Learning Causal Graphical Models with Latent Variables

Sam Maes, Stijn Meganck, Philippe Leray sammaes@vub.ac.be

Laboratoire d'Informatique, Traitement de l'Information, Systèmes.

LEARNING'06 EPSEVG

02/10/2006 Vilanova i la Geltrú

Overview

2 Background

3 Modeling with Latent Variables

4 Causal Learning with Latent Variables

Overview

- 2 Background
- **3** Modeling with Latent Variables
- 4 Causal Learning with Latent Variables

Introduction

Subtasks of causal modeling with latent variables:

- Structure learning from:
 - observational data
 - experimental data
- Learning parameters
- Probabilistic inference
- Causal inference

Problem

No integral approach for all these subtasks in the presence of latent variables.

- Causal inference: semi-Markovian causal models
- Structure learning from observational data: ancestral graphs

Overview

1 Introduction

3 Modeling with Latent Variables

4 Causal Learning with Latent Variables

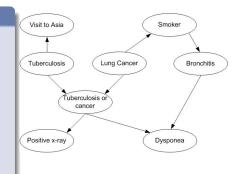
INSTITUT NATIONAL dos sciences Appliquées

Sam Maes

Bayesian Networks (BN)

Probabilistic graphical model

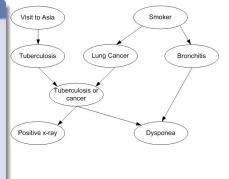
- Independence model
- Probability distribution
 - $P(V) = \prod_{X \in V} P(X|Pa(X))$
- Probabilistic inference
 - Predict consequence of observation
 - P(cancer|smoker,x-ray)



Causal Bayesian networks (CBN)

Causal probabilistic graphical model

- BN where every → corresponds to an immediate causal relation:
 - X → Y: manipulating variable X changes the distribution of variable Y
- Causal inference
 - Predict consequence of manipulation
 - P(cancer|do(TBC=true))

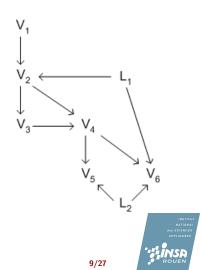


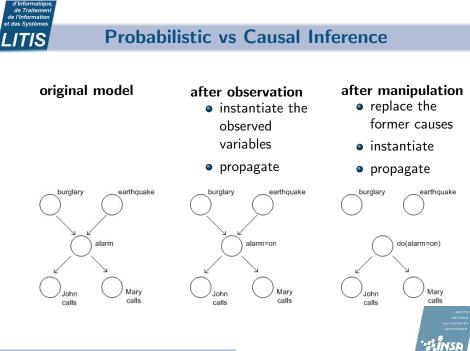
ΓIS

Modeling Latent Variables

Some variables unobserved

- Model variables implicitly, i.e. no estimating of cardinality and distributions.
- Two main approaches:
 - Semi-Markovian Causal Models
 - Maximal Ancestral Graphs



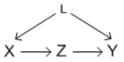


Sam Maes

With latent variables

Causal inference becomes more complicated:

- replace the former causes
- instantiate
- propagate



P(Y = y | do(X = x)): manipulate variable X and study the effect on Y.

Overview

1 Introduction

3 Modeling with Latent Variables

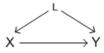
4 Causal Learning with Latent Variables

INSTITUT NATIONAL des Sciences Appliquées

Sam Maes

Our assumptions

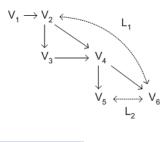
- stability: independences are structural
- max. 1 immediate connection between any 2 variables in the underlying DAG
- no selection bias
- discrete variables



Representation for causal inference

semi-Markovian causal models (SMCM)

- directed edge represents an immediate causal relation
- bi-directed edge represents a latent common cause
- importance: every model with arbitrary latent variables can be transformed into a SMCM
- a joint probability distribution: e.g. $P(V_1, \ldots, V_6)$



INSTITUT NATIONAL døg Sciences Appliquées

Sam Maes

Inference in SMCMs

causal inference algorithm exists (Tian & Pearl), but:

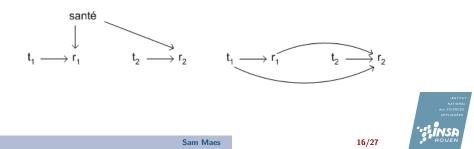
- no efficient parametrisation
- no probabilistic inference algorithm
- no learning algorithm

Sam Maes

Representation for learning

The classs of DAGs is not complete under marginalisation of latent variables.

I.e., a DAG of the observable variables can not represent exactly all the independences present between the variables.

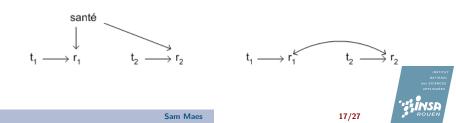


Maximal Ancestral Graphs (MAG)

Maximal ancestral graph without conditioning

Graph with:

- \bullet directed edges: have an ancestral meaning \neq causal
- bi-directed edges: represent latent common cause
- maximum 1 edge between 2 variables: ancestral relation absorbs latent common cause
- every absent edge represents an independence relation



Learning from Observational Data

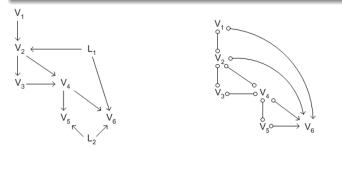
Constraint-based algorithm

- Learns from independencies in the data
- Fast Causal Inference (FCI) algorithm
- Rules for orienting edges
- Problem: only learns upto Markov equivalence

Markov Equivalence Class

Complete partial ancestral graph (CPAG):

- 3 possible edge marks: o, -, >
- how to fill in the edges with o if we want the causal model ?



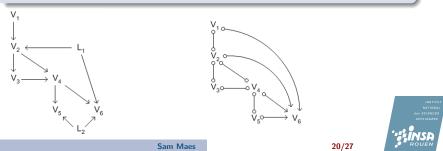
INSTITUT NATIONAL dus Sciences Appliquées

Sam Maes

Uncertainty in CPAGs

3 possible underlying explanations for each edge:

- \bullet immediate causal relation $V_1 \rightarrow V_2$
- latent variable $V_2 \leftrightarrow V_6$
- "inducing path" between V_1 et V_6
 - V₁ can not be separated from V₆ by conditioning on observable variables
 - observationally it seems that there is an immediate connection



Inference in MAGs

- only learning upto Markov equivalence class
- limited causal inference algorithm (only those causal expressions that are equal for the complete equivalence class)
- no probabilistic inference
- no parametrisation for discrete variables

Therefore:

Use observational learning to learn a CPAG, then use experiments to transform into a SMCM to allow inference.

INSTITUT NATIONAL dos sciences Appliquées

Overview

1 Introduction

2 Background

3 Modeling with Latent Variables

4 Causal Learning with Latent Variables

INSTITUT NATIONAL dos sciences Appliquées

Sam Maes

$CPAG \rightarrow SMCM$

Perform experiments to differentiate between the different cases:

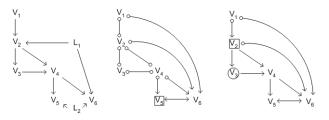
- Type 1: resolve $o \rightarrow$
- Type 2: resolve *o*-*o*
- Remove edges due to inducing paths

$\mathsf{CPAG} \to \mathsf{SMCM} \ (\mathsf{Type} \ 1)$

Type 1: resolve $o \rightarrow$

- $exp(A) \not\rightsquigarrow B: A \leftrightarrow B$
- $exp(A) \rightsquigarrow B$:
 - $\not\exists$ pot. dir. path $A \dashrightarrow B$ of length $\geq 2: A \longrightarrow B$
 - ∃pot. dir. path A --→ B of length ≥ 2:
 block each pot. dir. path by conditioning on a set D
 - $exp(A)|D \rightsquigarrow B: A \rightarrow B$

•
$$exp(A)|D \not\rightarrow B: A \leftrightarrow B$$



24/27

Sam Maes

CPAG \rightarrow **SMCM** (Type 2)

Type 2: resolve *o*-*o*

• easily transformed into Type 1

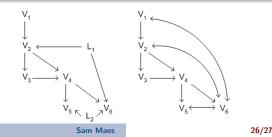
25/27

Sam Maes

$\mathsf{CPAG} \to \mathsf{SMCM} \text{ (ctd.)}$

Remove edges due to inducing paths

- recognize the edges $A \leftrightarrow B$ or $A \rightarrow B$ possibly created due to an inducing path
- block each inducing path between A, B with experiments E
- block each other path between A, B by conditioning on D
- exp(E)|D:
 - no dependence in the exper. data: remove the arc
 - still dependence in the exper. data: leave the arc



INSTITUT NATIONAL des Sciences Appliquées

Conclusion

Conclusion

 an approach to learn SMCMs from a combination of observational and experimental data

Other and future work

- parametrisation for SMCMs
- optimise the order of the experiments wrt several decision criteria
- infer edges after each experiment

INSTITUT NATIONAL des Sciences Appliquées

