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Overview

• Motivation for Data Integration in Classification setting

• Adopting Bayesian inference for non-parametric
classification

• Regression with Gaussian process priors over functions

• Classification with Gaussian processes

• Enabling Variational inference via multinomial-probit
likelihood

• Data integration with composite covariance functions

• Experiments, conclusions & ongoing work
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Data Integration

• Classifier combination schemes observed to outperform
single best classifier

• Availability of multiple independent feature
representations and structured heterogeneous data

• Integrating & combining diverse sources of data in
classification setting - empirical evidence suggests
enhanced performance over use of single best data
source
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Data Integration

• Classification of handwritten digits (Duin et al)
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Data Integration

• Classification of handwritten digits (Duin et al)

• Each digit represented by six independent feature sets

• 76 Fourier coefficients of the character shapes

• 216 profile correlations

• 64 PCA coefficients

• 240 pixel averages in 2 x 3 windows

• 47 Zernike moments

• 6 morphological features

• Possible (not advisable) to embed within common
feature space
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Data Integration
• Multiple heterogeneous representations of a gene

Bayesian Data Integration with Gaussian Process Priors: Combining Classifiers – p. 5/53



Data Integration
• Amino Acid sequence and sequence specific features
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Data Integration
• Measurements of mRNA from gene in various cellular

conditions
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Data Integration
• Profile of peptides for protein gene codes
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Data Integration
• Network of gene interactions

• Multiple heterogeneous data representations available for
exploitation in classification problems
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Data Integration
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by Kittler et al
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Data Integration

• Combination schemes for probabilistic classifiers studied
by Kittler et al

• For each of J data & feature representations of object
X obtain class posterior probabilities

P (t = C|F1(X)) · · ·P (t = C|FJ (X))

from each of J independent classifiers

• Employ individual posteriors to approximate joint
probability

P (t = C|F1(X) · · · FJ (X))
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Data Integration

• Obtain sum and product combination rules
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Data Integration

• Obtain sum and product combination rules

• Product combination

P (t = C|F1(X) · · · FJ (X)) ≈

∏
j P (t = C|Fj(X))

∑
C′

∏
j′ P (t = C ′|Fj′(X))

• Sum combination

P (t = C|F1(X) · · · FJ (X)) ≈
1

J

∑

j

P (t = C|Fj(X))

• Empirically observed to perform well on certain
problems. Classifiers induced independently however
desirable to induce joint classifier with statistical
inference operating on all data jointly.
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Data Integration

• Kernel based non-parametric classification e.g. Support
Vector Machines provide appropriate embeddings for
heterogeneous representations of objects.
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Data Integration

• Kernel based non-parametric classification e.g. Support
Vector Machines provide appropriate embeddings for
heterogeneous representations of objects.

• Define kernel specific to each data-type and create linear
combination K(Xm, Xn) =

∑
j γjKj(Fj(Xm),Fj(Xn)),

then employ in SVM

• Objects with multiple representations
• Proteins, Lanckriet et al, 2004 - SDP & SVM
• Protein-Protein interactions, Ben-Hur, Noble, 2005

• Enzyme Networks, Yamanishi, Vert, Kanehisa, 2005

• Learning kernel weights γj employing Semi-Definite
programming for SVM classification enables
heterogeneous data integration
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Bayesian Classification

• SVM defines a binary classifier, multiple classes requires
heuristic multiple one-vs-one, one-vs-rest combinations
of binary output coding or DAG’s
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Bayesian Classification

• SVM defines a binary classifier, multiple classes requires
heuristic multiple one-vs-one, one-vs-rest combinations
of binary output coding or DAG’s

• SVM non-probabilistic though some form of probabilistic
semantics can be obtained post-hoc

• Inference over feature or data relevance spawns
numerous methods e.g. SDP for kernel combinations
(only in binary case)

• Strength of non-parametric classification of SVM - kernel
method enables heterogeneous data integration - wish to
combine non-parametrics with probabilistic semantics
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Bayesian Classification

• Probabilistic inference over class membership of objects
desirable in many applications
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Bayesian Classification

• Probabilistic inference over class membership of objects
desirable in many applications

• For high-dimensional and structured heterogeneous data
it may be required to provide an additional level of
inference

• Success of non-parametric methods of classification
(SVM) in many diverse applications

• Adopting Gaussian Process priors provides consistent
probabilistic framework for Bayesian inference for general
non-parametric classification problems (multiple classes,
feature weighting, data integration, kernel combinations)
without recourse to ad-hockery
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Gaussian Processes

• GP defines a distribution over functions f : X → R

• Stochastic process defined by mean, µ(x) = E{f(x)},
and covariance C(xi,xj) = E{f(xi)f(xj)} functions

• p(f) is a GP if for any finite subset of X the marginal
distribution p(f(x1), · · · , f(xN )) is multivariate Gaussian

• For N samples X = {x1, · · · ,xN} ⊂ X then
f = {f(x1), · · · , f(xN )} ∼ GP (µ,C) = Nf (µ,C)

• GP prior encodes knowledge or assumptions on
functional class (’smooth’, ’rough’)
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Gaussian Processes

• Choose covariance function to define prior over function
space e.g. C(xi, xj) = θ exp{−ϕ|xi − xj|

2}
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Gaussian Processes

• Choose covariance function to define prior over function
space e.g. C(xi, xj) = θ exp{−ϕ|xi − xj|

2}

• GP prior sampled at 30 points on -8 to +8,
f ∼ N (0,C), where θ = 1.0, ϕ = 0.1,
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Gaussian Processes

• Choose covariance function to define prior over function
space e.g. C(xi, xj) = θ exp{−ϕ|xi − xj|

2}

• GP prior sampled at 30 points on -8 to +8,
f ∼ N (0,C), where θ = 1.0, ϕ = 10.0,
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Gaussian Processes
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• Radial Basis kernel is ∞ differentiable
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Gaussian Processes

• Choose covariance function to define prior over function
space e.g. C(xi, xj) = θ exp{−ϕ|xi − xj|

2}

• Radial Basis kernel is ∞ differentiable

• Width of kernel, ϕ, controls spectral decay rate of
process, high decay rate ⇒smooth process

• Classes of covariance functions to represent prior
assumptions

• Consider simple regression problem as an example

Bayesian Data Integration with Gaussian Process Priors: Combining Classifiers – p. 12/53



GP Regression

• Consider simple function f(x) = sin(x)
x
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• Observations (i.i.d) D = {(x1, t1), · · · , (xN , tN )} = (x, t)

where tn = f(xn) + ǫn, and assume ǫn ∼ N (0, σ2)

• Place GP prior on functions f ∈ R
N ,

f |x, ϕ, θ ∼ N (0,C)
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GP Regression

• Consider simple function f(x) = sin(x)
x

• Observations (i.i.d) D = {(x1, t1), · · · , (xN , tN )} = (x, t)

where tn = f(xn) + ǫn, and assume ǫn ∼ N (0, σ2)

• Place GP prior on functions f ∈ R
N ,

f |x, ϕ, θ ∼ N (0,C)

Likelihood

t|f , σ ∼
∏

n
Ntn

(fn, σ2) = Nt(f , σ
2I)
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GP Regression

Posterior over functions

p(f |x, t, ϕ, θ, σ) =
p(t|f , σ)p(f |x, ϕ, θ)

p(t|x, ϕ, θ, σ)
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GP Regression

Posterior over functions

p(f |x, t, ϕ, θ, σ) =
p(t|f , σ)p(f |x, ϕ, θ)

p(t|x, ϕ, θ, σ)

=
Nt(f , σ

2I)Nf (0,C)∫
Nt(f , σ2I)Nf (0,C)df
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GP Regression

Posterior over functions

p(f |x, t, ϕ, θ, σ) =
p(t|f , σ)p(f |x, ϕ, θ)

p(t|x, ϕ, θ, σ)

=
Nt(f , σ

2I)Nf (0,C)∫
Nt(f , σ2I)Nf (0,C)df

= Nf (µ,Σ)

where Σ = σ2C(C + σ2I)−1 and µ = C(C + σ2I)−1t.

Predictive distribution over new data samples are also
Gaussian

Bayesian Data Integration with Gaussian Process Priors: Combining Classifiers – p. 14/53



GP Regression

Noise level σ2 = 0.1, 100 samples, θ = 1, ϕ = 1
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GP Regression

Noise level σ2 = 0.1, 100 samples, θ = 1, ϕ = 5
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GP Regression

• For regression with Normal errors analytic Bayesian
inference is possible
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GP Regression

• For regression with Normal errors analytic Bayesian
inference is possible

• Inference over covariance parameters requires either
MCMC or type II ML

• As marginal likelihood p(t|x, ϕ, θ, σ) = Nt(0,C + σ2I)

• Optimisation to obtain type-II estimates of
hyper-parameters ϕ, θ, σ (evidence maximisation) i.e.

ϕ̂, θ̂, σ̂ = argmax
ϕ,θ,σ

logNt(0,C + σ2I)
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GP Classification

• Classification setting data discrete t ∈ {1, · · · ,K}

Bayesian Data Integration with Gaussian Process Priors: Combining Classifiers – p. 17/53



GP Classification

• Classification setting data discrete t ∈ {1, · · · ,K}

• Assume one GP prior per class (overcomplete
representation) and a priori inter-class GP independence

p(f1, · · · , fK |ϕ1, · · · , ϕK ,X) =
∏K

k=1
Nfk(0,Ck)

Bayesian Data Integration with Gaussian Process Priors: Combining Classifiers – p. 17/53



GP Classification

• Classification setting data discrete t ∈ {1, · · · ,K}

• Assume one GP prior per class (overcomplete
representation) and a priori inter-class GP independence

p(f1, · · · , fK |ϕ1, · · · , ϕK ,X) =
∏K

k=1
Nfk(0,Ck)

• Likelihood follows as multinomial over targets

p(t|f1, · · · , fK ,θ) ∝
∏

n

∏
k
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GP Classification

• Classification setting data discrete t ∈ {1, · · · ,K}

• Assume one GP prior per class (overcomplete
representation) and a priori inter-class GP independence

p(f1, · · · , fK |ϕ1, · · · , ϕK ,X) =
∏K

k=1
Nfk(0,Ck)

• Likelihood follows as multinomial over targets

p(t|f1, · · · , fK ,θ) ∝
∏

n

∏
k
qk(fn)δ(tn,k)

• Where usual multinomial-logit definition is

qk(fn) =
exp(fnk)∑
k′ exp(fnk′)
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GP Classification

• Nice analytic inference not possible in classification
setting
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GP Classification

• Nice analytic inference not possible in classification
setting

• Simulate samples from posterior using MCMC

• Good approximations often desirable

• Laplace approximation for GP classification previously
proposed by Williams & Barber, 1998.
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GP Classification

• Approximate p(f1, · · · , fK |X, t,Φ) with a Gaussian

Bayesian Data Integration with Gaussian Process Priors: Combining Classifiers – p. 19/53



GP Classification

• Approximate p(f1, · · · , fK |X, t,Φ) with a Gaussian

• Gaussian centered at maximum of posterior density i.e.
fMAP
+ where f+ ≡ vec[f1, · · · , fK ] (NK × 1)
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GP Classification

• Approximate p(f1, · · · , fK |X, t,Φ) with a Gaussian

• Gaussian centered at maximum of posterior density i.e.
fMAP
+ where f+ ≡ vec[f1, · · · , fK ] (NK × 1)

• Σ = −∇f+∇f+ log p(t, f1, · · · , fK |X,Φ) =
(
K−1 −W
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GP Classification

• Approximate p(f1, · · · , fK |X, t,Φ) with a Gaussian

• Gaussian centered at maximum of posterior density i.e.
fMAP
+ where f+ ≡ vec[f1, · · · , fK ] (NK × 1)

• Σ = −∇f+∇f+ log p(t, f1, · · · , fK |X,Φ) =
(
K−1 −W

)−1

K =




C1 · · · 0

0
. . .

...

0 · · · CK


 , W =




W11 · · · W1K
...

. . .
...

WK1 · · · WKK




Bayesian Data Integration with Gaussian Process Priors: Combining Classifiers – p. 19/53



GP Classification

• Approximate p(f1, · · · , fK |X, t,Φ) with a Gaussian

• Gaussian centered at maximum of posterior density i.e.
fMAP
+ where f+ ≡ vec[f1, · · · , fK ] (NK × 1)

• Σ = −∇f+∇f+ log p(t, f1, · · · , fK |X,Φ) =
(
K−1 −W

)−1

K =




C1 · · · 0

0
. . .

...

0 · · · CK


 , W =




W11 · · · W1K
...

. . .
...

WK1 · · · WKK




• Where each (Wij)n = ∂2

∂fnj∂fni
log p(tn|f1, · · · , fK)
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GP Classification

• Approximate p(f1, · · · , fK |X, t,Φ) with a Gaussian

• Gaussian centered at maximum of posterior density i.e.
fMAP
+ where f+ ≡ vec[f1, · · · , fK ] (NK × 1)

• Σ = −∇f+∇f+ log p(t, f1, · · · , fK |X,Φ) =
(
K−1 −W

)−1

K =




C1 · · · 0

0
. . .

...

0 · · · CK


 , W =




W11 · · · W1K
...

. . .
...

WK1 · · · WKK




• Where each (Wij)n = ∂2

∂fnj∂fni
log p(tn|f1, · · · , fK)

• Newton iterations to obtain mode fMAP
+
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GP Classification

• Weakness with Laplace approximation
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GP Classification

• Weakness with Laplace approximation

• Mode of high-dimensional Gaussian may not represent
mass
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GP Classification

• Weakness with Laplace approximation

• Mode of high-dimensional Gaussian may not represent
mass

• Gaussian approximation to posterior in large sample limit
- small samples available

• Variational methods with mean field approximations
possibly more accurate alternative
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Variational Approximations

• Approximate posterior over sets of variables,
Θ = {θ1, · · · θM} with a factored ensemble

P (Θ|t,X) ≈ Q(Θ) =
M∏

i=1

Q(θi)
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Variational Approximations

• Approximate posterior over sets of variables,
Θ = {θ1, · · · θM} with a factored ensemble

P (Θ|t,X) ≈ Q(Θ) =
M∏

i=1

Q(θi)

• Optimise bound on marginal density (Jensen inequality)

log P (t|X) ≥ EQ(Θ) {log P (t,Θ|X)}−EQ(Θ){logQ(Θ)}
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Variational Approximations

• Approximate posterior over sets of variables,
Θ = {θ1, · · · θM} with a factored ensemble

P (Θ|t,X) ≈ Q(Θ) =
M∏

i=1

Q(θi)

• Optimise bound on marginal density (Jensen inequality)

log P (t|X) ≥ EQ(Θ) {log P (t,Θ|X)}−EQ(Θ){logQ(Θ)}

• To obtain optimal form of components of approximate
posterior

Q(θi) ∝ exp
(
EQ(Θ−i){log P (t,Θ|X)}

)
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Variational Approximations

• Each component of approximate posterior requires
expectations w.r.t all other posterior components
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• As multinomial-logit not in exponential family no closed
form representations for approximate posteriors available
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Variational Approximations

• Each component of approximate posterior requires
expectations w.r.t all other posterior components

• As multinomial-logit not in exponential family no closed
form representations for approximate posteriors available

• Gibbs & MacKay (1998) make additional specific
approximations to the multinomial-logit - undesireable
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Variational Approximations

• Each component of approximate posterior requires
expectations w.r.t all other posterior components

• As multinomial-logit not in exponential family no closed
form representations for approximate posteriors available

• Gibbs & MacKay (1998) make additional specific
approximations to the multinomial-logit - undesireable

• Variational approximations for multinomial-logit
likelihood inappropriate - Stuck with Laplace
Approximation
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Variational Approximations

• Each component of approximate posterior requires
expectations w.r.t all other posterior components

• As multinomial-logit not in exponential family no closed
form representations for approximate posteriors available

• Gibbs & MacKay (1998) make additional specific
approximations to the multinomial-logit - undesireable

• Variational approximations for multinomial-logit
likelihood inappropriate - Stuck with Laplace
Approximation

• However progress can be made with variational
approximations by considering alternative likelihood
terms to the multinomial-logit
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Data Augmentation Trick

• Consider Probit function p(tn = 1|fn) = Φ(fn), by
introducing the auxiliary variable yn ∼ Ny(fn, 1) then

∫
P (tn = 1, yn|fn)dyn =

∫
P (tn = 1|yn)p(yn|fn)dyn
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Data Augmentation Trick

• Consider Probit function p(tn = 1|fn) = Φ(fn), by
introducing the auxiliary variable yn ∼ Ny(fn, 1) then

∫
P (tn = 1, yn|fn)dyn =

∫
P (tn = 1|yn)p(yn|fn)dyn

• By definition P (tn = 1|yn) = δ(yn > 0) then the
marginal is the normalizing constant of a left truncated
univariate Gaussian

P (tn = 1|fn) =

∫
δ(yn > 0)Nyn

(fn, 1)dyn
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Data Augmentation Trick

• Consider Probit function p(tn = 1|fn) = Φ(fn), by
introducing the auxiliary variable yn ∼ Ny(fn, 1) then

∫
P (tn = 1, yn|fn)dyn =

∫
P (tn = 1|yn)p(yn|fn)dyn

• By definition P (tn = 1|yn) = δ(yn > 0) then the
marginal is the normalizing constant of a left truncated
univariate Gaussian

P (tn = 1|fn) =

∫
δ(yn > 0)Nyn

(fn, 1)dyn

• Now have a Gaussian in joint distribution which allows
us to make progress
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Multinomial Probit

• Case for multiple classes slightly more involved as now
auxiliary variable is a K-dim vector
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Multinomial Probit

• Case for multiple classes slightly more involved as now
auxiliary variable is a K-dim vector

• For 1 from K classes then

tn = j if ynj = max
1≤k≤K

{ynk}
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Multinomial Probit

• Case for multiple classes slightly more involved as now
auxiliary variable is a K-dim vector

• For 1 from K classes then

tn = j if ynj = max
1≤k≤K

{ynk}

• This has the effect of dividing R
K (y space) into K

non-overlapping K-dimensional cones
Ck = {y : yk > yi, k 6= i} where R

K = ∪kCk
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Multinomial Probit

• Case for multiple classes slightly more involved as now
auxiliary variable is a K-dim vector

• For 1 from K classes then

tn = j if ynj = max
1≤k≤K

{ynk}

• This has the effect of dividing R
K (y space) into K

non-overlapping K-dimensional cones
Ck = {y : yk > yi, k 6= i} where R

K = ∪kCk
• So each

P (tn = i|yn) = δ(yni > ynk ∀ k 6= i)δ(tn = i)
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Multinomial Probit

Conic truncation of R
3
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Multinomial Probit

Conic truncation of R
3
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Multinomial Probit

Multinomial-Probit Likelihood follows as

P (tn = i|fn1, · · · , fnK) =
∫

δ(yni > ynk ∀ k 6= i)

K∏

j=1

p(ynj|fnj)dy =

∫

Ci

K∏

j=1

p(ynj|fnj)dy = Ep(u)




∏

j 6=i

Φ(u + fni − fnj)




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Joint Likelihood

• Augmented joint distribution,
p(t, f1, · · · , fK ,y1, · · · ,yK |X,ϕ1, · · · ,ϕK), given as

=
N∏

n=1

{
K∑

i=1

δ(yni > ynk ∀ k 6= i)δ(tn = i)

}
×

K∏

k=1

p(ynk|fnk)p(fk|X,ϕk)
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Joint Likelihood

• Augmented joint distribution,
p(t, f1, · · · , fK ,y1, · · · ,yK |X,ϕ1, · · · ,ϕK), given as

=
N∏

n=1

{
K∑

i=1

δ(yni > ynk ∀ k 6= i)δ(tn = i)

}
×

K∏

k=1

p(ynk|fnk)p(fk|X,ϕk)

• Now obtain approximate posteriors Q(f1, · · · , fK) &
Q(y1, · · · ,yK)
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Approximate Posteriors

The approximate posteriors are

Q(f1, · · · , fK) =
K∏

k=1

Q(fk) =
K∏

k=1

Nfk(Σkỹk,Σk)

where Σk = Ck (I + Ck)
−1 and f̃(a) = EQ(a){f(a)} denotes

posterior expectation
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Approximate Posteriors

The approximate posteriors are

Q(f1, · · · , fK) =
K∏

k=1

Q(fk) =
K∏

k=1

Nfk(Σkỹk,Σk)

where Σk = Ck (I + Ck)
−1 and f̃(a) = EQ(a){f(a)} denotes

posterior expectation

Q(y1, · · · ,yK) =
N∏

n=1

N tn

yn
(f̃n, I)

Conic truncations of a multivariate Gaussians such that if
tn = i where i ∈ {1, · · · ,K} then the i’th dimension has the
largest value.

Bayesian Data Integration with Gaussian Process Priors: Combining Classifiers – p. 28/53



GP Classification

• The required posterior expectations ỹnk for all k 6= i and
ỹni follow as

ỹnk = f̃nk −
Ep(u)

{
Nu(f̃nk − f̃ni, 1)Φn,i,k

u

}

Ep(u)

{
Φ(u + f̃ni − f̃nk)Φ

n,i,k
u

}

ỹni = f̃ni −


∑

j 6=i

ỹnj − f̃nj




where Φn,i,k
u =

∏
j 6=i,k Φ(u + f̃ni − f̃nj), and

p(u) = Nu(0, 1).
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GP Classification

• Posterior mean for auxilliary variables fully defined by GP
posterior means (row vs columnwise)
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GP Classification

• Posterior mean for auxilliary variables fully defined by GP
posterior means (row vs columnwise)

• Posterior mean estimates for each set of GP variables

f̃k ← Ck(I + Ck)
−1(f̃k + pk)
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GP Classification

• Posterior mean for auxilliary variables fully defined by GP
posterior means (row vs columnwise)

• Posterior mean estimates for each set of GP variables

f̃k ← Ck(I + Ck)
−1(f̃k + pk)

• Where pk is the kth column of the N ×K matrix P

whose elements pnk are defined as follows:- for tn = i

then for all k 6= i pnk = −
Ep(u){Nu( efnk− efni,1)Φn,i,k

u }
Ep(u){Φ(u+ efni− efnk)Φn,i,k

u }
and

pni = −
∑

j 6=i pnj.
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GP Classification

• Posterior mean for auxilliary variables fully defined by GP
posterior means (row vs columnwise)

• Posterior mean estimates for each set of GP variables

f̃k ← Ck(I + Ck)
−1(f̃k + pk)

• Where pk is the kth column of the N ×K matrix P

whose elements pnk are defined as follows:- for tn = i

then for all k 6= i pnk = −
Ep(u){Nu( efnk− efni,1)Φn,i,k

u }
Ep(u){Φ(u+ efni− efnk)Φn,i,k

u }
and

pni = −
∑

j 6=i pnj.

• Scaling O(KN3) worst case (Laplace O(K3N3))
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GP Classification

• Variational Bayesian treatment of hyper-parameters also
feasible - employ importance sampling to obtain
posterior mean estimates
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GP Classification

• Variational Bayesian treatment of hyper-parameters also
feasible - employ importance sampling to obtain
posterior mean estimates

• Predictive likelihood, P (tnew = k|xnew,X, t), follows as

Ep(u)




∏

j 6=k

Φ

(
1

ν̃new
j

[
uν̃new

k + f̃new
k − f̃new

j

])




where each ν̃new
k =

√
1 + σ̃2

k,new
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Comparison with MCMC

• How good is the VB approximation?

Bayesian Data Integration with Gaussian Process Priors: Combining Classifiers – p. 32/53



Comparison with MCMC

• How good is the VB approximation?

• Assume gold standard obtained from MCMC
(straightforward Gibbs sampler)

Bayesian Data Integration with Gaussian Process Priors: Combining Classifiers – p. 32/53



Comparison with MCMC

• How good is the VB approximation?

• Assume gold standard obtained from MCMC
(straightforward Gibbs sampler)

• Take predictive likelihood on independent held-out
sample to be measure of goodness
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Comparison with MCMC

• How good is the VB approximation?

• Assume gold standard obtained from MCMC
(straightforward Gibbs sampler)

• Take predictive likelihood on independent held-out
sample to be measure of goodness

• How much information do the predictive probabilities
provide regarding the predicted classes

Bayesian Data Integration with Gaussian Process Priors: Combining Classifiers – p. 32/53



Comparison with MCMC

• How good is the VB approximation?

• Assume gold standard obtained from MCMC
(straightforward Gibbs sampler)

• Take predictive likelihood on independent held-out
sample to be measure of goodness

• How much information do the predictive probabilities
provide regarding the predicted classes

• 0-1 error rate - blunt instrument, marginal likelihood -
very difficult to reliably estimate
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Experiments

• Employ 3-Class data set for training & testing - UCI
Wine
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• Record predictive likelihood on test set
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Experiments

• Employ 3-Class data set for training & testing - UCI
Wine

• Obtain MCMC, VB & Laplace based GP classifiers

• Record predictive likelihood on test set

• Employ single covariance function across all classes
θ exp{−ϕ|xi − xj|

2} (Kuss & Rassmussen, 2005)
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Experiments

• Employ 3-Class data set for training & testing - UCI
Wine

• Obtain MCMC, VB & Laplace based GP classifiers

• Record predictive likelihood on test set

• Employ single covariance function across all classes
θ exp{−ϕ|xi − xj|

2} (Kuss & Rassmussen, 2005)

• Evaluate predictive performance over a 21 × 21 grid of
hyper-parameter values

Bayesian Data Integration with Gaussian Process Priors: Combining Classifiers – p. 33/53



Comparison with MCMC
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Comparison with MCMC
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On a number of datasets it is observed that the systematic
predictive likelihood response is better preserved by the
Variational approximation
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Experiments

Toy-Data Laplace Variational Gibbs Sampler

Marginal Likelihood -169.27 ± 4.27 -232.00 ± 17.13 -94.07 ± 11.26

Predictive Error 3.97 ± 2.00 3.65 ± 1.95 3.49 ± 1.69

Predictive Likelihood -98.90 ± 8.22 -72.27 ± 9.25 -73.44 ± 7.67

Iris Laplace Variational Gibbs Sampler

Marginal Likelihood -143.87 ± 1.17 -202.98 ± 1.37 -45.27 ± 6.17

Predictive Error 4.12 ± 2.14 4.08 ± 2.16 4.08 ± 2.16

Predictive Likelihood -10.41 ± 1.28 -7.35 ± 1.27 -7.26 ± 1.40

Thyroid Laplace Variational Gibbs Sampler

Marginal Likelihood -158.52 ± 1.83 -246.24 ± 1.63 -68.82 ± 8.29

Predictive Error 4.08 ± 2.26 3.86 ± 2.04 3.94 ± 2.02

Predictive Likelihood -18.75 ± 2.47 -14.62 ± 2.70 -14.47 ± 2.39
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Experiments

Wine Laplace Variational Gibbs Sampler

Marginal Likelihood -152.22 ± 1.29 -253.90 ± 1.52 -68.65 ± 6.19

Predictive Error 3.08 ± 2.16 2.65 ± 1.87 2.78 ± 2.07

Predictive Likelihood -14.61 ± 1.29 -10.16 ± 1.47 -10.47 ± 1.41

Forensic Glass Laplace Variational Gibbs Sampler

Marginal Likelihood -275.11 ± 2.87 -776.79 ± 5.75 -268.21 ± 5.46

Predictive Error 36.54 ± 4.74 32.79 ± 4.57 34.00 ± 4.62

Predictive Likelihood -90.38 ± 3.25 -77.60 ± 3.91 -79.86 ± 4.80
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Experiments

• Consider inference over parameters and
hyper-parameters
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Experiments
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• MCMC requires Metropolis-Hastings sub-sampler to
obtain hyper-parameter samples within overall Gibbs
sampler
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Experiments

• Consider inference over parameters and hyper-parameters

• MCMC requires Metropolis-Hastings sub-sampler to
obtain hyper-parameter samples within overall Gibbs
sampler

• VB employs importance sampler to obtain
posterior-mean estimates for hyper-parameters
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Experiments

• Consider inference over parameters and hyper-parameters

• MCMC requires Metropolis-Hastings sub-sampler to
obtain hyper-parameter samples within overall Gibbs
sampler

• VB employs importance sampler to obtain
posterior-mean estimates for hyper-parameters

• Employ toy-data from Neal (1998), two features required
to define classes with two additional redundant features
included
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Experiments

• Distribution of two relevant features defining class
partitioning
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Experiments
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Experiments

• Distribution of two relevant features defining class
partitioning
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• Two additional redundant features included
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Experiments

• Compare MCMC with Variational Approximation
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Experiments

• Compare MCMC with Variational Approximation

• Measure predictive likelihood achieved under both
schemes, employ RBF covariance function
C(xi, xj) = exp{−

∑
d ϕd|xid − xjd|

2}
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Experiments

• Compare MCMC with Variational Approximation

• Measure predictive likelihood achieved under both
schemes, employ RBF covariance function
C(xi, xj) = exp{−

∑
d ϕd|xid − xjd|

2}

• Gibbs sampler, after 5,000 sample burn-in for each
posterior sample an additional 100 samples per test
point drawn from predictive priors to obtain MC
estimate of predictive likelihood
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• Measure predictive likelihood achieved under both
schemes, employ RBF covariance function
C(xi, xj) = exp{−

∑
d ϕd|xid − xjd|

2}

• Gibbs sampler, after 5,000 sample burn-in for each
posterior sample an additional 100 samples per test
point drawn from predictive priors to obtain MC
estimate of predictive likelihood

• Gibbs sampler, for each posterior sample drawn MH
requires 2,000 sample burn-in before single
hyper-parameter sample drawn
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Experiments

• Compare MCMC with Variational Approximation

• Measure predictive likelihood achieved under both
schemes, employ RBF covariance function
C(xi, xj) = exp{−

∑
d ϕd|xid − xjd|

2}

• Gibbs sampler, after 5,000 sample burn-in for each
posterior sample an additional 100 samples per test
point drawn from predictive priors to obtain MC
estimate of predictive likelihood

• Gibbs sampler, for each posterior sample drawn MH
requires 2,000 sample burn-in before single
hyper-parameter sample drawn

• Variational approximation, 2,000 samples drawn from
hyper-parameter prior to estimate posterior mean
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Composite Covariance

• Distinct feature representation of X, Fj(X) = xj, is
nonlinearly transformed such that fj(xj) : Fj 7→ R.
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• Distinct feature representation of X, Fj(X) = xj, is
nonlinearly transformed such that fj(xj) : Fj 7→ R.

• A linear model is employed in this new space such that
the overall nonlinear transformation is
f(X) =

∑J
j=1 βjfj(xj).

• Where each fj(xj) ∼ GP (θj) where GP (θj)
corresponds to a Gaussian process with mean and
covariance functions mj(xj) and Cj(xj ,x

′
j ;θj)

• Then f(X) ∼ GP (θ1 · · · θJ , β1 · · · βJ ) where now the
overall mean and covariance functions follow as∑J

j=1 βjmj(xj) and
∑J

j=1 β2
j Cj(xj ,x

′
j ;θj)
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Composite Covariance

• Protein fold recognition problem - predict 27 SCOP folds
of proteins with low sequence similarity

• Problem first considered in Ding & Dubchak, 2000,
employing 6 parameter datasets

• One vs One combination of SVM’s followed by heuristic
voting combination

• On independent test set of proteins 43.5% correct
predictions achieved

• Manual investigation of different combinations of
datasets showed possible increase to 56.5% (62%
published July 2006)
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Composite Covariance

• Six datasets (AAC, SS, H, P, Pz, V) of D&D employed
also include one random noise dataset
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Composite Covariance

• Six datasets (AAC, SS, H, P, Pz, V) of D&D employed
also include one random noise dataset

• Seven Gram matrices (RBF and inner-products)

available, define Dirichlet prior on β2
1 , · · · , β2

J & Gamma
on Dirichlet mean

• Run variational Bayes routine with multinomial-probit
over all 27 classes

• Consider achievable performance over each individual
dataset and combination learned plus product and Sum
posterior combinations
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Composite Covariance

• Recognition of handwritten digits ’0’ to ’9’
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Composite Covariance

• Recognition of handwritten digits ’0’ to ’9’

• Four representations based on Zernike moments (47),
Karhunen-Loeve coefficients (64), pixel averages (240),
Fourier coefficients (76)

• Previously employed in Tax et al comparing Sum &
Product combinations of classifiers

• In sample size of 200 characters, test size 1800
characters

• Repeated train & test split resampling to compare single
and combination schemes
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• Integration of data within classification setting
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Conclusions

• Integration of data within classification setting

• Bayesian perspective adopted & non-parametric
classification achieved with GP’s

• Efficient approximate inference methods developed for
general multi-class setting

• Inferring linear combination of covariance functions to
integrate possibly heterogeneous feature representations

• Shown to provide superior predictive classification than
standard Sum & Product combination rules

• Achieved state-of-art performance on difficult
protein-fold prediction problem without recourse to
heavy engineering and tuning of classifier settings.
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Conclusions

• Bayesian classification over multiple classes employing
GPs - analytically intractable
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Conclusions

• Bayesian classification over multiple classes employing
GPs - analytically intractable

• Approximations as alternatives to full MCMC - limited to
Laplace

• Multinomial-logit likelihood inappropriate for variational
approximations

• Exploiting data augmentation trick (Albert & Chib,
1993) multinomial-probit likelihood provides nice

solution to GP multi-class problem

• Statistical coupling of GP variables via posterior means
maintains simple a priori factored structure a posteriori
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Conclusions

• Computational scaling favourable, linear in number of
classes, cubic in number of samples
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Conclusions

• Computational scaling favourable, linear in number of
classes, cubic in number of samples

• Online Bayesian estimation reduces to linear scaling in
number of samples and classes

• Empirical comparison with MCMC indicates predictive
likelihood response, over range of hyper-parameters,
better preserved under VB than Laplace approximation

• Variational approximation provides computationally
economic alternative to MCMC

• Integrating heterogeneous data via kernel learning

available for free
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