
Learning Dialogue, Vilanova 2006

Exploration / Exploitation Inference
for Statistical Software Testing

Michèle Sebag

TAO : CNRS - INRIA - Université Paris-Sud Orsay

http://tao.lri.fr

Joint work with
Nicolas Baskiotis, Marie-Claude Gaudel, Sandrine Gouraud

Overview

� Software Testing

� Exploration/Exploitation for Statistical Software Testing

� ML for Computer Science Autonomic Computing

Software Testing

A key task
Bugs may kill (airplanes, shuttles, stock market,...)
ST costs 50% percent of the development time

A challenging task [Beizer 90]

Pesticide Paradox
Every method you use to prevent or find bugs leaves a residue
of subtler bugs against which those methods are ineffectual.
Complexity Barrier
Software complexity (and therefore that of bugs) grows to the
limits of our ability to manage that complexity.

Software Testing, Classification

By scope WHICH
unit testing, component testing, integration testing, system testing.

By life-cycle phase WHEN
requirements phase testing, design phase testing, program phase testing,
evaluating test results, installation phase testing, acceptance testing,
maintenance testing.

By purpose WHAT
correctness testing, performance testing, reliability testing, security test-
ing.

Correctness Testing

Black-box Functional testing
Given: I/O of the program and specifications
Method: partitioning input space, exploring boundary conditions.
Issues: combinatorial explosion; error in specifications (30%)

White-box Structural testing
Given: the program+ oracle
Method: generate test cases (input vectors)
Criteria: coverage wrt program (syntactic or intrusive)
Issues: combinatorial explosion; undecidability.

Annotated-box Formal testing
Given program + properties (formulas)
Method: Prove that program satisfies properties
Issues: combinatorial explosion; undecidability.

Criteria

Find criteria related to correctness...

� Product Tested 80% of the lines of code

� Plan Run 80% of the test cases

� Results Discovered 417 bugs

� Efforts Worked 80h a week for 4 weeks.

Standard: coverage-based

� Percentage of the lines of code

� Percentage of the transitions

� Percentage of the paths with bounded length

Hybrid Statistical/Structural Approach

Principle [Denise et al. 04]

� Program� Finite State Automaton

� Path! constraint satisfaction pb

� CSP! Solution = value of input variables = test case
exerting the program path

vf

IN
IT

v
a0

t1
e1

i2
i3

t4
e4

i5
i2

2

i2
1

s6

b6
b2

3

i7
i2

4

t8
e8

t2
5

e2
5

t9
e9

t1
1

i1
2

e1
1

e1
3

i1
8

t2
6

e2
6

e2
8

i2
9

i3
0

i3
3

i3
4

I5 I7

I2
7

i0I0 C
1

C
4

I2
2

B
23

B
6

s2
3

I2
4

C
25

C
26

C
8

i2
0

C
9

C
11

i1
0

C
13

C
28i2

7
i3

2

t1
3

t2
8

i1
9

i1
4

C
15

t1
5

e1
5

i3
1

i1
7

i1
6

Example

Code
read(x; y) 1
if (x < 0) 2

thenx := �x; y := 1=y; 3p := 1; 4
while (x > 0) 5

dop := p � y;x := x� 1; 6
print p; 7

Paths = 1:2:4:5:7
Test case

Solution:x = 0;

Hybrid Statistical/Structural Approach, 2

Program = FSA =fNodes�, Edges� �2 g
Assumption: consider strings/paths with length� T
Approach : Uniform distribution in finite structured spaces

[Flajolet et al. 94]

Letvf (resp.vs): accepting (resp. starting) node.suc(v): set of nodesw such thatv:w is an edge.

DefineN(v; t) = Number of pathsv : : : vf of lengtht
Then: N(v; 1) = 1 iff vf 2 suc(v)N(v; t + 1) = Pw2suc(v)N(w; t)

Uniform sampling of bounded program paths

For t = 1 : : : TN(v; t) = Number of pathsv : : : vf of lengtht

V

W

X

Sw ?
S

Sx ?

Uniform Sampling
Init : s [0] = vs
For i = 1 : : : T

Candidates =suc(s [i� 1]) = fwi;1; ::wi;Kig
Selectwi;j with probability/ N(wi;j; T � i)s [i + 1] = wi;j

EndFor
Returns

Hybrid Statistical/Structural Approach, 3

Principle
Init: Test set =fg
Repeat

Generate program paths
Transforms into a constraint satisfaction pb CSPs
Call Oracle (constraint solver)
If CSPs satisfiable

Find Solution = test case
Test set � Solution

// Else s unfeasible path
Until stop criterion

Criterion
Pr (feasible path exerted by Test set).

Discussion

PROs
Uniform distribution.
No redundancy: each test case exerts a different program path

CONs
Mild: Undecidability set a time limit on constraint solver
SEVERE: Syntax is a very poor approximation of semantics=) huge fraction of unfeasible paths=) modify the program by hand

At last, ML comes into play !

1st: Discriminant/Active learning

Given

�
FSA:f�; Eg.L = f(xi; yi); xi 2 �T ; yi = �1g

Find : ŷ estimating whether a program path is feasible

Wanted

�
Now: Save the oracle cost
Later: Facilitate the generation of feasible paths

ML Settings
strings� RPNI, RedBlue
propositionalisation� C4.5, Ripper

Fails!
Insufficiently many positive examples
Active learning ? [Dasgupta 05]

2nd: Generative learning

Given

�
FSA:f�; Eg.L = f(xi; yi); xi 2 �T ; yi = �1g

Find The distributionD of feasible paths

Principle:
1. UseDt to generatext
2. Oracle: computeyt feasible/unfeasible
3. UpdateDt ! Dt+1.

Position of the problem
Goal

Find the maximal number of (distinct) feasible paths

Wrt online learning [Cesa-Bianchi Lugosi 06]

The criterion is not to minimize the regret

Wrt reinforcement learning
or estimation of distribution algorithms [Larranaga 01]

The goal is dynamic: after a feasible path has been found
it is not new anymore...

Domain knowledge and search space
What makes a path unfeasible?

Limits on Loops
If there are 17 or 19 uranium beams to be examined
the number of times in the loop is 17 or 19.

Violated dependencies
if (x) 1

theny := ::: 2
elsez := ::: 3

[...] 4
if (x) 5

thenu := ::: 6
elsew := ::: 7s = ::12457::: is unfeasible.

Others
The last time a loop occurs, the closing instruction is executed.

Non Markovian problem

Representation: Parikh map
[Hopcroft Ullman 79]

Parikh map: each symbolu in �! integer attribute

au : X 7! INau(s) = number of occurrences ofu in s
[Clark et al. 06]

Extended Parikh map: each(u; k) in �� IN! categorical attribute

au;k : X 7! �au;k(s) = symbol successor of thek-th occurrence ofu
Captures target concepts

loops
dependencies (XOR)
closing instructions (reverse order on paths)

Distribution search space

Parikh map description

s = v w v w v x y w!
av;1 = w; av;2 = w; av;3 = xaw;1 = v; aw;2 = v; aw;3 = ;ax;1 = y; ax;2 = ;; ax;3 = ;ay;1 = w; ay;2 = ;; ay;3 = ;

Distributions :�� ��N ! [0; 1]� n(v; w; i) : number of paths stav;i = w
� f (v; w; i) : number of feasible paths stav;i = w
� �(v; w; i) = f (v; w; i)=n(v; w; i)

EXIST : Exploitation / Exploration Inference
for Statistical Testing

Modules

� Initialise the current distribution

� Select the current symbol

V

W

X

Sw ?
S

Sx ?

� Update the distribution

Criteria
number of feasible NEW paths
[and their diversity]

Selection Module

Given the current strings = vs : : : v v the last symbolav(s) = i with i-th occurrences ins�(v; w; i) frequency of feasible pathss0 stav;i(s0) = w
Select a node amongsuc(v)
� Greedy: argmaxw �(v; w; i)
� BandiST: argmaxw �(v; w; i) +q2 log n(v;�;i)n(v;w;i)

[Auer, Cesa-Bianchi, Fischer 02]

� Roulette Wheel: selectw proportionally to�(v; w; i)

Update Module

Global update afters is labelled
Incrementn(v; w; i)
Incrementf (v; w; i) iff s is feasible and NEW

Local update: look ahead after selectingvn(v; w; i)! ns(v; w; i) = number of pathss0
such that

av;i(s0) = w andaw(s0) � aw(s)
Same forf (v; w; i) and�(v; w; i)

Initialisation Module

Straightforward option
Setn(v; w; i) andf (v; w; i) to the initial number offeasiblepaths.

... fails same problem as finding XORs with decision trees...

Example:([av;1 = w] ^ [av;2 = w]) _ ([av;1 = z] ^ [av;2 = z])
vwvwv : : : feasiblevzvzv : : : feasible

but
vwvzv : : : unfeasiblevzvwv : : : unfeasible

! f (v; w; 1) andf (v; w; 2) not informative...

Seeded Initialization

Principle
Extract a subsetE of positive paths in the same conjunctive concept
Criterion: the least general generalisation ofE must be correct

not covering negative examples

+ +
++

+
+ +

+

+
++

− − −−
−
−

−
−

−

−

−
−

Seeded Initialisation, 2

Seeded Initialization
Randomly order the positive examplesfx1; : : : ; xng
Init : E 0 = fe1g, tc1 = e1;
For i = 2 : : : ntc = lgg(tci�1; ei)

If tc is correct,tci = tc andE 0 = E 0 [feig
Elsetci = tci�1

Uniform Seeded
Same except that the initial order favors the less previously selected

examples

Fake Seeded
As in Seeded initialization, but without the correctness test

Summary of EXIST

Init Module

� Global, Seeded, Uniform Seeded, Fake Seeded

Selection Module

� Greedy, BandiST, Roulette Wheel

Update Module

� Global, Local, Restart

Experimental Validation

Real-world problem: FCT4
13 nodes and 26 edges (after pruning)
Length 120! Pr(s feasible)= 10�5.
target concept: loop and XORs.

Artificial problems randomly generated
nodes in [10,20]; length in [60,120]
target concept: loops and XORs
Feasibility:

cat. I 10�3 � Pr(s feasible) � 10�2
cat. II 10�5 � Pr(s feasible) � 10�3
cat. III 10�15 � Pr(s feasible) � 10�12

Experimental setting and goal
Goal

influence of initial size/balance of examples.

Training sets:
1 2 3 4

feasible 50 200 1000 50
unfeasible 50 200 1000 1000

Assessment
For every option and problem,

1 run: 10,000 paths are generated#f new feasible pathsg recorded
averaged on 10 runs.

 0

 2000

 4000

 6000

 8000

 10000

S
B

S
T

S
G

R
W

B
S

T
G

re
ed

y

S
B

S
T

S
G

R
W

B
S

T
G

re
ed

y

FS
G

S
B

S
T

S
G

R
W

B
S

T
G

re
ed

y

Local Update,RestartLocal Update

N
um

be
r o

f g
en

er
at

ed
 fe

as
ib

le
 p

at
hs

EXIST Variants

Category I

art1
art2
art3

Best options= BandiST, Seeded Greedy, and Roulette Wheel

 0

 2000

 4000

 6000

 8000

 10000

S
B

S
T

S
G

R
W

B
S

T
G

re
ed

y

S
B

S
T

S
G

R
W

B
S

T
G

re
ed

y

FS
G

S
B

S
T

S
G

R
W

B
S

T
G

re
ed

y

Local Update,RestartLocal Update

N
um

be
r o

f g
en

er
at

ed
 fe

as
ib

le
 p

at
hs

EXIST Variants

Category II

art4
art5
art6

Best options= Seeded Greedy with restart

 0

 2000

 4000

 6000

 8000

 10000

S
B

S
T

S
G

R
W

B
S

T
G

re
ed

y

S
B

S
T

S
G

R
W

B
S

T
G

re
ed

y

FS
G

S
B

S
T

S
G

R
W

B
S

T
G

re
ed

y

Local Update,RestartLocal Update

N
um

be
r o

f g
en

er
at

ed
 fe

as
ib

le
 p

at
hs

EXIST Variants

Category III

art7
art8

fct4d

Best options= Seeded Greedy with restart

 0

 2000

 4000

 6000

 8000

 10000

S
B

S
T

S
G

R
W

B
S

T
G

re
ed

y

S
B

S
T

S
G

R
W

B
S

T
G

re
ed

y

FS
G

S
B

S
T

S
G

R
W

B
S

T
G

re
ed

y

Local Update,RestartLocal Update
N

um
be

r o
f g

en
er

at
ed

 fe
as

ib
le

 p
at

hs

EXIST Variants

Problem art5

50/50
50/1000
200/200

1000/1000

Remark: Seeded>>Fake seeded when nb examples%.

Discussion

It worked!

� Extended Parikh Map: a flexible and compact representation

� Seeded initialization: getting rid of non-Markovian issues

� Runtime< 10min
Next

� Convergence

� Diversity study

� Adapt EXIST for other coverage-based criteria

� Benchmarks for software testing

Related Works

� Ernst et al. 1999: Program invariants are learned from traces

� Brehelin et al. 2001: HMM are used to generalize test sequences
for PLA.

� Vardan et al. 2004: Grammatical Inference is used to characterize
paths relevant to constraint checking

� Zheng et al. 2003-6: Use traces to identify bugs (intrusive testing)

� Xiao et al. 05: Active learning for game player modeling (black
box)

Overview

� Software Testing

� Exploration/Exploitation for Statistical Software Testing

� ML for Computer Science Autonomic Computing

ML for Computer Science

Computers and networks
govern communication and information

Complex systems
Large-scale, heterogeneous components, dynamic interactions.

Number of skilled administrators ... doesn’t scale up.

Need for
Autonomous Systems

First step
Self-Aware Systems

How ? ML

from Autonomic computing, ECML / PKDD 2006, I. Rish & G. Tesauro

4

Evolution of Computing

from Autonomic computing, ECML / PKDD 2006, Irina Rish & Gerry
Tesauro.

A case study
(upcoming EGEE-Pascal Challenge)

EGEE, Enabling Grids for e-Science in Europe

� Infrastructure project started in 2001

� 80 partners, 30,000 CPUs all over the world

� Web: www.eu-egee.org

Goal: Grid modelling

Heterogeneous systems: processors, storage, network, services.
State can at most be estimated

Mutualisation paradigm: load depends on collective behavior
... must be estimated on the fly

Needed: a grid model, in order to� Control and maintain the system detect ill-configured units� Predict the application performancesdimension the capacities for jobs� Optimize the system refine the scheduler

Modelling the grid: an ML problem

Input data
Traces of the jobs:

800 Ko per job, including specifications and all events
some hundred thousands jobs per trace
spatio-temporal (redundant) structure

Goals
Classification: jobs aredone, aborted, or lost
Early detection: predict as early as possible
Clustering: provide the user with model chunks and/or outliers

Call to Arms

ML for Autonomic Computing

� The need

� The data

� The expertise

The big question mark: Learning or Optimization ?

