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Linear Dimensionality Reduction

Dimensionality reduction: D > q
o Consider high-dimensional data Y = [ys,...,yn] in RP

@ low dimensional latent representation X = [x1,...,xy] in RY

Linear Projection

@ Find a matrix P of size g X D and project
xi =Pyj

e Standard choice are principal components of data (PCA)

@ Rows of P are the first g eigenvectors of YY T (up to scaling)

@ Minimum mean squared reconstruction error
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Linear Reconstructions

Linear map from latent to data

@ The reconstruction of the y; from the x; is also linear

@ Reconstructed hyperplane is spanned by principal eigenvectors
@ This is often a poor reconstruction!
o

But most dimensional reduction methods don’t even offer a
map between latent and data

Example: hand-written digits
@ 16x16 gray-scale images of the 2, 3, 4 and bs

@ 2-dimensional PCA projection

@ Linear reconstruction from PCA
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A Poor Reconstruction vs a Cool Reconstruction

linear GP

L
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Reconstruction as a Regression Problem

@ Once we have linearly projected, we have a set of pairs of
inputs and outputs {x;,y;}

@ Learn a mapping through non-linear regression!
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Bayesian Regression with Gaussian Process Priors

Lt
1
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left samples from our prior, a Gaussian Process

middle samples from the posterior, data observed (crosses)
and uniform noise model (horizontal bars)

right predictive distribution, empirically computed from the
posterior samples. Here mean and 2 std dev given

parameters of the prior? Either specify hyperprior on, or learn the
parameters of the prior by maximizing the evidence
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Gaussian Processes as Smooth Priors Over Functions

Smoothness enforcing priors

e if x; and x; are similar, then f(x;) and f(x;) are similar

(Lt |w0) =2 (0. [ k2]

@ Covariance function determines kind of smoothness, example:

Xi—X;j 2
Ky = Cov {£(x)). ()} = k(x;.3.0) = v? exp ~ L591°)
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Evidence and predictive distribution

@ Assuming an independent Gaussian noise model
yi = f(xi) +€i ei ~ N(0,0%) p(yIf) = N(f,0°1)
@ the evidence is a Gaussian Process as well
p(y1.6) = [ p(yIf) p(FIX. 0)dF = V(0. K + 021
@ the predictive distribution at a new input x, is a Gaussian too
p(f (%)%, X, y, 0) = N(m., v)

m, = Ky [Kny + 02 1]ty
Vi = K*,* - N N [KN7N + 02 I]il KN7*
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Gaussian Process Latent Variable Model (GP-LVM)

@ Until now | have been given the embedding X J

@ In addition to reconstructing, can | also learn the embedding?
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Gaussian Process Latent Variable Model (GP-LVM)

@ Until now | have been given the embedding X

@ In addition to reconstructing, can | also learn the embedding?

A product of GPs model (Lawrence, NIPS 16, 2004)

@ Predict each dimension of Y with an independent GP

@ Take X to be the common inputs to all D regression models

D

p(Y|X,9) = H p(yd’X70)
d=1

@ learn the inputs X (and the hyperparameters 6)




The GP-LVM in action

Motion capture data
@ Subject breaking into a run from standing
@ Data dimension: 102, 3D position of 34 markers

@ Data from Ohio State University Advanced Computing Center
for the Arts and Design

http://accad.osu.edu/research/mocap/mocap_data.htm

Strength of the GP-LVM

@ A powerful, probabilistic reconstruction mapping from latent
to data space



http://accad.osu.edu/research/mocap/mocap_data.htm

Limitations of the GP-LVM

e Optimization in a large space (dim at least N X q)
@ There are extremely many local optima (initialize carefully)
@ No explicit mapping from data to latent space
°

The GP-LVM is is not similarity preserving

The GP-LVM is dissimilarity preserving (a limitation?)
@ Because it is a smooth mapping from X to Y
@ Advantage of avoiding overlapping effect (LLE, Isomap, etc)

@ Less sensitive to noise than local similarity preserving
embeddings

@ Inability to preserve local structure in the data
— Lawrence initializes with PCA!
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Symbiosis

Linear projections need GP reconstructions, and the GP-LVM
needs linear projections

Learn an optimal projection for a GP reconstruction

@ Instead of initializing with PCA, why not directly learn the
optimal linear projection for GP reconstruction?

@ Replace X by X =PY and learn P by max GP evidence

@ Smaller g x D optimization space (can init at random)

What kind of linear projections do we get?
@ More dissimilarity preserving than PCA!

@ Examples: motion capture, digits, and swiss roll
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Digits Revisited




d GP-LVM
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Swiss Roll
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Discussion

Powerful, probabilistic generative GP model latent to data

o Computer animated graphics, imitation learning
o Prior over poses (tracking, pose recovery) (Growchow et al,
SIGGRAPH’03)(Urtasun et al, ICCV'05)

A linear map from data to latent optimized for GP
reconstruction

Heals the GP-LVM from some of its curses

Particular case of the back-constrained GP-LVM
(Lawrence and Quifionero-Candela, ICML 2006)

Is this still a proper probabilistic model?
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