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Objectives

I A common problem with many SVM implementations is the
relatively large number of support vectors they generate, as
the cost of computing the output is O(|SV |) kernel operations

I In this work we will explore a new approach to obtain kernel
perceptrons with a smaller number of support vectors

I In order to achieve this task, we start studying the SVM
training method and how it performs the margin maximization
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Support Vector Machines

I SVM goal: given a sample S = {(Xi , yi ) : i = 1, . . . , N},
where yi = ±1, to construct a classifier c(X ) = W · X + b
with a maximum margin

m(W , b) = min

{
yi (W · Xi + b)

‖W ‖ : i = 1, . . . ,N

}

I Alternatively, to solve

(W ∗, b∗) = argmin(W ,b)‖W ‖2

with (W , b) satisfying yi (W · Xi + b) ≥ 1 for all i
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Convex Hull Norm Minimization

I Writing S̃ = {yiXi : i = 1, . . . , N} and C (S̃) its convex hull
the maximum margin vector W ∗ verifies

W ∗ = arg min{‖W ‖ : W ∈ C (S̃)}

I Moreover, the optimal W ∗ verifies m(W ∗) = ‖W ∗‖
I Thus, for any W ∈ C (S) we have

m(W ) ≤ m(W ∗) = ‖W ∗‖ ≤ ‖W ‖

I Hence, if g(W ) = ‖W ‖ −m(W ), then 0 = g(W ∗) ≤ g(W )

I Therefore, minimizing g(W ) gives an optimum marging
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Schlesinger–Kozinec (SK) Algorithm

I The SK algorithm seeks to minimize g(W ) in two steps
I At step t it selects an Xl such that l = arg mini{yiWt · Xi}
I Then it updates Wt as

Wt = (1− λ∗)Wt−1 + λ∗yl(t)Xl(t)

with λ∗ = arg minλ{‖(1− λ)Wt−1 + λXl(t)‖}
I The above updates are applied even if all patterns are

correctly classified and ensure Wt ∈ C (S̃)

I The SK algorithm assures that

‖Wt‖ ≤ ‖Wt−1‖
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Kernel SK I

I By Mercer’s theorem, a definite positive kernel k(x , z) defines
a non–linear mapping X = (φ(x), 1) = Φ(x) such that

X · Z = 1 + φ(x) · φ(z) = 1 + k(x , z) = K (x , z)

I Writing Wt =
∑

j αt
j yjXj =

∑
l α

t
j yjΦ(xj), the update of Wt

can be written as

Wt = (1− λ∗) Wt−1+λ∗ylXl = (1− λ∗)
∑

j

αt−1
j yjXj+λ∗ylXl

I Therefore αt
j = (1− λ∗) αt−1

j + λ∗δj l and the cost of α
updates is O(N)

D. Garćıa, A. González, J.R. Dorronsoro Optimal support vector selection for kernel perceptrons



Kernel SK II

I To speed up the new pattern selection, we keep a margin
vector Dt

j = yjWt · Xj , j = 1, . . . , N

I We choose the new pattern as

l = l(t) = arg mini

{
Dt−1

i

}

λ∗ can be obtained as

λ∗ = min

(
1,

‖Wt−1‖2 − Dt−1
l

‖Wt−1‖2 − 2Dt−1
l + ‖Xl‖2

)

and the margin updates are

Dt
j = (1− λ∗)Dt−1

j + λ∗ylyjK (xl , xj)

while we have

‖Wt‖2 = (1− λ∗)2‖Wt−1‖2 + 2(1− λ∗)λ∗Dt
l + (λ∗)2‖Xl‖2
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Kernel SK III

I The cost of these operations is O(C N), with C the cost of a
kernel computation.

I The cost of a T iteration SK pcp training becomes
O(T C N), while memory requirements are just O(N).

I On the other hand, if the resulting perceptron is to be applied
to a size S test set, the cost will then be O(|SV | C S), which
may be similar to that of the whole training if N ' |SV |.
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Support vector selection I

I Wt is defined in terms of the support vectors, as

Wt =
∑

j

αt
j yjXj

I The fact that Wt ∈ C (S̃) yields

∑

j

αt
j = 1,

where αt
j are non-negative coefficients.

I Is it possible to see this as a probabilistic distribution?
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Support vector selection II

I The relative relevance of the support vectors, as given by the
αi coefficients, should be approximately the same. In other
words, αi ' 1/N is to be expected

I We can use this to set up a support vector removal method,
which consists in removing those vectors with small αi

coefficients.

I First idea: rather than trying a direct computation to find out
which vectors to remove, we will iteratively remove support
vectors with “small” αi , retraining the kernel perceptron using
as training sample the remaning vectors.
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Support vector removal method

I Let S0 = {(X 0
i , y0

i )} denote the initial training sample; we set
an initial factor δ0 < 1 and after training finishes, we shall
only keep in the next training sample S1 those (X 0

i , y0
i ) for

which αi ≥ τ0 = δ0/N.

I We will iteratively apply this procedure with δk values that
increase to 1, which will result in a decreasing sequence
S0 ⊃ S1 ⊃ . . . of training sets

I Adittionaly, we can use the removed vectors as a validation
set Vk = S0 r Sk , which can be used to state a stop criterion.
For instance, the iterative procedure would end when the
validation accuracy got too low.
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Numerical experiments I

I We shall work with six datasets from the UCI repository.

I We shall use the gaussian kernel

k(x , y) = exp

(
−‖x − y‖2

σ2

)
;

with an arbitrary value of σ2 = 50
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Numerical experiments II

I To guarantee linear separability we extend the projected
patterns X = Φ(x) as X ′

i =
(
Xi , 0, . . . , yi

2C , . . . , 0
)

I This requires to work with extended kernel

K ′(x , z) = K (x , z) +
1

2C
δxz ;

we shall use a common C value of 10
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Numerical experiments III

I We shall perform a 10–fold cross–validation randomly splitting
the datasets in 10 subsets

I For each dataset, we shall perform up to 20 retrainings with
10.000 epochs each, starting at δ0 = 0.5, and using a fixed
increment ν = 0.025 to thresholds τk = δk/N, with
δk = δ0 + kν.

I After each removal and retraining step we shall compute the
validation set accuracy avs and the test set accuracy ats ,
averaged over the 10 subsets.

I The procedure ends when all retrainings are completed, or
when |ak−1

vs − ak
vs | − σk−1

vs > 0, where σi
vs is the standard

deviation of the validation set accuracy at step i.
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Results

Dataset #patterns #initial SV #final SV %SV

heartdis 290 164.9 109.1 66.16

breastW 690 117.1 89.4 76.24

ionosphere 340 134.8 84.5 62.69

sonar 200 136.1 88.0 64.65

pima 760 542.0 416.0 76.75

thyroid 7190 1121.5 953.8 85.04

Table: Number of patterns, SV and SV reduction rates for six datasets.
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Heart disease results

factor validation acc. test acc. # supp. vect stop c

0.0 – 0.793 ± 0.106 164.9 ± 6.9 –

0.650 0.991 ± 0.011 0.790 ± 0.106 116.2 ± 2.7 -0.001

0.675 0.988 ± 0.010 0.786 ± 0.104 112.1 ± 3.7 -0.005

0.700 0.980 ± 0.014 0.772 ± 0.104 109.1 ± 3.9 0.001

Table: Evolution of support vector reduction for Heart disease.

I Optimal factor = 0.700

I Support Vector Reduction = 66.16 %

I Final accuracy = 0.772

D. Garćıa, A. González, J.R. Dorronsoro Optimal support vector selection for kernel perceptrons



Wisconsin breast cancer results

factor validation acc. test acc. # supp. vect stop c

0.0 – 0.958 ± 0.021 117.1 ± 11.2 –

0.925 1.000 ± 0.000 0.959 ± 0.022 90.5 ± 5.2 0.000

0.950 1.000 ± 0.000 0.961 ± 0.022 89.8 ± 5.5 0.000

0.975 1.000 ± 0.000 0.961 ± 0.022 89.4 ± 5.2 0.000

Table: Evolution of support vector reduction for Wisconsin breast cancer.

I Optimal factor = 0.975

I Support Vector Reduction = 76.24 %

I Final accuracy = 0.961
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Ionosphere results

factor validation acc. test acc. # supp. vect stop c

0.0 – 0.918 ± 0.037 134.8 ± 7.5 –

0.600 0.999 ± 0.004 0.915 ± 0.038 87.6 ± 3.2 -0.001

0.625 0.997 ± 0.006 0.915 ± 0.038 86.4 ± 3.2 -0.002

0.650 0.992 ± 0.014 0.918 ± 0.032 84.5 ± 3.4 0.001

Table: Evolution of support vector reduction for Ionosphere.

I Optimal factor = 0.650

I Support Vector Reduction = 62.69 %

I Final accuracy = 0.918
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Pima indian diabetes results

factor validation acc. test acc. # supp. vect stop c

0.0 – 0.775 ± 0.072 542.0 ± 9.2 –

0.525 0.998 ± 0.004 0.767 ± 0.070 448.8 ± 7.4 -0.004

0.550 0.995 ± 0.004 0.764 ± 0.074 432.3 ± 7.2 -0.001

0.575 0.991 ± 0.005 0.770 ± 0.067 416.0 ± 8.6 0.001

Table: Evolution of support vector reduction for Pima indian diabetes.

I Optimal factor = 0.575

I Support Vector Reduction = 76.75 %

I Final accuracy = 0.770
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Heart disease evolution
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Figure: Accuracy evolution in validation (upper curve) and test (lower
curve) for the Heart disease dataset.
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Wisconsin breast cancer disease evolution
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Figure: Accuracy evolution in validation (upper curve) and test (lower
curve) for the Wisconsin breast cancer dataset.
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Ionosphere evolution
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Figure: Accuracy evolution in validation (upper curve) and test (lower
curve) for the Ionosphere dataset.
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Pima indian diabetes evolution
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Figure: Accuracy evolution in validation (upper curve) and test (lower
curve) for the Pima indian diabetes dataset.
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Conclusions

I A common problem of kernel classifier construction methods
is the high number of final support vectors they must use,
resulting in a very high cost of new patterns classification.

I We have shown that the number of final support vectors can
considerably be reduced while retaining a good classification
performance.

I The work presented here has to be seen as being of an
exploratory nature.

I Future work:
I To look for a better stopping criterion.
I To investigate other methods in the convex hull setting, such

as “budget algorithms”, in order to minimize the number of
support vectors
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