Linear Projections and Gaussian Process Reconstructions

Joaquin Quiñonero-Candela ${ }^{1}$
Neil D. Lawrence ${ }^{2}$ Carl E. Rasmussen ${ }^{3}$
${ }^{1}$ Technical University of Berlin and Fraunhofer FIRST.IDA (Sept-Dec 2007 visiting Universidad Carlos III de Madrid) (from January 2007 Microsoft Research Cambridge)
${ }^{2}$ University of Sheffield
(from January 2007 University of Manchester)
${ }^{3}$ Max Planck Institute for Biological Cybernetics (from April 2007 Cambridge University)
Learning06 - Vilanova i la Geltrú
Tuesday October 3rd, 2006

Acknowledgements

Thanks PASCAL for funding visit of JQC to NL in Sheffield, in the summer 2005, where the back-constraints idea was cooked up

Linear Dimensionality Reduction

Dimensionality reduction: $D \gg q$

- Consider high-dimensional data $\mathbf{Y}=\left[\mathbf{y}_{1}, \ldots, \mathbf{y}_{N}\right]$ in \mathcal{R}^{D}
- low dimensional latent representation $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right]$ in \mathcal{R}^{q}

Linear Projection

- Find a matrix \mathbf{P} of size $q \times D$ and project

$$
\mathbf{x}_{i}=\mathbf{P} \mathbf{y}_{i}
$$

- Standard choice are principal components of data (PCA)
- Rows of \mathbf{P} are the first q eigenvectors of $\mathbf{Y} \mathbf{Y}^{\top}$ (up to scaling)
- Minimum mean squared reconstruction error

Linear Reconstructions

Linear map from latent to data

- The reconstruction of the \mathbf{y}_{i} from the \mathbf{x}_{i} is also linear
- Reconstructed hyperplane is spanned by principal eigenvectors
- This is often a poor reconstruction!
- But most dimensional reduction methods don't even offer a map between latent and data

Example: hand-written digits

- 16×16 gray-scale images of the $2,3,4$ and 5 s
- 2-dimensional PCA projection
- Linear reconstruction from PCA

A Poor Reconstruction vs a Cool Reconstruction

Reconstruction as a Regression Problem

- Once we have linearly projected, we have a set of pairs of inputs and outputs $\left\{\mathbf{x}_{i}, \mathbf{y}_{i}\right\}$
- Learn a mapping through non-linear regression!

Bayesian Regression with Gaussian Process Priors

left samples from our prior, a Gaussian Process middle samples from the posterior, data observed (crosses) and uniform noise model (horizontal bars)
right predictive distribution, empirically computed from the posterior samples. Here mean and 2 std dev given
parameters of the prior? Either specify hyperprior on, or learn the parameters of the prior by maximizing the evidence

Gaussian Processes as Smooth Priors Over Functions

Smoothness enforcing priors

- if \mathbf{x}_{i} and \mathbf{x}_{j} are similar, then $f\left(\mathbf{x}_{i}\right)$ and $f\left(\mathbf{x}_{j}\right)$ are similar

$$
p\left(\left.\left[\begin{array}{l}
f\left(\mathbf{x}_{i}\right) \\
f\left(\mathbf{x}_{j}\right)
\end{array}\right] \right\rvert\, \mathbf{x}_{i}, \mathbf{x}_{j}, \theta\right)=\mathcal{N}\left(\mathbf{0},\left[\begin{array}{ll}
\mathbf{K}_{i i} & \mathbf{K}_{i j} \\
\mathbf{K}_{i j} & \mathbf{K}_{j j}
\end{array}\right]\right)
$$

- Covariance function determines kind of smoothness, example:

$$
\mathbf{K}_{i j}=\operatorname{Cov}\left\{f\left(\mathbf{x}_{i}\right), f\left(\mathbf{x}_{j}\right)\right\}=k\left(\mathbf{x}_{i}, \mathbf{x}_{j}, \theta\right)=v^{2} \exp \left(-\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}}{2 \lambda^{2}}\right)
$$

Evidence and predictive distribution

- Assuming an independent Gaussian noise model

$$
y_{i}=f\left(\mathbf{x}_{i}\right)+\epsilon_{i} \quad \epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right) \quad p(\mathbf{y} \mid \mathbf{f})=\mathcal{N}\left(\mathbf{f}, \sigma^{2} \mathbf{I}\right)
$$

- the evidence is a Gaussian Process as well

$$
p(\mathbf{y} \mid \mathbf{X}, \theta)=\int p(\mathbf{y} \mid \mathbf{f}) p(\mathbf{f} \mid \mathbf{X}, \theta) \mathrm{d} \mathbf{f}=\mathcal{N}\left(\mathbf{0}, \mathbf{K}+\sigma^{2} \mathbf{I}\right)
$$

- the predictive distribution at a new input \mathbf{x}_{*} is a Gaussian too

$$
\begin{aligned}
& \quad p\left(f\left(\mathbf{x}_{*}\right) \mid \mathbf{x}_{*}, \mathbf{X}, \mathbf{y}, \theta\right)=\mathcal{N}\left(m_{*}, v_{*}\right) \\
& m_{*}=K_{*, N}\left[\mathbf{K}_{N, N}+\sigma^{2} \mathbf{I}\right]^{-1} \mathbf{y} \\
& v_{*}=K_{*, *}-K_{*, N}\left[\mathbf{K}_{N, N}+\sigma^{2} \mathbf{I}\right]^{-1} K_{N, *}
\end{aligned}
$$

Gaussian Process Latent Variable Model (GP-LVM)

- Until now I have been given the embedding \mathbf{X}
- In addition to reconstructing, can I also learn the embedding?

- learn the inputs \mathbf{X} (and the hyperparameters θ)

Gaussian Process Latent Variable Model (GP-LVM)

- Until now I have been given the embedding \mathbf{X}
- In addition to reconstructing, can I also learn the embedding?

A product of GPs model (Lawrence, NIPS 16, 2004)

- Predict each dimension of \mathbf{Y} with an independent GP
- Take \mathbf{X} to be the common inputs to all D regression models

$$
p(\mathbf{Y} \mid \mathbf{X}, \theta)=\prod_{d=1}^{D} p\left(\mathbf{y}^{d} \mid \mathbf{X}, \theta\right)
$$

- learn the inputs \mathbf{X} (and the hyperparameters θ)

Motion capture data

- Subject breaking into a run from standing
- Data dimension: 102, 3D position of 34 markers
- Data from Ohio State University Advanced Computing Center for the Arts and Design
http://accad.osu.edu/research/mocap/mocap_data.htm

Strength of the GP-LVM

- A powerful, probabilistic reconstruction mapping from latent to data space

Limitations of the GP-LVM

- Optimization in a large space (dim at least $N \times q$)
- There are extremely many local optima (initialize carefully)
- No explicit mapping from data to latent space
- The GP-LVM is is not similarity preserving

The GP-LVM is dissimilarity preserving (a limitation?)

- Because it is a smooth mapping from \mathbf{X} to \mathbf{Y}
- Advantage of avoiding overlapping effect (LLE, Isomap, etc)
- Less sensitive to noise than local similarity preserving embeddings
- Inability to preserve local structure in the data \rightarrow Lawrence initializes with PCA!

Symbiosis

Linear projections need GP reconstructions, and the GP-LVM needs linear projections

Learn an optimal projection for a GP reconstruction

- Instead of initializing with PCA, why not directly learn the optimal linear projection for GP reconstruction?
- Replace \mathbf{X} by $\mathbf{X}=\mathbf{P} \mathbf{Y}$ and learn \mathbf{P} by max GP evidence
- Smaller $q \times D$ optimization space (can init at random)

What kind of linear projections do we get?

- More dissimilarity preserving than PCA!
- Examples: motion capture, digits, and swiss roll

Digits Revisited

Digits Revisited

Swiss Roll

Discussion

- Powerful, probabilistic generative GP model latent to data
- Computer animated graphics, imitation learning
- Prior over poses (tracking, pose recovery) (Growchow et al, SIGGRAPH'03)(Urtasun et al, ICCV'05)
- A linear map from data to latent optimized for GP reconstruction
- Heals the GP-LVM from some of its curses
- Particular case of the back-constrained GP-LVM (Lawrence and Quiñonero-Candela, ICML 2006)
- Is this still a proper probabilistic model?

