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What is Volatility? (I/II)
• Intuitive definition: How much can a security price vary?
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What is Volatility? (I/II)
• Intuitive definition: How much can a security price vary?
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• Formal definition: Standard deviation of the return series,

conditional on all the information available on the return

process up to the previous time period.
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What is Volatility? (II/II)

• Return series:

rt = log

(

ct

ct−1

)
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What is Volatility? (II/II)

• Return series:

rt = log

(

ct

ct−1

)

• Volatility:

σt =
√

V ar(rt|Ft−1)
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The Volatility Prediction Problem

• Volatility prediction aims to estimate σt+1 at time t
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The Volatility Prediction Problem

• Volatility prediction aims to estimate σt+1 at time t

• However true volatility σt+1 is unobservable, even at
time t + 1!
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The Volatility Prediction Problem

• Volatility prediction aims to estimate σt+1 at time t

• However true volatility σt+1 is unobservable, even at
time t + 1!

• This makes difficult even evaluating predictions coming
from different models
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The Volatility Prediction Problem

• Volatility prediction aims to estimate σt+1 at time t

• However true volatility σt+1 is unobservable, even at
time t + 1!

• This makes difficult even evaluating predictions coming
from different models

• Volatility prediction is useful for:

• Risk management
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The Volatility Prediction Problem

• Volatility prediction aims to estimate σt+1 at time t

• However true volatility σt+1 is unobservable, even at
time t + 1!

• This makes difficult even evaluating predictions coming
from different models

• Volatility prediction is useful for:

• Risk management

• Option pricing
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The Volatility Prediction Problem

• Volatility prediction aims to estimate σt+1 at time t

• However true volatility σt+1 is unobservable, even at
time t + 1!

• This makes difficult even evaluating predictions coming
from different models

• Volatility prediction is useful for:

• Risk management

• Option pricing

• Trading and hedging strategies

October 2006 – p. 5/27
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The GARCH Model (I/II)
• GARCH model was proposed by Bollerslev in 1986 as a

generalization of Engle’s ARCH model (1982). GARCH stands for
Generalized AutoRegresive Conditional Heteroskedasticity.
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The GARCH Model (I/II)
• GARCH model was proposed by Bollerslev in 1986 as a

generalization of Engle’s ARCH model (1982). GARCH stands for
Generalized AutoRegresive Conditional Heteroskedasticity.

• This model assumes that the return series can be modelled as:

rt = C + εt

where p(εt|Ft−1) is N(0, σ2

t ) and C is the (usually neglected) bias
of the distribution.
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The GARCH Model (I/II)
• GARCH model was proposed by Bollerslev in 1986 as a

generalization of Engle’s ARCH model (1982). GARCH stands for
Generalized AutoRegresive Conditional Heteroskedasticity.

• This model assumes that the return series can be modelled as:

rt = C + εt

where p(εt|Ft−1) is N(0, σ2

t ) and C is the (usually neglected) bias
of the distribution.

• The square of the volatility, σ2

t , is then modelled as:

σ̂2

t = α0 +

Q
∑

i=1

αiε
2

t−1
+

P
∑

j=1

βj σ̂
2

t−1

which is a generic GARCH(P ,Q) model. P = 0 yields ARCH.
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The GARCH Model (II/II)
• GARCH(1,1) models are usually preferred

• Fewer parameters (Three: α0, α1, β1)

• Reliable out-of-sample forecasts
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The GARCH Model (II/II)
• GARCH(1,1) models are usually preferred

• Fewer parameters (Three: α0, α1, β1)

• Reliable out-of-sample forecasts

• Model parameters are selected so that they maximize the
LLF

LLF = log

(

T
∏

t=1

1
√

2πσ̂2
t

e
−

r
2
t

σ̂
2
t

)

= −
T

2
log(2π)−

1

2

T
∑

t=1

(

log σ̂2

t +
r2

t

σ̂2
t

)

where T is the number of time periods (i. e., days).
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The GARCH Model (II/II)
• GARCH(1,1) models are usually preferred

• Fewer parameters (Three: α0, α1, β1)

• Reliable out-of-sample forecasts

• Model parameters are selected so that they maximize the
LLF

LLF = log

(

T
∏

t=1

1
√

2πσ̂2
t

e
−

r
2
t

σ̂
2
t

)

= −
T

2
log(2π)−

1

2

T
∑

t=1

(

log σ̂2

t +
r2

t

σ̂2
t

)

where T is the number of time periods (i. e., days).

• Since σ̂2
t is obtained iteratively, we cannot use gradient

search. LLF maximization is carried out through numerical

optimization, evaluating the LLF at different points {αi, βj}.
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LMS- and RLS- GARCH(1,1) (I/V)

• LLF is maximized when predicted {σ̂2
t } equal {r2

t }
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LMS- and RLS- GARCH(1,1) (I/V)

• LLF is maximized when predicted {σ̂2
t } equal {r2

t }

• Does this mean that the desired value for each σ̂
2
t is

r
2
t ?
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LMS- and RLS- GARCH(1,1) (I/V)

• LLF is maximized when predicted {σ̂2
t } equal {r2

t }

• Does this mean that the desired value for each σ̂
2
t is

r
2
t ?

• No. Though r
2
t is indeed an unbiased estimator of σ

2
t ,

we would be estimating the variance of rt from a single
realization, so r

2
t includes a lot of noise.
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LMS- and RLS- GARCH(1,1) (I/V)

• LLF is maximized when predicted {σ̂2
t } equal {r2

t }

• Does this mean that the desired value for each σ̂
2
t is

r
2
t ?

• No. Though r
2
t is indeed an unbiased estimator of σ

2
t ,

we would be estimating the variance of rt from a single
realization, so r

2
t includes a lot of noise.

• For GARCH(1,1) this is ok, as we are using T of these
noisy estimators to fit a three-parameter model. Noise
averages out.
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LMS- and RLS- GARCH(1,1) (II/V)
• Can we get a better approximation to the true value of σt?
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LMS- and RLS- GARCH(1,1) (II/V)
• Can we get a better approximation to the true value of σt?

• Yes, if we have access to intraday data. Sampling the closing

price m times a day we can obtain the intraday return series:

r(m),t = log

(

c(m),t

c(m),t− 1

m

)

, t =
1

m
,

2

m
. . . T
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LMS- and RLS- GARCH(1,1) (II/V)
• Can we get a better approximation to the true value of σt?

• Yes, if we have access to intraday data. Sampling the closing

price m times a day we can obtain the intraday return series:

r(m),t = log

(

c(m),t

c(m),t− 1

m

)

, t =
1

m
,

2

m
. . . T

• From r(m),t we can define the Cumulative Squared Returns,

which are a much better estimate of σ2
t (but not a prediction!)

CSRt =

m−1
∑

i=0

r2
(m),t− i

m
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LMS- and RLS- GARCH(1,1) (II/V)
• Can we get a better approximation to the true value of σt?

• Yes, if we have access to intraday data. Sampling the closing

price m times a day we can obtain the intraday return series:

r(m),t = log

(

c(m),t

c(m),t− 1

m

)

, t =
1

m
,

2

m
. . . T

• From r(m),t we can define the Cumulative Squared Returns,

which are a much better estimate of σ2
t (but not a prediction!)

CSRt =

m−1
∑

i=0

r2
(m),t− i

m

• GARCH predictions are indeed closer to CSRt than to r2
t
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LMS- and RLS- GARCH(1,1) (III/V)
• We are now ready to derive an LMS-GARCH(1,1) algorithm.

We can express conventional GARCH(1,1) as:

σ̂2
t = α0 + α1r

2
t−1 + β1σ̂

2
t−1
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LMS- and RLS- GARCH(1,1) (III/V)
• We are now ready to derive an LMS-GARCH(1,1) algorithm.

We can express conventional GARCH(1,1) as:

σ̂2
t = α0 + α1r

2
t−1 + β1σ̂

2
t−1

• Which can be rearranged as

σ̂2
t = w

T











1

r2
t−1

σ̂2
t−1











where w = [α0 α1 β1]
T . This clarifies that we are making a

recursive filtering of past data.
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LMS- and RLS- GARCH(1,1) (IV/V)
• If we express the error at each step t as:

et = σ̂2
t − CSRt

we can dynamically update the weight vector w by using

either LMS or RLS online rules.
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LMS- and RLS- GARCH(1,1) (IV/V)
• If we express the error at each step t as:

et = σ̂2
t − CSRt

we can dynamically update the weight vector w by using

either LMS or RLS online rules.

• This is in contrast with traditional GARCH because

• We are minimizing MSE, instead of maximizing LLF

• Thus, we make use of a desired output, CSRt

• Prediction is dynamical, instead of having alterning

blocks of estimation and prediction
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LMS- and RLS- GARCH(1,1) (V/V)

Some considerations about the proposed approximation:

• In RLS-GARCH(1,1), some stability issues appear if its

exponential weighting parameter λ is not big enough

• Related with the above, both LMS- and RLS- GARCH(1,1)

may need bounding applied to its β1 parameter to avoid

instability

• An apparent shortcoming is the need for extra data, as “high

frequency” sampling is required. This should not be a

problem, as this data is readily available, but a modified

version of the algorithm which does not use intraday data is

also tested (r2
t is used instead of CSRt)
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Experiments (I/VI)
• To evaluate the performance of the proposed algorithms versus

the standard GARCH(1,1), we will make a quarterly study of the
volatility of two european futures indices: IBEX35 PLUS and DJ
EURO STOXX50.

October 2006 – p. 13/27



D
ep

ar
ta

m
en

t
o

f
S

ig
n

al
T

h
eo

ry
an

d
C

o
m

m
u

n
ic

at
io

n
s

Experiments (I/VI)
• To evaluate the performance of the proposed algorithms versus

the standard GARCH(1,1), we will make a quarterly study of the
volatility of two european futures indices: IBEX35 PLUS and DJ
EURO STOXX50.

• For testing purposes we will take the eight quarters comprised in
2002 and 2003, showing both bearish and bullish markets

October 2006 – p. 13/27
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Experiments (II/VI)
• For each quarter, we will make daily volatility predictions,

and estimate the NMSE and LLF during that period.

NMSE =

∑

t(σ̂
2
t − CSRt)

2

∑

t(CSRt − CSRt)2

with CSRt =
1

T

∑

t

CSRt

LLF = −
T

2
log(2π) −

1

2

T
∑

t=1

(

log σ̂2
t +

r2
t

σ̂2
t

)
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Experiments (III/VI)
• GARCH(1,1) needs a period for training, in order to obtain

an estimation of model parameters that will be applied in the

test quarter.

• As training set we have used the previous quarter (3

months), the three previous quarters (9 months) and the

seven previous quarters (21 months)

• This is because there is a trade off in the training length of

the GARCH model

• Longer training sets let the model learn appropiate

stable-along-time parameters

• Shorter training sets give the model the opportunity to

adapt to recent changes
October 2006 – p. 15/27



D
ep

ar
ta

m
en

t
o

f
S

ig
n

al
T

h
eo

ry
an

d
C

o
m

m
u

n
ic

at
io

n
s

Experiments (IV/VI)

Adaptive algorithms are named as follows:

• LMSG1 refers to the LMS-GARCH, implemented as an LMS

adaptive filter, trained with MSE cost function and using

CSRt as desired values (we sample the return series every

30 min).

• LMSG2 is the same as above but using r2
t as desired values.

• RLSG1 refers to the RLS-GARCH trained with the usual

RLS implementation, minimizing a weighted least squared

cost function and using CSRt as desired values.

• RLSG2 is the same as above but using r2
t as desired values.

October 2006 – p. 16/27



D
ep

ar
ta

m
en

t
o

f
S

ig
n

al
T

h
eo

ry
an

d
C

o
m

m
u

n
ic

at
io

n
s

Experiments (V/VI)
• These adaptive algorihtms need one parameter. In the LMS

case, the step size µ. In the RLS case, the exponential

weighting factor λ

• These parameter are fixed to suitable values using previous

periods of data. Selected values are:

• LMSG1, µ = 0.2 and LMSG2, µ = 0.05. In this case the

selected learning step is slower for the LMSG2 because

the desired values for this algorithm are r2
t , which are

noisier than CSRt.

• RLSG1, λ = 0.92 and RLSG2, λ = 0.97. Again, more

memory, or equivalently, less adaptation pace, is required

for the algorithm with noisier objective
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Experiments - Results
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Experiments - Results
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Experiments - Results
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From the previous slides we can see that

• LMSG1 outperforms all the other approaches.

October 2006 – p. 26/27



D
ep

ar
ta

m
en

t
o

f
S

ig
n

al
T

h
eo

ry
an

d
C

o
m

m
u

n
ic

at
io

n
s

Experiments (VI/VI)
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• LMSG1 outperforms all the other approaches.

• GARCH yields an NMSE above 1.0 much often than LMSG1

does.
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From the previous slides we can see that

• LMSG1 outperforms all the other approaches.

• GARCH yields an NMSE above 1.0 much often than LMSG1

does.

• Although new algorithms are minimizing a NMSE measure,

they provide better performance in terms of LLF than

GARCH, which is based on LLF.
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From the previous slides we can see that

• LMSG1 outperforms all the other approaches.

• GARCH yields an NMSE above 1.0 much often than LMSG1

does.

• Although new algorithms are minimizing a NMSE measure,

they provide better performance in terms of LLF than

GARCH, which is based on LLF.

• The validity of CSRt as a better σt estimation is validated

experimentally through the results, as it provides a

significant increase in accuracy for the LLF measure. (It also

increases accuracy for the NMSE measure, but this could be

interpreted as due to NMSE’s own definition).
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Conclusions

GARCH(1,1) models have proved to provide accurate
forecasts, and are difficult to beat by more sophisticated
models. The proposed models (in particular, LMSG1) have
the following advantages:

• Coefficients calculations are simpler. Just one LMS
step per prediction is required.
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GARCH(1,1) models have proved to provide accurate
forecasts, and are difficult to beat by more sophisticated
models. The proposed models (in particular, LMSG1) have
the following advantages:

• Coefficients calculations are simpler. Just one LMS
step per prediction is required.

• On-line and adaptative. There is no need to choose
the length of the previous training period and, more
importantly, to decide when the model is no longer
valid.
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Conclusions

GARCH(1,1) models have proved to provide accurate
forecasts, and are difficult to beat by more sophisticated
models. The proposed models (in particular, LMSG1) have
the following advantages:

• Coefficients calculations are simpler. Just one LMS
step per prediction is required.

• On-line and adaptative. There is no need to choose
the length of the previous training period and, more
importantly, to decide when the model is no longer
valid.

• Better overall accuracy.
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