (C = 1|h) = 1.
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Discriminant Functions

• The first thing to notice is that there is a distinct
difference in the location of the distributions and they
can be separated to a large extent (males are typically
taller than females)
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Discriminant Functions

• The first thing to notice is that there is a distinct
difference in the location of the distributions and they
can be separated to a large extent (males are typically
taller than females)

• However there is a region where the two distributions
overlap and it is here that classification errors can be
made

• The region of intersection where
P (C = 1|h) = P (C = 0|h) is important as it defines our
decision boundary

• If we make a measurement of 69 inches then
P (C = 1|h) > P (C = 0|h) there is some probability that
this is a rather tall female, to minimise unavoidable
errors then decision should be based on the largest
posterior probability. Lecture Seven January 19, 2006 – p. 8/30



Discriminant Functions

• We can then define a discriminant function based
on our posterior probabilities
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Discriminant Functions

• We can then define a discriminant function based
on our posterior probabilities

• One such function could be the ratio of posterior
probabilities for both classes

• If we take the logarithm of this ratio then the general
discriminant function

f(h) = log
P (C = 1|h)

P (C = 0|h)

would define the rules that h would be assigned to
C = 1 (male) if f(h) > 0 and if f(h) < 0 the assignment
would be to C = 0 (female)
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Discriminative Classification

• Use general notation x = [x1, · · · , xD]T representing
D-dimensional vector of D features available for
classification purposes.

log
P (C = 1|x)

P (C = 0|x)
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Discriminative Classification

• Use general notation x = [x1, · · · , xD]T representing
D-dimensional vector of D features available for
classification purposes.

log
P (C = 1|x)

P (C = 0|x)

• Ratio P (C = 1|x) & P (C = 0|x) lies on positive real
line i.e. [0 +∞) so log-likelihood ratio will take values
between −∞ and +∞.

• Model ratio using a linear-model, now employ explicit
basis expansion of input φ(x) = [φ1(x, · · · , φM (x)]T,
and each φm(x) defines the m’th basis function applied
to the data vector x.
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Discriminative Classification

• Back to the log-likelihood ratio and our linear model of it

log
P (C = 1|x)

P (C = 0|x)
= wTφ(x)

Lecture Seven January 19, 2006 – p. 11/30



Discriminative Classification

• Back to the log-likelihood ratio and our linear model of it

log
P (C = 1|x)

P (C = 0|x)
= wTφ(x)

• As P (C = 1|x) + P (C = 0|x) = 1 then a tiny bit of
algebra shows that

P (C = 1|x) =
1

1 + exp (−wTφ(x))

=
exp

(

wTφ(x)
)

1 + exp (wTφ(x))
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Discriminative Classification

• The likelihood for each data point (input-output pair)
(xn, tn) will simply be the posterior probability
P (C = tn|xn).
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Discriminative Classification

• The likelihood for each data point (input-output pair)
(xn, tn) will simply be the posterior probability
P (C = tn|xn).

• Now we can write the likelihood component for each n

as P (C = tn|xn,w) which equals

P (C = 1|xn,w)tn × (1− P (C = 1|xn,w))1−tn

=

[

1

1 + exp (−wTφ(xn))

]tn
[

1

1 + exp (wTφ(xn))

]1−tn

=
exp

(

wTφ(xn)
)tn

1 + exp (wTφ(xn))
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Bayesian Classification

• Let us be bold and take a Bayesian viewpoint
straightaway (you know it makes sense!) so we will place
a Gaussian prior on our coefficients such that
p(w|α) = N (0, α−1I) and we assume that each tn is
sampled i.i.d (remember this from last week?) in which
case our likelihood will be

p(t|X,w) =

N
∏

n=1

P (C = tn|xn,w)
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Bayesian Classification

• Now that we are all good Bayesians we immediately
want to define the posterior over the parameters and so
we need the joint-likelihood formed by the likelihood and
the prior

p(t,w|X, α) = p(t|X,w)p(w|α)

=
N
∏

n=1

exp
(

wTφ(xn)
)tn

1 + exp (wTφ(xn))
Nw(0, α−1I)
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∏
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Bayesian Classification

• To obtain our posterior we require the following

p(w|t,X, α) = p(t|X,w)p(w|α)
1

p(t|X, α)

where the marginal likelihood

p(t|X, α) =

∫

p(t|X,w)p(w|α)dw

=

∫ N
∏

n=1

exp
(

wTφ(xn)
)tn

1 + exp (wTφ(xn))
Nw(0, α−1I)dw
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Bayesian Classification

• The multi-dimensional integral cannot be computed
analytically.

Lecture Seven January 19, 2006 – p. 16/30



Bayesian Classification

• The multi-dimensional integral cannot be computed
analytically.

• Unlike the regression problem where a fully analytic
expression for the posterior was available in the
classification setting we run into some small degree of
difficulty.
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Bayesian Classification

• The multi-dimensional integral cannot be computed
analytically.

• Unlike the regression problem where a fully analytic
expression for the posterior was available in the
classification setting we run into some small degree of
difficulty.

• Compute integral numerically using MCMC

• Approximate the posterior with a tractable distribution -
multivariate Gaussian
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Laplace Approximation

• Assume the posterior is multivariate Gaussian.
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Laplace Approximation

• Assume the posterior is multivariate Gaussian.

• With mean value at maximum of posterior.

• With covariance proportional to curvature of posterior
around mean

• In other words if we define the parameters at the
maximum of the posterior as wMAP and the covariance
of the approximation as C, where

C = −

(

∂2

∂w∂wT
log p(t,w|X, α)

)−1

where the right-hand side is computed at the MAP value
wMAP
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Laplace Approximation

• In which case we can write

p(w|t,X, α) = p(t|X,w)p(w|α)
1

p(t|X, α)
≈ Nw(wMAP ,C)
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Laplace Approximation

• In which case we can write

p(w|t,X, α) = p(t|X,w)p(w|α)
1

p(t|X, α)
≈ Nw(wMAP ,C)

• Need to somehow estimate the Maximum a Posteriori

parameter value as well as compute the curvature of the
posterior at that point
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Laplace Approximation

• In which case we can write

p(w|t,X, α) = p(t|X,w)p(w|α)
1

p(t|X, α)
≈ Nw(wMAP ,C)

• Need to somehow estimate the Maximum a Posteriori

parameter value as well as compute the curvature of the
posterior at that point

• Note that we need to find the parameter values which
maximise the posterior and we can do this by maximising
the logarithm of the joint likelihood as the normalising
term (the marginal) does not depend on the parameters
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Laplace Approximation

• So as before let us write out the logarithm of the joint
likelihood which follows as

L = log p(t,w|X, α) =
N

∑

n=1

tnw
Tφ(xn)

− log
(

1 + exp
(

wTφ(xn)
))

−
1

α
wTw −

D

2
log(2πα2)

this is clearly not as nice an expression as we had for the
linear regression models we have already met
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Laplace Approximation

• Take first and second derivatives with respect to all the
parameter values w.

∂L

∂w
=

N
∑

n=1

tnφ(xn)− P (C = 1|xn)φ(xn)−
1

α
w

= ΦTt−ΦTp−
1

α
w

where the N × 1 vector of class-membership probabilities
is defined as p = [P (C = 1|x1), · · · , P (C = 1|xN )]T and
the N ×M matrix Φ composed of basis functions
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Laplace Approximation

• The second-derivatives follows as before ∂
2
L

∂w∂w
T

= −
N

∑

n=1

φ(xn)φ(xn)TP (C = 1|xn) (1− P (C = 1|xn))−
1

α
I

= −ΦTVΦ−
1

α
I

where V is an N ×N dimensional diagonal matrix
defined as diag(v11, · · · , vNN )
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Laplace Approximation

• The second-derivatives follows as before ∂
2
L

∂w∂w
T

= −
N

∑

n=1

φ(xn)φ(xn)TP (C = 1|xn) (1− P (C = 1|xn))−
1

α
I

= −ΦTVΦ−
1

α
I

where V is an N ×N dimensional diagonal matrix
defined as diag(v11, · · · , vNN )

• Now then we can define the covariance matrix of the
approximate posterior as

C =

(

ΦTVΦ +
1

α
I

)−1
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Newton Optimisation

• The MAP value for the parameters does not follow in
the nice closed form by setting the gradients to zero and
solving for w as in the standard linear regression model
as each element of the vector p i.e. P (C = 1|xn) is
itself a nonlinear function of w. We now need to resort
to optimisation techniques.
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Newton Optimisation

• The MAP value for the parameters does not follow in
the nice closed form by setting the gradients to zero and
solving for w as in the standard linear regression model
as each element of the vector p i.e. P (C = 1|xn) is
itself a nonlinear function of w. We now need to resort
to optimisation techniques.

• We need to find the parameter values wMAP which will
yield the maximum so make moves in parameter space
which will yield the largest change in the criterion to be
maximised, in this case the joint likelihood.
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Newton Optimisation

• To find the roots of functions f(x) = 0 from an initial
guess of x0. The next guess is given as

xk+1 ← xk −
f(xk)

f ′(xk)
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Newton Optimisation

• To find the roots of functions f(x) = 0 from an initial
guess of x0. The next guess is given as

xk+1 ← xk −
f(xk)

f ′(xk)

• Seek stationary points ∂L

∂w
= 0 so take Newton method

to find roots of a single variable function and extend to
multiple variables

w← w −

(

∂2L

∂w∂wT

)−1
∂L

∂w
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Newton Optimisation

• Employing our expressions for the 1st & 2nd derivatives
then

w ← w + C

(

ΦTt−ΦTp−
1

α
w

)

= C

(

C−1w + ΦTt−ΦTp−
1

α
w

)

=

(

ΦTVΦ +
1

α
I

)−1

ΦT (VΦw + t− p)
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Newton Optimisation

• Employing our expressions for the 1st & 2nd derivatives
then

w ← w + C

(

ΦTt−ΦTp−
1

α
w

)

= C

(

C−1w + ΦTt−ΦTp−
1

α
w

)

=

(

ΦTVΦ +
1

α
I

)−1

ΦT (VΦw + t− p)

• At each step w is updated, using new values w elements
of both p and V are updated then next Newton step
re-applied until convergence
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Laplace Demo
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Figure 2: The blue circles are examples from class C = 0 and the solid red dots are

examples from class C = 1. The green line shows the decision boundary P (C = 1|x) =

0.5 obtained from the estimated wMAP using the Newton routine described above.
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Laplace Demo

Log−Prior
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Figure 3: The three contour plots above show the negative logarithm of parameter

probability distributions where the left-hand plot shows the distribution of the parameter

values w = [w1 w2]T under the defined prior. The middle plot shows the negative

log-likelihood which is distinctly non-Gaussian and the right-hand plot shows the joint

likelihood (un-normalised posterior). The large solid blue dot shows the point in parameter

space where the posterior is a maximum and the lines of small dark dots shows the

evolution of the Newton algorithm towards this point starting from and initial point of

w = [0 0], ten steps are required to achieve this optimum.
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Laplace Demo
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Laplace Approximation
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Figure 4: The left-plot shows the negative log-posterior whilst the right-plot shows

the Laplace approximation. The first thing to note is that the location of the maximum has

been reasonably well identified. The second point is to note that the positive curvature of

the posterior (as both parameter values increase they become a posteriori more probable.

We can observe this curvature in our Laplace approximation, however, note that as we

move away from the MAP value the approximation is not so good.)
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Bayesian Classification
• Now to make predictions we want the following

distribution P (C = 1|xnew, α,X, t) which is

∫

P (C = 1|xnew,w)p(w|X, t, α)dw
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Bayesian Classification
• Now to make predictions we want the following

distribution P (C = 1|xnew, α,X, t) which is

∫

P (C = 1|xnew,w)p(w|X, t, α)dw

• Assume posterior is sharply peaked around MAP value
⇒ class predictions made using the approximate
predictive posterior probability

P (C = 1|xnew, α,X, t) ≈ P (C = 1|xnew,wMAP , α,X, t)

=
1

1 + exp(−wT
MAP

φ(xnew))
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Bayesian Classification
• Now to make predictions we want the following

distribution P (C = 1|xnew, α,X, t) which is

∫

P (C = 1|xnew,w)p(w|X, t, α)dw

• Assume posterior is sharply peaked around MAP value
⇒ class predictions made using the approximate
predictive posterior probability

P (C = 1|xnew, α,X, t) ≈ P (C = 1|xnew,wMAP , α,X, t)

=
1

1 + exp(−wT
MAP

φ(xnew))

• So the discriminant function is
P (C = 1|xnew, α,X, t) > 0.5 then xnew is assigned to
Class C = 1 and C = 0 otherwise.
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Bayesian Classification
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Figure 5: Top-left: two-dimensional data. Right hand plot shows posterior prob-

ability of class membership for linear model and decision boundary P (C = 1|x) = 0.5

is shown in the bottom left plot. Magnitude of weighting coefficients normalised by the

square-root of the Hessian matrix in bottom right plot, small values indicate irrelevant

weights. Lecture Seven January 19, 2006 – p. 29/30
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Figure 6: Top-left: two-dimensional data. Right hand plot shows posterior prob-

ability of class membership for cubic model and decision boundary P (C = 1|x) = 0.5

is shown in the bottom left plot. Magnitude of weighting coefficients normalised by the

square-root of the Hessian matrix in bottom right plot, small values indicate irrelevant

weights. Lecture Seven January 19, 2006 – p. 30/30
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