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Problem Definition

Data Set: {xn, tn}N
n=1 tn ∈ R

Use a generalized linear model:

y(x ; w) =
M∑

i=1

wiφi(x)

Compute the parameters wi

Select M basis functions from a dictionary (M is unknown)
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Review of Methods for the Selection of Basis

Implicit Selection

Basis Pursuit

Relevance Vector
Machine

Least Absolute
Shrinkage and Selection
Operator

Support Vector
Machines

Explicit Selection

Matching Pursuits

Orthogonal Least
Squares

Regularized OLS

Kernel Matching Pursuit

Gaussian Process
Approximations
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Objectives of this work

Within the Bayesian framework, the evidence for the model has
been suggested to compare different models.

Objective: Find a model with high evidence.

How: Use an explicit search process guided by the evidence.

Use different search strategies to assess the effect of evidence
maximization.
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Bayesian Interpolation

D. J. Mackay. Bayesian Interpolation. Neural Computation, 1992.

Three levels of inference:

first level Posterior distribution over the parameters

second level Adaptation of hyperparameters

third level Comparison of different models
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First Level of Inference

Assume i.i.d. additive Gaussian noise with variance σ2

t = y(x ; w) + ν = Φw + ν

P(t |w , β) = (2πβ−1)−N/2 exp
{
−β

2
‖t − Φw‖2

}
where β = 1/σ2.

Assume zero-mean Gaussian prior over w :

P(w |α) = (2πα−1)−M/2 exp
(
−α‖w‖2

2

)
where α is the inverse variance.
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First Level of Inference

Find the posterior over the parameters:

P(w |t , α, β) =
P(t |w , β)P(w |α)

P(t |α, β)

which is Gaussian

P(w |t , α, β) = (2π)−M/2|Σ|−1/2 exp
{
−1

2
(w − µ)T Σ−1(w − µ)

}
,

where

Σ = (βΦT Φ + αI)−1 and µ = βΣΦT t .
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Second Level of Inference

Marginal likelihood: P(t |α, β) =
∫

P(t |w , β)P(w |α)dw

P(t |α, β) = (2π)−N/2|β−1I+α−1ΦΦT |−1/2 exp
{
−1

2
tT (β−1I + α−1ΦΦT )−1t

}
.

Find the most probable hyperparameters α and β:

P(α, β|t) =
P(t |α, β)P(α, β)

P(t)
. (1)

Maximize the marginal likelihood:

αnew =
γ

‖w‖2 and βnew =
N − γ

‖t − Φw‖2 , (2)

where
γ = M − α trΣ (3)
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Third Level of Inference

Find the most probable model:

P(Hi |t) =
P(t |Hi)P(Hi)

P(t)
,

where P(Hi) is the prior probability of model Hi .
The evidence is an intractable integral

P(t |Hi) =

∫
P(t |α, β,Hi)P(α, β|Hi)dαdβ,

which Mackay approximates with a separable Gaussian around
P(t |αMP , βMP ,Hi):

P(t |Hi) ' P(t |αMP , βMP ,Hi)P(αMP , βMP |Hi)2π
√

σ2
log ασ2

log β ,
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Search Strategies

Commonly used in feature selection. Some examples:

PTA(l,r) Plus l and Take Away r . Forward Selection is
equivalent to PTA(1,0)

SFFS Sequential Forward Floating Selection.

Oscillating(c) Oscillate around a fixed number of elements.
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Implementation

Operations to add the best basis and to remove the worst
basis (according to the evidence).

Create a dictionay of basis functions (e.g., RBF centered at
the input data).

Select the search strategy.
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Method pumadyn-8 kin-8
fh fm nh nm fh fm nh nm

PTA(1,0) 39 80 59 68 48 71 120 264
PTA(2,1) 11 59 24 34 39 46 103 203

SFFS 2.5 4.5 8.5 13 10 22 76 159
Oscillating(5) 39 80 59 68 48 71 120 264

RVM 3.5 6.5 9.0 13 9.2 24 90 185
SVM 593 726 668 608 708 667 682 836
OLS 11 14 15 26 18 35 49 169

Table: Mean number of basis functions of the resulting models on
different tasks.
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PTA(1,0) - 0 0 6 3 6 4 0
PTA(2,1) 3 - 0 3 1 9 4 0

SFFS 9 5 - 11 3 13 6 0
Oscillating(5) 4 0 0 - 0 7 1 0

RVM 8 3 1 6 - 12 3 0
ABF 1 1 0 2 2 - 2 0
SVM 5 2 0 6 2 5 - 0
OLS 21 17 8 19 13 19 11 -

Table: The left-to-right order is the same as the top-to-bottom. Each
cell shows the number of tasks where the column method performed
better (p-value lower than 0.05) than the row method.
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Discussion

SSGE are competitive with RVM and SVM.
The evidence prefers simpler models.
Highest evidence does not correspond with lowest error.
P(Hi) should not be the same for all the models.
P(Hi |t) ∝ P(Hi)P(t |Hi). But the assumption is practical.

Training Time Model Size Generalization error
PTA(1,0) SFFS Oscillating(5)
PTA(2,1) PTA(2,1) PTA(1,0)

Oscillating(5) PTA(1,0) / Oscillating(5) PTA(2,1)
SFFS PTA(1,0) / Oscillating(5) SFFS

Table: The methods ordered for each preference.
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Thank you!
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