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9| What is Volatility? (1/11)

Intuitive definition: How much can a security price vary?
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Low Volatility
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What is Volatility? (I/11)

Intuitive definition: How much can a security price vary?

40 50 60
Low Volatilit

Formal definition: Standard deviation of the return series,
conditional on all the information available on the return
process up to the previous time period.
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P/ What is Volatility? (11/1)

Ct
ry = log [ —
(CH)

Return series:
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P What is Volatility? (1I/11)

Return series:

Ct
ry = log [ —
(CH)

Volatility:

or =/ Var(r|F_1)



7] The Volatility Prediction Problem

Volatility prediction aims to estimate 0, at time ¢
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The Volatility Prediction Problem

Volatility prediction aims to estimate 0, at time ¢

However true volatility 0,1 Is unobservable, even at
time ¢ + 1!
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The Volatility Prediction Problem

Volatility prediction aims to estimate 0, at time ¢

However true volatility 0,1 Is unobservable, even at
time ¢ + 1!

This makes difficult even evaluating predictions coming
from different models
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The Volatility Prediction Problem

Volatility prediction aims to estimate 0, at time ¢

However true volatility 0,1 Is unobservable, even at
time ¢ + 1!

This makes difficult even evaluating predictions coming
from different models

Volatility prediction is useful for:

Risk management
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The Volatility Prediction Problem

Volatility prediction aims to estimate 0, at time ¢

However true volatility 0,1 Is unobservable, even at
time ¢ + 1!

This makes difficult even evaluating predictions coming
from different models
Volatility prediction is useful for:

Risk management

Option pricing
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9| The Volatility Prediction Problem

Volatility prediction aims to estimate 0, at time ¢

However true volatility 0,1 Is unobservable, even at
time ¢ + 1!

This makes difficult even evaluating predictions coming
from different models
Volatility prediction is useful for:

Risk management

Option pricing

Trading and hedging strategies

October 2006 — p. 5/27



The GARCH Model (/1)

GARCH model was proposed by Bollerslev in 1986 as a
generalization of Engle’s ARCH model (1982). GARCH stands for
Generalized AutoRegresive Conditional Heteroskedasticity.
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The GARCH Model (/1)

GARCH model was proposed by Bollerslev in 1986 as a
generalization of Engle’s ARCH model (1982). GARCH stands for
Generalized AutoRegresive Conditional Heteroskedasticity.

This model assumes that the return series can be modelled as:
T+ — C + &¢

where p(g;|F;_1) is N(0,07) and C is the (usually neglected) bias
of the distribution.
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The GARCH Model (/1)

GARCH model was proposed by Bollerslev in 1986 as a
generalization of Engle’s ARCH model (1982). GARCH stands for
Generalized AutoRegresive Conditional Heteroskedasticity.

This model assumes that the return series can be modelled as:
T+ — C + &¢

where p(g;|F;_1) is N(0,07) and C is the (usually neglected) bias
of the distribution.

The square of the volatility, o2, is then modelled as:

op —040‘|‘Zaz5t 1 —I—Zﬁjat 1

which is a generic GARCH(P,()) model. P = 0 yields ARCH.

=
@)
)
-
I_
©
-
2
0p)
(-
@)
=
)
=
e
S
Q.
&)
A

n
-
=
©
2
-
S
=
=
o)
O
(=
-
©

October 2006 — p. 6/27



@] The GARCH Model (II/lI)

GARCH(1,1) models are usually preferred
Fewer parameters (Three: a9, a1, 51)

Reliable out-of-sample forecasts
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The GARCH Model (lI/I1)

GARCH(1,1) models are usually preferred
Fewer parameters (Three: a9, a1, 51)

Reliable out-of-sample forecasts

Model parameters are selected so that they maximize the
LLF

'r% 2

O D+ T 1 — r
LLF = log <H € %2) = ——log(2m)—— Z (log 62 + A—g)
t=1 V 2 2 t=1 g

257 t

where T’ is the number of time periods (i. e., days).
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The GARCH Model (lI/I1)

GARCH(1,1) models are usually preferred
Fewer parameters (Three: a9, a1, 51)

Reliable out-of-sample forecasts

Model parameters are selected so that they maximize the
LLF

Ty 2

L R ¢ T | r
LLF = log <H e %2) = ——log(2m)—— Z (log 67 + A—g)
t=1V 2 25 g

257 t

where T’ is the number of time periods (i. e., days).

Since 67 is obtained iteratively, we cannot use gradient
search. LLF maximization is carried out through numerical
optimization, evaluating the LLF at different points {«, 3;}.
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@) LMS- and RLS- GARCH(1,1) (I/V)

LLF is maximized when predicted {57} equal {r?}
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@) LMS- and RLS- GARCH(1,1) (I/V)

LLF is maximized when predicted {57} equal {r?}

Does this mean that the desired value for each 67 is
29
Ty ¢
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LMS- and RLS- GARCH(1,1) (I/V)

LLF is maximized when predicted {57} equal {r?}

Does this mean that the desired value for each 67 is
29
Ty ¢

No. Though r7 is indeed an unbiased estimator of o7,
we would be estimating the variance of r;, from a single
realization, so r7 includes a lot of noise.
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LMS- and RLS- GARCH(1,1) (I/V)

LLF is maximized when predicted {57} equal {r?}

Does this mean that the desired value for each 67 is
29
Ty ¢

No. Though r7 is indeed an unbiased estimator of o7,
we would be estimating the variance of r;, from a single
realization, so r7 includes a lot of noise.

For GARCH(1,1) this is ok, as we are using 7' of these
noisy estimators to fit a three-parameter model. Noise
averages out.
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@) L Ms- and RLS- GARCH(1,1) (1I/V)

Can we get a better approximation to the true value of ¢;?
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LMS- and RLS- GARCH(L,1) (II/V)

Can we get a better approximation to the true value of ¢;?

Yes, if we have access to intraday data. Sampling the closing
price m times a day we can obtain the intraday return series:

C(m)¢ 12
T(m),t:l()g<c( 1) ; tzgya---T
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LMS- and RLS- GARCH(L,1) (II/V)

Can we get a better approximation to the true value of ¢;?

Yes, if we have access to intraday data. Sampling the closing
price m times a day we can obtain the intraday return series:

C(m)¢ 12
T(m),t:l()g<c( 1) ; tzgya---T

m),t—m

From r(,,) , we can define the Cumulative Squared Returns,
which are a much better estimate of o7 (but not a prediction!)

m—1
CSRy =) 7\, i
i=0 -
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LMS- and RLS- GARCH(L,1) (II/V)

Can we get a better approximation to the true value of ¢;?

Yes, if we have access to intraday data. Sampling the closing
price m times a day we can obtain the intraday return series:

C(m)¢ 12
T(m),t:l()g<c( 1) ; tzgya---T

m),t—m

From r(,,) , we can define the Cumulative Squared Returns,
which are a much better estimate of o7 (but not a prediction!)

m—1
CSRy =) 7\, i
i=0 -

GARCH predictions are indeed closer to CSR; than to r?
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@] LMS- and RLS- GARCH(1,1) (IlI/V)

We are now ready to derive an LMS-GARCH(1,1) algorithm.
We can express conventional GARCH(1,1) as:

9 2 A2
0; = ap +airy_ + f10;_4
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L MS- and RLS- GARCH(1,1) (II/V)

We are now ready to derive an LMS-GARCH(1,1) algorithm.
We can express conventional GARCH(1,1) as:

A2 2 A2
0; = ap +airy_ + f10;_4

Which can be rearranged as

1
~2 T 2)
~2

0¢—1

where w = [ag a7 £1]?. This clarifies that we are making a
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@) Ms- and RLS- GARCH(1,1) (IV/V)

If we express the error at each step ¢ as:
e; = 67 — CSRy

we can dynamically update the weight vector w by using
either LMS or RLS online rules.
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| MS- and RLS- GARCH(1,1) (IV/V)

If we express the error at each step ¢ as:
e; = 67 — CSRy

we can dynamically update the weight vector w by using
either LMS or RLS online rules.
This is in contrast with traditional GARCH because
We are minimizing MSE, instead of maximizing LLF
Thus, we make use of a desired output, CSR;

Prediction is dynamical, instead of having alterning
blocks of estimation and prediction
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LMS- and RLS- GARCH(L,1) (V/V)

Some considerations about the proposed approximation:

In RLS-GARCH(1,1), some stability issues appear If its
exponential weighting parameter X is not big enough

Related with the above, both LMS- and RLS- GARCH(1,1)
may need bounding applied to its 3; parameter to avoid
Instability

An apparent shortcoming is the need for extra data, as “high
frequency” sampling is required. This should not be a
problem, as this data is readily available, but a modified
version of the algorithm which does not use intraday data is
also tested (r7 is used instead of CSR;)
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Experiments (I/V1)

To evaluate the performance of the proposed algorithms versus
the standard GARCH(1,1), we will make a quarterly study of the
volatility of two european futures indices: IBEX35 PLUS and DJ
EURO STOXX50.
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Experiments (I/VI)

To evaluate the performance of the proposed algorithms versus
the standard GARCH(1,1), we will make a quarterly study of the
volatility of two european futures indices: IBEX35 PLUS and DJ
EURO STOXX50.

For testing purposes we will take the eight quarters comprised in
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Experiments (lI/VI)

For each quarter, we will make daily volatility predictions,
and estimate the NMSE and LLF during that period.

>_+(67 — CSRy)?
S".(CSR; — CSR;)?

NMSE =

. 1
with CSR; = - zt: CSR,
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Experiments (ll1/V1)

GARCH(1,1) needs a period for training, in order to obtain
an estimation of model parameters that will be applied in the
test quarter.

As training set we have used the previous quarter (3
months), the three previous guarters (9 months) and the
seven previous quarters (21 months)

This Is because there is a trade off in the training length of
the GARCH model

Longer training sets let the model learn appropiate
stable-along-time parameters

Shorter training sets give the model the opportunity to
adapt to recent changes
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Experiments (IV/VI)

Adaptive algorithms are named as follows:

LMSGL1 refers to the LMS-GARCH, implemented as an LMS
adaptive filter, trained with MSE cost function and using

CSR; as desired values (we sample the return series every
30 min).

LMSG?2 is the same as above but using r# as desired values.

RLSG1 refers to the RLS-GARCH trained with the usual
RLS implementation, minimizing a weighted least squared
cost function and using CSR; as desired values.

RLSG?2 is the same as above but using 77 as desired values.
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Experiments (V/VI)

These adaptive algorihtms need one parameter. In the LMS
case, the step size u. In the RLS case, the exponential
weighting factor A

These parameter are fixed to suitable values using previous
periods of data. Selected values are:

LMSG1, ¢ = 0.2 and LMSG2, 1 = 0.05. In this case the
selected learning step is slower for the LMSG2 because
the desired values for this algorithm are rZ, which are
noisier than CSR;.

RLSG1, A = 0.92 and RLSG2, A = 0.97. Again, more
memory, or equivalently, less adaptation pace, is required
for the algorithm with noisier objective
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I GARCH 3 Mo.
I GARCH 9 Mo.

[ GARCH 21 Mo.

[C_]LMSG CSR,
CJwiser
[ RLSG CSR,

EuroStoxx 50 — LLF (bigger is better)
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Experiments - Results

EuroStoxx 50 — LLF (bigger is better)

I GARCH 3 Mo.
I GARCH 9 Mo.
[ GARCH 21 Mo.

[C_]LMSG CSR,
[JLMSG rf
I RLSG CSR,
B RLSG rf

1
Monthly average
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I GARCH 3 Mo.
I GARCH 9 Mo.

[ GARCH 21 Mo.

[C_]LMSG CSR,
CJwiser
[ RLSG CSR,

Ibex 35 Plus — LLF (bigger is better)
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Experiments - Results

Ibex 35 Plus — LLF (bigger is better)

I GARCH 3 Mo.
I GARCH 9 Mo.
[ GARCH 21 Mo.

[C_]LMSG CSR,
[JLMSG rf
I RLSG CSR,
B RLSG rf

1
Monthly average
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EuroStoxx 50 — NMSE (smaller is better)

I GARCH 3 Mo.
I GARCH 9 Mo.
[ GARCH 21 Mo.

[C_]LMSG CSR,
CwisGcr
I RLSG CSR,
I RLSG 1
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Experiments - Results

EuroStoxx 50 — NMSE (smaller is better)

I GARCH 3 Mo.
I GARCH 9 Mo.
[ GARCH 21 Mo.

[C_]LMSG CSR,
[JLMSG rf
I RLSG CSR,
B RLSG rf

1
Monthly average
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Ibex 35 Plus — NMSE (smaller is better)

I GARCH 3 Mo.
I GARCH 9 Mo.
[ GARCH 21 Mo.

[C_]LMSG CSR,
CwisGcr
I RLSG CSR,
I RLSG 1
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Experiments - Results

Ibex 35 Plus — NMSE (smaller is better)

I GARCH 3 Mo.
I GARCH 9 Mo.
[ GARCH 21 Mo.

[C_]LMSG CSR,
[JLMSG rf
I RLSG CSR,
B RLSG rf

1
Monthly average
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Experiments (VI/VI)

From the previous slides we can see that

LMSG1 outperforms all the other approaches.
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Experiments (VI/VI)

From the previous slides we can see that
LMSG1 outperforms all the other approaches.

GARCH yields an NMSE above 1.0 much often than LMSG1
does.
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Experiments (VI/VI)

From the previous slides we can see that
LMSG1 outperforms all the other approaches.

GARCH yields an NMSE above 1.0 much often than LMSG1
does.

Although new algorithms are minimizing a NMSE measure,
they provide better performance in terms of LLF than
GARCH, which is based on LLF.

=
@)
)
-
I_
©
-
2
0p)
(-
@)
=
)
=
e
S
Q.
&)
A

n
-
=
©
2
-
S
=
=
o)
O
(=
-
©

October 2006 — p. 26/27



Experiments (VI/VI)

From the previous slides we can see that
LMSG1 outperforms all the other approaches.

GARCH yields an NMSE above 1.0 much often than LMSG1
does.

Although new algorithms are minimizing a NMSE measure,
they provide better performance in terms of LLF than
GARCH, which is based on LLF.

The validity of CSR; as a better o; estimation is validated
experimentally through the results, as it provides a
significant increase in accuracy for the LLF measure. (It also
Increases accuracy for the NMSE measure, but this could be
Interpreted as due to NMSE’s own definition).
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Conclusions

GARCH(1,1) models have proved to provide accurate
forecasts, and are difficult to beat by more sophisticated
models. The proposed models (in particular, LMSG1) have
the following advantages:

Coefficients calculations are simpler. Just one LMS
step per prediction is required.

=
@)
)
-
I_
©
-
2
0p)
(-
@)
=
)
=
e
S
Q.
&)
A

n
-
=
©
2
-
S
=
=
o)
O
(=
-
©

October 2006 — p. 27/27



Conclusions

GARCH(1,1) models have proved to provide accurate
forecasts, and are difficult to beat by more sophisticated
models. The proposed models (in particular, LMSG1) have
the following advantages:

Coefficients calculations are simpler. Just one LMS
step per prediction is required.

On-line and adaptative. There Is no need to choose
the length of the previous training period and, more
Importantly, to decide when the model is no longer
valid.
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Conclusions

GARCH(1,1) models have proved to provide accurate
forecasts, and are difficult to beat by more sophisticated
models. The proposed models (in particular, LMSG1) have
the following advantages:

Coefficients calculations are simpler. Just one LMS
step per prediction is required.

On-line and adaptative. There Is no need to choose
the length of the previous training period and, more
Importantly, to decide when the model is no longer
valid.
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Better overall accuracy.
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