Learning Dialogue, Vilanova 2006

Exploration / Exploitation Inference for Statistical Software Testing

Michèle Sebag

TAO : CNRS - INRIA - Université Paris-Sud Orsay

http://tao.lri.fr

Joint work with

Nicolas Baskiotis, Marie-Claude Gaudel, Sandrine Gouraud

Overview

- Software Testing
- Exploration/Exploitation for Statistical Software Testing
- ML for Computer Science

Autonomic Computing

Software Testing

A key task

Bugs may kill (airplanes, shuttles, stock market,...) ST costs 50% percent of the development time

A challenging task

[Beizer 90]

Pesticide Paradox

Every method you use to prevent or find bugs leaves a residue of subtler bugs against which those methods are ineffectual.

Complexity Barrier

Software complexity (and therefore that of bugs) grows to the limits of our ability to manage that complexity.

Software Testing, Classification

By scope WHICH unit testing, component testing, integration testing, system testing.

By life-cycle phase

requirements phase testing, design phase testing, program phase testing, evaluating test results, installation phase testing, acceptance testing, maintenance testing.

By purpose

WHAT

WHEN

correctness testing, performance testing, reliability testing, security testing.

Correctness Testing

Black-box

Functional testing

Given: I/O of the program and specifications Method: partitioning input space, exploring boundary conditions. Issues: combinatorial explosion; error in specifications (30%)

White-box

Structural testing

Given: the program + oracle Method: generate test cases (input vectors) Criteria: coverage wrt program (syntactic or intrusive) Issues: combinatorial explosion; undecidability.

Annotated-box

Given program + properties (formulas) Method: Prove that program satisfies properties Issues: combinatorial explosion; undecidability. Formal testing

Criteria

Find criteria related to correctness...

- Product Tested 80% of the lines of code
- Plan
- Results
- Efforts

Tested 80% of the lines of code Run 80% of the test cases Discovered 417 bugs

Worked 80h a week for 4 weeks.

Standard: coverage-based

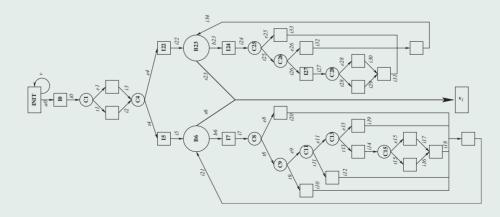
- Percentage of the lines of code
- Percentage of the transitions
- Percentage of the paths with bounded length

Hybrid Statistical/Structural Approach

Principle

[Denise et al. 04]

- Program \equiv Finite State Automaton
- Path \rightarrow constraint satisfaction pb
- CSP \rightarrow Solution = value of input variables = test case exerting the program path



Example

Code

read
$$(x, y)$$

if $(x < 0)$
then $x := -x$; $y := 1/y$;
 $p := 1$;
while $(x > 0)$
do $p := p * y$; $x := x - 1$;
print p ;

1 2 3

4 5

6 7

Path

s = 1.2.4.5.7

Test case

Solution: x = 0;

Hybrid Statistical/Structural Approach, 2

Program = FSA = {Nodes Σ , Edges $\subset \Sigma^2$ } Assumption: consider strings/paths with length $\leq T$

Approach : Uniform distribution in finite structured spaces [Flajolet et al. 94]

Let

 v_f (resp. v_s): accepting (resp. starting) node. suc(v): set of nodes w such that v.w is an edge.

Define

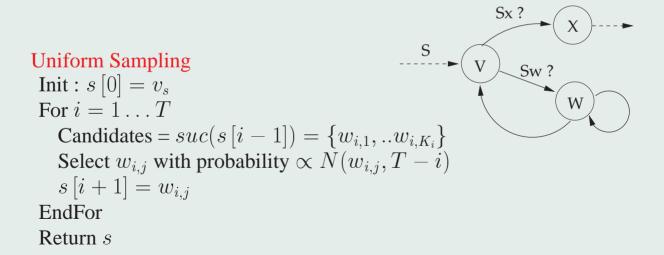
N(v, t) = Number of paths $v \dots v_f$ of length tThen:

$$N(v,1) = 1 \text{ iff } v_f \in suc(v)$$

$$N(v,t+1) = \sum_{w \in suc(v)} N(w,t)$$

Uniform sampling of bounded program paths

For $t = 1 \dots T$ N(v, t) = Number of paths $v \dots v_f$ of length t



Hybrid Statistical/Structural Approach, 3

Principle

Init: Test set = $\{\}$

Repeat

Generate program path *s*

Transform s into a constraint satisfaction pb CSP_s

Call Oracle (constraint solver)

If CSP_s satisfiable

Find Solution = test case

Test set \leftarrow Solution

// Else

Until stop criterion

s unfeasible path

Criterion

Pr (feasible path exerted by Test set).

Discussion

PROs

Uniform distribution.

No redundancy: each test case exerts a different program path

CONs

Mild: Undecidabilityset a time limit on constraint solverSEVERE: Syntax is a very poor approximation of semantics \implies huge fraction of unfeasible paths \implies modify the program by hand

At last, ML comes into play !

1st: Discriminant/Active learning

Given
$$\begin{cases} FSA: \{\Sigma, E\}.\\ \mathcal{L} = \{(x_i, y_i), x_i \in \Sigma^T, y_i = \pm 1\} \end{cases}$$

Find : \hat{y} estimating whether a program path is feasible

Wanted {
 Now: Save the oracle cost Later: Facilitate the generation of feasible paths

ML Settings

```
strings – RPNI, RedBlue propositionalisation – C4.5, Ripper
```

Fails!

Insufficiently many positive examples Active learning ?

[Dasgupta 05]

2nd: Generative learning

Given
$$\begin{cases} FSA: \{\Sigma, E\}.\\ \mathcal{L} = \{(x_i, y_i), x_i \in \Sigma^T, y_i = \pm 1\} \end{cases}$$

Find The distribution \mathcal{D} of feasible paths

Principle :

- 1. Use \mathcal{D}_t to generate x_t
- 2. Oracle: compute y_t
- 3. Update $\mathcal{D}_t \to \mathcal{D}_{t+1}$.

feasible/unfeasible

Position of the problem

Goal

Find the maximal number of (distinct) feasible paths

Wrt online learning

The criterion is not to minimize the regret

[Cesa-Bianchi Lugosi 06]

Wrt reinforcement learning
or estimation of distribution algorithms[Larranaga 01]The goal is dynamic: after a feasible path has been found
it is not new anymore...[Larranaga 01]

Domain knowledge and search space

What makes a path unfeasible?

1 2

7

Limits on Loops

If there are 17 or 19 uranium beams to be examined the number of times in the loop is 17 or 19.

Violated dependencies

if (x)then $y := \dots$ 3 else $z := \dots$ 4 [...] if (x)5 then $u := \dots$ 6 else $w := \dots$ s = ...12457... is unfeasible.

Others

The last time a loop occurs, the closing instruction is executed. Non Markovian problem

Representation: Parikh map

[Hopcroft Ullman 79]

Parikh map : each symbol u in $\Sigma \rightarrow$ integer attribute

$$a_u : X \mapsto \mathbb{N}$$

 $a_u(s) =$ number of occurrences of u in s
[Clark et al. 06]

Extended Parikh map : each (u, k) in $\Sigma \times \mathbb{N} \to$ categorical attribute

$$\begin{array}{rcl} a_{u,k}:X&\mapsto \Sigma\\ a_{u,k}(s)&= \text{ symbol successor of the k-th occurrence of u} \end{array}$$

Captures target concepts

loops dependencies (XOR) closing instructions (reverse order on paths)

Distribution search space

Parikh map description

s = v w v w

Distributions : $\Sigma \times \Sigma \times N \rightarrow [0, 1]$

- n(v, w, i) : number of paths st $a_{v,i} = w$
- f(v, w, i): number of feasible paths st $a_{v,i} = w$
- $\mu(v,w,i) = f(v,w,i)/n(v,w,i)$

EXIST : Exploitation / Exploration Inference for Statistical Testing

Modules

- Initialise the current distribution
- Select the current symbol

• Update the distribution

Criteria

number of feasible NEW paths [and their diversity]

Selection Module

Given

 $\begin{array}{ll} s = v_s \dots v & v \text{ the last symbol} \\ a_v(s) = i & \text{with } i\text{-th occurrences in } s \\ \mu(v,w,i) & \text{frequency of feasible paths } s' \text{ st } a_{v,i}(s') = w \end{array}$

the current string

Select a node among suc(v)

• Greedy: $argmax_w \mu(v, w, i)$

• BandiST:
$$argmax_w \mu(v, w, i) + \sqrt{\frac{2 \log n(v, *, i)}{n(v, w, i)}}$$

[Auer, Cesa-Bianchi, Fischer 02]

• Roulette Wheel: select w proportionally to $\mu(v,w,i)$

Update Module

Global updateafter s is labelledIncrement n(v, w, i)Increment f(v, w, i) iff s is feasible and NEW

Local update: look ahead after selecting v $n(v, w, i) \rightarrow n_s(v, w, i) =$ number of paths s'such that $\begin{array}{l} a_{v,i}(s') = w \text{ and} \\ a_w(s') \ge a_w(s) \end{array}$ Same for f(v, w, i) and $\mu(v, w, i)$

Initialisation Module

Straightforward option

Set n(v, w, i) and f(v, w, i) to the initial number of *feasible* paths.

... fails same problem as finding XORs with decision trees...

Example:

$$([a_{v,1} = w] \land [a_{v,2} = w]) \lor ([a_{v,1} = z] \land [a_{v,2} = z])$$

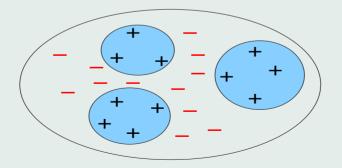
 $vwvwv\dots$ feasible but $vwvzv\dots$ unfeasible $vzvzv\dots$ unfeasible

 $\rightarrow f(v,w,1)$ and f(v,w,2) not informative...

Seeded Initialization

Principle

Extract a subset E of positive paths in the same conjunctive concept Criterion: the least general generalisation of E must be correct not covering negative examples



Seeded Initialisation, 2

Seeded Initialization

Randomly order the positive examples $\{x_1, \ldots, x_n\}$ Init : $E' = \{e_1\}, tc_1 = e_1;$ For $i = 2 \ldots n$ $tc = lgg(tc_{i-1}, e_i)$ If tc is correct, $tc_i = tc$ and $E' = E' \cup \{e_i\}$ Else $tc_i = tc_{i-1}$

Uniform Seeded

Same except that the initial order favors the less previously selected examples

Fake Seeded

As in Seeded initialization, but without the correctness test

Summary of EXIST

Init Module

• Global, Seeded, Uniform Seeded, Fake Seeded

Selection Module

• Greedy, BandiST, Roulette Wheel

Update Module

• Global, Local, Restart

Experimental Validation

Real-world problem : FCT4

13 nodes and 26 edges (after pruning) Length $120 \rightarrow Pr(s \text{ feasible}) = 10^{-5}$. target concept: loop and XORs.

Artificial problems randomly generated nodes in [10,20]; length in [60,120] target concept: loops and XORs Feasibility:

cat. I
$$10^{-3} \leq Pr(s \text{ feasible}) \leq 10^{-2}$$

cat. II $10^{-5} \leq Pr(s \text{ feasible}) \leq 10^{-3}$
cat. III $10^{-15} \leq Pr(s \text{ feasible}) \leq 10^{-12}$

Experimental setting and goal

Goal

influence of initial size/balance of examples.

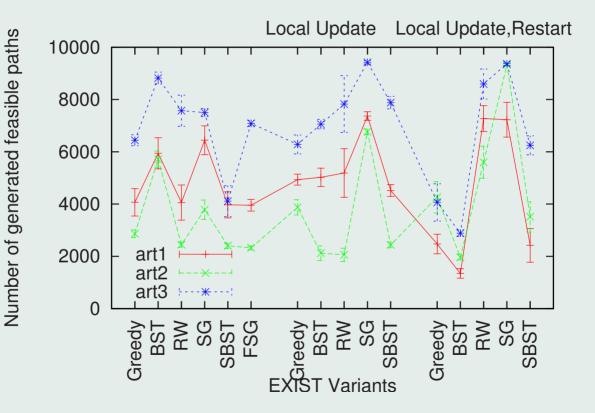
Training sets:		1	2	3	4
	feasible	50	200	1000	50
	unfeasible	50	200	1000	1000

Assessment

For every option and problem,

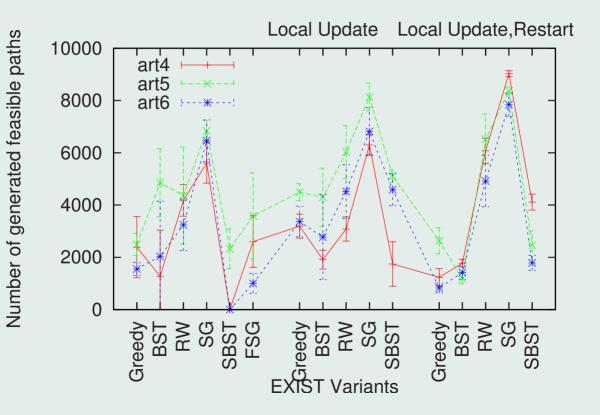
1 run: 10,000 paths are generated #{ new feasible paths} recorded averaged on 10 runs.

Category I



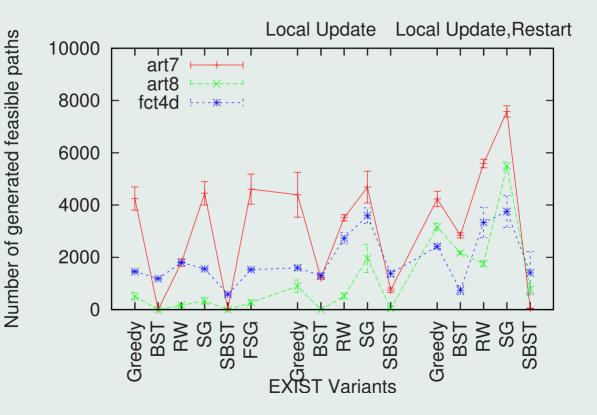
Best options = BandiST, Seeded Greedy, and Roulette Wheel

Category II



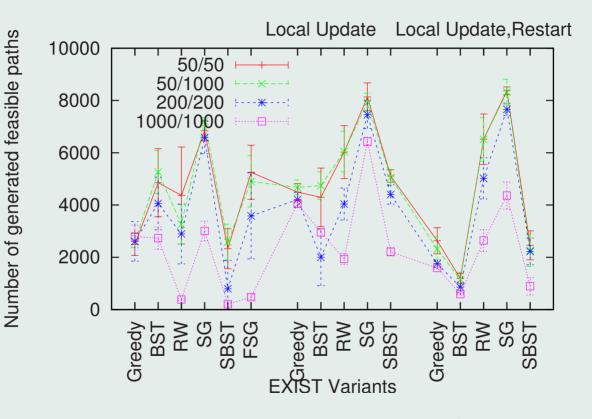
Best options = Seeded Greedy with restart

Category III



Best options = Seeded Greedy with restart

Problem art5



Remark : Seeded >>Fake seeded when nb examples \nearrow .

Discussion

It worked!

- Extended Parikh Map: a flexible and compact representation
- Seeded initialization: getting rid of non-Markovian issues
- Runtime < 10min

Next

- Convergence
- Diversity study
- Adapt EXIST for other coverage-based criteria
- Benchmarks for software testing

Related Works

- Ernst et al. 1999: Program invariants are learned from traces
- Brehelin et al. 2001: HMM are used to generalize test sequences for PLA.
- Vardan et al. 2004: Grammatical Inference is used to characterize paths relevant to constraint checking
- Zheng et al. 2003-6: Use traces to identify bugs (intrusive testing)
- Xiao et al. 05: Active learning for game player modeling (black box)

Overview

- Software Testing
- Exploration/Exploitation for Statistical Software Testing
- ML for Computer Science

Autonomic Computing

ML for Computer Science

Computers and networks

govern communication and information

Complex systems

Large-scale, heterogeneous components, dynamic interactions.

Number of skilled administrators

... doesn't scale up.

Need for

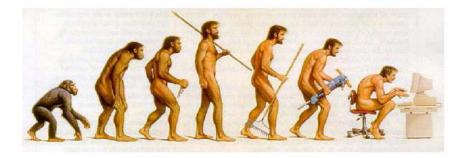
Autonomous Systems

First step

Self-Aware Systems

How ? ML

from Autonomic computing, ECML / PKDD 2006, I. Rish & G. Tesauro



"Considering current technologies, we expect that the total number of device administrators will exceed 220 millions by 2010." -Gartner 6/2001

A case study (upcoming EGEE-Pascal Challenge)

EGEE, Enabling Grids for e-Science in Europe

- Infrastructure project started in 2001
- 80 partners, 30,000 CPUs all over the world
- Web: www.eu-egee.org

Goal: Grid modelling

Heterogeneous systems : processors, storage, network, services. State can at most be estimated

Mutualisation paradigm : load depends on collective behavior ... must be estimated on the fly

Needed : a grid model, in order to

- Control and maintain the system
- Predict the application performances
- Optimize the system

detect ill-configured units dimension the capacities for jobs refine the scheduler

Modelling the grid: an ML problem

Input data

Traces of the jobs:

800 Ko per job, including specifications and all events some hundred thousands jobs per trace spatio-temporal (redundant) structure

Goals

Classification: jobs are *done, aborted*, or *lost* Early detection: predict as early as possible Clustering: provide the user with model chunks and/or outliers

Call to Arms

ML for Autonomic Computing

- The need
- The data
- The expertise

The big question mark: Learning or Optimization ?