
✬

✫

✩

✪

Online Strategies with Applications to Search and

Exploration

Bengt J. Nilsson

Malmö University

Ljubljana Summer School 2014

1

✬

✫

✩

✪

Overview

• Online problems and competitive analysis

• Some hopefully explanatory examples

• History of search and exploration problems

• Searching for a target on a line, multiple agents on several lines

• Searching for a target in a monotone and a street polygon

• Exploration problems: overview

• Exploring rectilinear polygons

• Exploring simple polygons (problems)

• Exploring trees with multiple agents

2

✬

✫

✩

✪

Online Problems

What is an Online Problem?

“A (computational) problem where the input is revealed

piecemeal (in little chunks) as the computation develops.

Need to make decisions without knowledge of future input.”

I call such decision sequences strategies rather than algorithms.

How do you measure the performance of a strategy for an online

problem with respect to an optimization criterion?

3

✬

✫

✩

✪

Competitive Analysis

S(I) is the output of the strategy after input I

OPT (I) is the optimum output after input I

c(·) is the optimization criterion (we assume minimization)

We say that strategy S is R-competitive, if

c(S(I)) ≤ R · c(OPT (I)) +Q,

for all input sequences I . (R is the competitive factor/ratio)

This is equivalent to

c(S(I))

c(OPT (I))
≤ R + ǫ

for all ǫ > 0 with input sequences I having cost sufficiently large

4

✬

✫

✩

✪

Example: Ski Rental Problem

Problem: You are going skiing for the first time and need skis. You

know that each time you go it will be for a full week but you don’t

know how many times you will go. You have two options:

1. Rent skis for e60 per week

2. Buy skis for e600, we assume then they last a lifetime

Optimization criterion is to minimize the cost for skis

Give a strategy with smallest competitive factor for the ski rental

problem!

5

✬

✫

✩

✪

Example: Ski Rental Problem

Optimum cost:
Week 0 1 2 3 4 5 6 7 8 9 10 11 . . .

e 0 60 120 180 240 300 360 420 480 540 600 600 . . .

Analysis uses an adversary to decide how many times you go

skiing.

You will see him many times during this presentation

6

✬

✫

✩

✪

Example: Ski Rental Problem, cont’d

Here are two possible strategies:

If you buy skis before week 1, decides that you never go skiing,

competitive factor is
600

0
= ∞

If you decide to always rent skis, decides you go skiing often,

competitive factor is
n · 60
600

→ ∞, as n increases

7

✬

✫

✩

✪

Example: Ski Rental Problem, cont’d

Here’s a set of strategies:

You rent skis until week k and buy skis before week k + 1, k ≥ 0

decides you go skiing k times is the worst case for this strategy,

since strategy only pays k · 60 + 600. pays k · 60, if k < 10 and

600 otherwise

k 0 2 4 6 8 9 10 11 12 14 16 18 . . .

R ∞ 6 3.5 2.67 2.25 2.11 2.00 2.1 2.2 2.4 2.6 2.8 . . .

Best strategy is to rent skis 10 times, then buy skis

8

✬

✫

✩

✪

Example: Ski Rental Problem, cont’d

Generalize the ski rental problem:

1. Rent skis for ex per week

2. Buy skis for ey. Assume that y > x > 0.

Strategies:

You rent skis until week k and buy skis before week k + 1, k ≥ 0

Best strategy is to rent skis k ≤ y

x
times, then buy skis when k >

y

x

Guarantees competitive factor
⌊ y
x⌋x+ y

⌊ y
x⌋x

→ 2

No strategy does better (we have looked at all of them!)

9

✬

✫

✩

✪

A Data Structure Problem: List Accessing

Sleator, Tarjan. 1985

Problem: You have a list structure with m elements and an online

sequence σ of requests for objects in the list. Maintain the list

organized so that the work of fulfilling the requests is minimized.

Operations allowed on the list

1. Accessing x in position j costs j. After an access you are allowed

to move x to any point closer to the head of the list for free

2. Any other move costs i if an element is moved i positions

Optimization criterion is to minimize the total cost for the accesses

10

✬

✫

✩

✪

Example

Here’s a short list

1 2 3 4 5 6

11 24 18 14 39 12

σ = 24, 14, 39, 14, 14

No restructuring: cost 2 + 4 + 5 + 4 + 4 = 19

We look at some other strategies

TRANS(σ) (transpose) moves requested item one step closer to head

FC(σ) (frequency count) maintains list sorted on frequency

MTF(σ) (move to front) each retrieval moves element to head

OPT(σ) (optimal) not an online strategy

11

✬

✫

✩

✪

Example, cont’d

TRANS(σ)

1 2 3 4 5 6

24 11 24 18 14 39 12 2

14 24 11 18 14 39 12 4

39 24 11 14 18 39 12 5

14 24 11 14 39 18 12 3

14 24 14 11 39 18 12 2

14 24 11 39 18 12

cost 2 + 4 + 5 + 3 + 2 = 16

What if the sequence is σ = 12, 39, 12, 39, 12, 39, 12, 39, . . .?

12

✬

✫

✩

✪

Example, cont’d

FC(σ)

1 2 3 4 5 6

24 110 240 180 140 390 120 2

14 241 110 180 140 390 120 4

39 241 141 110 180 390 120 5

14 241 141 391 110 180 120 2

14 142 241 391 110 180 120 1

143 241 391 110 180 120

cost 2 + 4 + 5 + 2 + 1 = 14

Drawback: need to maintain one extra counter per element

13

✬

✫

✩

✪

Example, cont’d

MTF(σ)

1 2 3 4 5 6

24 11 24 18 14 39 12 2

14 24 11 18 14 39 12 4

39 14 24 11 18 39 12 5

14 39 14 24 11 18 12 2

14 14 39 24 11 18 12 1

14 39 24 11 18 12

cost 2 + 4 + 5 + 2 + 1 = 14

14

✬

✫

✩

✪

Example, cont’d

OPT(σ)

1 2 3 4 5 6

24 11 24 18 14 39 12 2

14 11 24 18 14 39 12 4

39 14 11 24 18 39 12 5

14 14 11 24 18 39 12 1

14 14 11 24 18 39 12 1

14 11 24 18 39 12

cost 2 + 4 + 5 + 1 + 1 = 13

OPT(σ) not efficiently computable even if σ is known in advance

15

✬

✫

✩

✪

Analysis of MTF

Digress to define a new concept

Definition: Given lists L1 and L2, an inversion is a pair occuring in

different order in the two list.

1 2 3 4 5 6

L1 11 24 18 14 39 12

L2 14 39 24 11 18 12

Φ(L1, L2) denotes the total number of inversion between two lists

Φ(L1, L2) = 7 in our example above

Φ(L,L) = 0 always

16

✬

✫

✩

✪

Analysis of MTF, cont’d

ti is the cost of request i in MTF(σ)

Φi number of inversions between MTF(σ) list and OPT(σ) list after i

requests

ai = ti +Φi − Φi−1 amortized cost of request i in MTF(σ)

c(opti(σ)) cost of request i in optimal strategy OPT(σ)

We have

c(MTF(σ)) =

|σ|
∑

i=1

ti =

|σ|
∑

i=1

ai−Φi+Φi−1 = Φ0
︸︷︷︸

=0

−Φ|σ|
︸︷︷︸

≥0

+

|σ|
∑

i=1

ai ≤
|σ|
∑

i=1

ai

17

✬

✫

✩

✪

Analysis of MTF, cont’d

Look at cost for request i accessing element x in position j in OPT

1 k m

MTFi−1 * * * x

MTFi x * * *

1 j m

OPTi−1 x * * *

Let v denote the number of items before x in MTF but after x in OPT

Thus, k − v − 1 ≤ j − 1 ⇒ k − v ≤ j

ai = ti+∆Φi = k−v+(k−v−1) = 2(k−v)−1 ≤ 2j−1 = 2 ·c(opti(σ))−1

18

✬

✫

✩

✪

Analysis of MTF, cont’d

Hence,

c(MTF(σ)) ≤
|σ|
∑

i=1

ai ≤
|σ|
∑

i=1

2 · c(opti(σ))− 1 = 2 · c(OPT(σ))− |σ|

Since c(OPT(σ)) ≤ |σ|m (m length of list)

c(MTF(σ)) ≤ (2− 1

m
)c(OPT(σ))

19

✬

✫

✩

✪

A Memory Allocation Problem: Paging

Sleator, Tarjan. 1985

Problem: You have k blocks (pages) of fast memory (RAM/cache)

and m blocks of slow memory (disk). (Paging emulates large internal

memory sizes.) σ is a sequence of memory requests, if . . .

1. the request is in cache, nothing happens

2. the request is not in cache, place it in empty page if you can or

→ page fault.

We need to evict a page to place the new one in its place

Optimization criterion is to minimize the number of page faults

Well-studied problem since the 60’s!

20

✬

✫

✩

✪

Paging Example

Several paging schemes exist, LRU (Least-Recently-Used) probably

best known

Example, assume cache (4 pages) has already been filled

Maintain list in LRU order (Emulates MTF list accessing)

Don’t implement like this!

σ = 12, 39, 14, 18, 24, 39, 11, 16, 39, 14

1 2 3 4

24 18 14 39 12 1

39 24 18 14 39

11 39 24 18 14 1

16 11 39 24 18 1

39 16 11 39 24

14 39 16 11 24 1

14 39 16 11

cost 4

21

✬

✫

✩

✪

Paging Example, cont’d

Optimal paging scheme, LFD (Longest-Forward-Distance) not an

online strategy

Example, assume cache (4 pages) has already been filled

σ = 12, 39, 14, 18, 24, 39, 11, 16, 39, 14

1 2 3 4

24 12 39 14 18 1

39 12 39 14 24

11 12 39 14 24 1

16 11 39 14 24 1

39 16 39 14 24

14 16 39 14 24

16 39 14 24

optimal cost 3

22

✬

✫

✩

✪

Paging Lower Bound

k is size of cache. Assume m = k + 1 pages in total

For any request sequence σ, c(LFD(σ)) ≤ |σ|
k

Proof: Assume LFD(σ) evicts page p in step i. All other pages must

be requested at least once before page p is requested again. Hence,

next fault is earliest in step i+ k �

For any online strategy S, there is a request sequence σ so

that S(σ) faults on every request

Proof: constructs σ by always choosing to request the page

currently not in cache �

⇒ S is at best k-competitive

23

✬

✫

✩

✪

Paging Upper Bound

k is size of cache

LRU(σ) is k-competitive

Proof: Subdivide σ into maximal sequences of k different page

requests, σ = σ1, . . . , σL.

Each σi must obey |σi| ≥ k.

LRU incurs at most k faults in each σi since it contains only k

different requests.

For any σi, let p be the first page requested in σi and q is the first

page requested in σi+1, q 6∈ σi. Together, σi ∪ {q} contains k + 1

different page requests so any strategy, including OPT , must incur at

least one page fault in σi �

24

✬

✫

✩

✪

Paging, cont’d

Experimental studies show LRU to be constant-competitive for any

(sufficiently large) cache sizes

Competitive analysis is not suitable to accurately model paging

behavior. Depend heavily on locality

Better analysis using randomization?

In randomized analysis, does not see the strategies exact moves

but only the probabilities for the different move. Defines different

classes of

25

✬

✫

✩

✪

Paging, the MARK Strategy

Here’s a randomized strategy: Fiat, et al. 1988

MARK (Each page has a mark bit, initially 1)

Page request p:

If p is in cache, then mark(p) := 1

If p is not in cache, then evict random page q s.t. mark(q) = 0

If all pages are marked, then unmark them and try again

replace q by p and mark(p) := 1

26

✬

✫

✩

✪

Analysis of MARK Strategy

Subdivide σ into sequences between which MARK resets all page

bits, σ = σ1, . . . , σL

For each σi, a page is old, if it is in the cache when σi starts. All

other pages are new

Assume σi contains ni new page requests ⇒≤ ni page faults

A new page never gets evicted in σi

Assume jth request to old page requested the first time is in cache

with probability ≥ k − j + 1− ni

k − j + 1
(worst case = when all ni new

page faults occur first) ⇒ not in cache with probability ≤ ni

k − j + 1

27

✬

✫

✩

✪

Analysis of MARK Strategy, cont’d

Expected number of page faults for MARK in σi is

≤ ni
︸︷︷︸

new

+

k−ni∑

j=1

ni

k − j + 1
︸ ︷︷ ︸

old

= ni + ni

k∑

j=ni+1

1

j

= ni + ni(Hk −Hni
)

= ni(Hk −Hni
+ 1) ≤ niHk

Hk =
∑k

j=1 1/j ≤ 1 + ln k is kth harmonic number

Total number of page faults is ≤ Hk

∑L
i=1 ni

28

✬

✫

✩

✪

Analysis of MARK Strategy, cont’d

Number of page faults for OPT in σi−1σi (two consecutive

sequences) is ≥ ni (≥ n1 in σ1)

We have ≥ ∑L/2
i=1 n2i−1 and ≥ ∑L/2

i=1 n2i page faults

Hence, the total number of page faults is

≥
L/2
∑

i=1

(n2i−1 + n2i)/2 =
L∑

i=1

ni/2

Competitive factor becomes 2Hk ≤ 2 + 2 ln k �

No randomized paging strategy has competitive factor < Hk

29

✬

✫

✩

✪

History of Search and Exploration Problems

• Theseus and the Minotaur, antiquity

• 18th Century Garden Labyrinths (Versailles)

• Childrens Games, tag/search

• Mathematical Pursuit Games, (Bouger’s Pirate Ship, 1732)

• Rufus Isaac, Differential Games, 1965

• Shmuel Gal, Search Games, 1980, (Alpern, Gal 2003)

• Numerous isolated articles. . .

30

✬

✫

✩

✪

Searching on a Line

Beck 1964; Bellman 1964; Gal 1980; Baeza-Yates et al. 1993

Problem: A cow knows that the farmer puts hay at some position

along an (infinitely long) fence

What is the best strategy for the cow to find the hay if she wants to

walk the minimum distance? The cow only sees the hay when she

stands on it (It is foggy!)

Linear Search Problem A target (point) is placed somewhere

along an infinite line. An agent (point) stands at the origin.

What is the best search strategy for the agent to find the target?

31

✬

✫

✩

✪

Searching on a Line, cont’d

A?

0

Go left or go right? . . . and how far? Where is the target?

What specifies a strategy?

A sequence of turning points: x0, x1, . . .

Even indices go to the right of 0, odd to the left

xi ≤ xi+2, otherwise makes no sense

NOTE: We compare length of strategy to distance D to target

32

✬

✫

✩

✪

Searching on a Line, cont’d

x1 x2x3 x0 x4A

Go left or go right? . . . and how far? Where is the target?

What specifies a strategy?

A sequence of turning points: x0, x1, . . .

Even indices go to the right of 0, odd to the left

xi ≤ xi+2, otherwise makes no sense

NOTE: We compare length of strategy to distance D to target

33

✬

✫

✩

✪

Searching on a Line, cont’d

ǫ

x0AT

Immediate Problem: What if D = ǫ ≪ x0?

No strategy can be competitive then!!!

Three solutions:

1. Use extra additive term in competitive formula,

c(S) ≤ R · c(OPT) +Q

2. Require that D is bounded from below by known amount, D > 1

3. Allow strategy to wiggle in the beginning, cost is
∑?

i=−∞ 2xi

34

✬

✫

✩

✪

Searching on a Line, cont’d

Let Rk be the worst case competitive factor given that D ∈]xk, xk+2],

for each k.

Rk(Xk+1)
def
= sup

D∈]xk,xk+2]

D +
∑k+1

i=0 2xi

D
= 1 + 2

∑k+1
i=0 xi

xk

xkxk+1 A

T

places target after the turn at xk so that A just misses it

Rk(Xk+1), (Xk+1 = x0, . . . , xk+1, each xi > 0), is a functional, a

mapping from a vector space to a scalar field

35

✬

✫

✩

✪

Searching on a Line, cont’d

Theorem: Gal 1980. If, for a set of functionals Fk(Xk)

(Xk = x0, . . . , xk, each xi > 0), each satisfies

1. Fk(Xk) is continuous

2. Fk(αXk) = Fk(Xk), for all α > 0, absorbing (homogeneous)

3. Fk(Xk + Yk) ≤ max{Fk(Xk), Fk(Yk)} for all Xk, Yk, unimodal

4. lim inft→∞ Fk(1/t
k, . . . , 1/t, 1) = lim infǫk,...,ǫ1→0 Fk(ǫk, . . . , ǫ1, 1)

5. lim inft→0 Fk(1, t, . . . , t
k) = lim infǫ1,...,ǫk→0 Fk(1, ǫ1, . . . , ǫk)

and for any positive sequence X = {xi}∞i=0;

Fk+1(x0, . . . , xk+1) ≥ Fk(x0, . . . , xk) there is a constant a ≥ 0;

sup
k≥0

Fk(x0, . . . , xk) ≥ sup
k≥0

Fk(1, a, . . . , a
k)

36

✬

✫

✩

✪

Searching on a Line, cont’d

The competitive factor is

sup
k≥0

Rk(Xk+1) = sup
k≥0

1 + 2

∑k+1
i=0 xi

xk

Theorem

≥ sup
k≥0

1 + 2

∑k+1
i=0 ai

ak

= sup
k≥0

1 + 2
ak+2 − 1

ak+1 − ak
= 1 + 2

a2

a− 1

≥ 9

for any a > 1. Value is attained when a = 2 �

37

✬

✫

✩

✪

Searching on a Line, cont’d

Strategy is called the doubling strategy. The smallest competitive

ratio 9 is achieved when (abusing notation) xk = (−2)k on the line,

i.e., 1,−2, 4,−8, . . . and this is optimal as we have seen.

38

✬

✫

✩

✪

Searching on m Rays

What if agent wants to search on m rays, all starting at the origin?

(m = 2 we have done)

x3x4

x6
x1

x2x5

x0

A

Visit rays in some cyclic order!

39

✬

✫

✩

✪

Searching on m Rays, cont’d

Let Rm
k be the worst case competitive factor given that

D ∈]xk, xk+m], for each k.

Rm
k (Xk+1)

def
= sup

D∈]xk,xk+m]

D +
∑k+m−1

i=0 2xi

D
= 1 + 2

∑k+m−1
i=0 xi

xk

places target after the turn at xk so that A just misses it

40

✬

✫

✩

✪

Searching on m Rays, cont’d

The competitive factor is

sup
k≥0

Rm
k (Xk+1) = sup

k≥0
1 + 2

∑k+m−1
i=0 xi

xk

Theorem

≥ sup
k≥0

1 + 2

∑k+m−1
i=0 ai

ak

= sup
k≥0

1 + 2
ak+m − 1

ak+1 − ak
= 1 + 2

am

a− 1

≥ 1 + 2
mm

(m− 1)m−1
≈ 1 + 2e ·m

for any a > 1. Value is attained when a =
m

m− 1
�

Generalizes the doubling strategy, Exponential Search also optimal

since visiting order doesn’t matter

41

✬

✫

✩

✪

Parallel Searching on m Rays

Hammar, Nilsson, Schuierer 2001

Problem: Parallel Search Problem A target (point) is placed

somewhere on m rays„ all starting at the origin. m agents (points)

are available.

Agents can communicate only when they meet

What is the best search strategy for all the agents to reach the

target?

We look at two cases: symmetric strategies and monotone strategies

42

✬

✫

✩

✪

Parallel Searching on m Rays: Symmetric Case

Each agent performs the same moves on its ray until target is found

Lk UkLk+1
. . .

xk+1

xk

yk
L0 = 0 yk < xk+1

Lk = Lk−1 + xk−1 − yk−1 =
k−1∑

i=0

xi − yi

Uk = Lk + xk = xk +
k−1∑

i=0

xi − yi

dk =
k∑

i=0

xi + yi (Total distance moved)

43

✬

✫

✩

✪

Parallel Searching. . . : Symmetric Case, cont’d

We are in Step k when moving between Lk and Lk+1.

Look at the last agent informed of placement of target. Assume informed

in Step k. Target found in Step k − j

Lk
. . .

Uk

xkT

RS
jk = sup

D∈]Uk−j−1,Uk−j]

∑k−1

i=0
xi+yi

︷ ︸︸ ︷

dk−1 +xk +

xk+
∑k−1

i=0
xi−yi

︷︸︸︷

Uk +D

D

44

✬

✫

✩

✪

Parallel Searching. . . : Symmetric Case, cont’d

sup
k≥0

RS
jk = sup

D∈]Uk−j−1,Uk−j]

∑k−1
i=0 xi + yi + xk + xk +

∑k−1
i=0 xi − yi +D

D

= sup
D∈]Uk−j−1,Uk−j]

1 + 2

∑k
i=0 xi

D
≥ sup

k≥0
1 + 2

∑k
i=0 xi

Uk−j−1

≥ sup
k≥0

1 + 2

∑k
i=0 xi

xk−j−1

Theorem

≥ sup
k≥0

1 + 2

∑k
i=0 a

i

ak−j−1
= 1 + 2

aj+2

a− 1

≥ 9

for j = 0, attained for a = 2 �

45

✬

✫

✩

✪

Parallel Searching on m Rays: Monotone Case

Each agent moves with speed v ≤ 1 forward until target is found

We measure the time it takes for all agents to reach the target

. . .

v

Then informed agents (hunters) chase uninformed ones (prey) at full

speed (=1) to communicate target

Step k starts when ≥ 2k agents are hunters, ends when ≥ 2k+1

become hunters. Step k takes tk time and tF is the time for the last

hunter to reach the target

RM =
D/v +

∑logm−1
k=0 tk + tF
D

46

✬

✫

✩

✪

Parallel Searching. . . : Monotone Case, cont’d

Step times form a geometric sequence

tk ≤ tk−1

(

1 + v

1− v

)

= t0

(

1 + v

1− v

)k

=
2D

1− v

(

1 + v

1− v

)k

logm−1
∑

k=0

tk ≤ 2D

1− v

logm−1
∑

k=0

(

1 + v

1− v

)k

=
D

v

(

(

1 + v

1− v

)logm

− 1

)

tF ≤ D

(

1 + v

1− v

)logm

+D

Giving the competitive factor (only dependent on v)

RM =
1

v
+

1

v

(

(

1 + v

1− v

)logm

− 1

)

+

(

1 + v

1− v

)logm

+ 1 = 1 +

(

1 +
1

v

)(

1 + v

1− v

)logm

= 1 + 2
(logm+ 1)logm+1

(logm)logm
≈ 1 + 2e(logm+ 1)

if we set v = 1
1+2 logm �

47

✬

✫

✩

✪

Searching for a Target in a Polygon

Klein 1992; Kleinberg 1994;

Icking, Klein, Langetepe, Schuierer, Semrau 2004

Problem: A point agent A is positioned at s in an unknown polygon. A

point target t is placed somewhere in the polygon. A recognizes t when he

sees it. The edges of the polygon act as obstacles and cannot be seen

through. A has vision system, compass, memory

What is the best search strategy for the agent to find the target?

We compare length of A’s path to length of shortest path from s to t in

polygon

No constant competitive strategy exists in general

forces A to explore all tentacles �

48

✬

✫

✩

✪

Searching for a Target in a Polygon

We look at special classes of polygons:

Monotone Polygons: boundary can be partitioned into two

(x-)monotone chains. (Any intersection with vertical line is connected)
t

s

Street Polygons: boundary can be partitioned into two chains that see

each other

s

t

49

✬

✫

✩

✪

Searching for a Target in a Polygon

A polygon is monotone ⇒ it is a street

Lower Bound for both classes

s

Competitive factor is at least

2D√
2D

=
√
2 = 1.414 �

50

✬

✫

✩

✪

Searching for a Target in a Polygon

A Useful Trick!

Exchange shortest path from s to t by shortest rectilinear path

Path with edges parallel to coordinate axis

s

t

Length of any x- and y-monotone path is bounded by
√
2 · ||shortest path||

Path length increases by ≤
√
2 (Pythagorean theorem) �

Change of metric from L2 to L1-metric

51

✬

✫

✩

✪

Searching for a Target in a Polygon

Upper Bound for Monotone Polygons

Strategy MONOTONE SEARCH

Move horizontally until:

1) Agent sees the target; move to it; stop

2) Agent is on the boundary

if agent is on upper boundary, follow boundary down to vertex

if agent is on lower boundary, follow boundary up to vertex

Repeat

s

t

52

✬

✫

✩

✪

Searching for a Target in a Polygon

Upper Bound for Monotone Polygons

s

t

Strategy’s path is contained in rectangles, also containing shortest path

and each path is x- and y-monotone inside rectangles ⇒ following

rectangle boundary gives ≤
√
2 ⇒ competitive factor ≤

√
2 �

53

✬

✫

✩

✪

Searching for a Target in a Polygon

Upper Bound for Street Polygons Kleinberg 1994

?

s

u

v

Left and right windows of visibility polygon must bound each of the two

chains (green or white). Opposite boundary color is unknown. Maintain

shortest path from s to two vertices u and v. Optimal path to target must

pass one of them

How do we move so that the detour is not too large?

Move rectilinearly! (or almost)

54

✬

✫

✩

✪

Searching for a Target in a Polygon

Upper Bound for Street Polygons

General view

u

v

W

E

We reach bounding box spanned by u and v, go to 45◦ motion until. . .

1. one of boundary parts W or E is completely seen

2. we exit box

We must now know which of u and v the optimal path to target passes.

Go to the appropriate vertex. Estimate the detour

55

✬

✫

✩

✪

Searching for a Target in a Polygon

Upper Bound for Street Polygons

d
(0, 0)

u = (0, uy)

v = (vx, vy)

d
(0, 0)

u = (0, uy)

v = (vx, vy)

Three cases:

1. we see target; go there!

2. shortest path goes through u, detour is
d+

√
2uy + uy

√
d2 + u2

y

3. it goes through v, detour is
d+

√
2uy +

√
(vx − uy)2 + (vy − uy)2

√
(d+ vx)2 + v2y

56

✬

✫

✩

✪

Searching for a Target in a Polygon

Upper Bound for Street Polygons

2. simpler case:
d+

√
2uy + uy

√

d2 + u2
y

, maximized for uy = d(1 +
√
2) (differentiate)

Ru ≤ d+ d(
√
2 + 1)2

√

d2 + d2(1 +
√
2)2

=

√

1 + (1 +
√
2)2 =

√

4 +
√
8 ≈ 2.613

3. complicated case:
d+

√
2uy +

√

(vx − uy)2 + (vy − uy)2
√

(d+ vx)2 + v2y

, worst case occurs

when vx = uy and d = 0, maximized for vy = vx(1−
√
2) (differentiate)

Rv ≤
√
2vx +

√

(vx(1−
√
2)− vx)2

√

v2x + v2x(1−
√
2)2

=
2
√
2

√

4− 2
√
2
=

√

4 +
√
8 ≈ 2.613

57

✬

✫

✩

✪

Searching for a Target in a Polygon

Upper Bound for Street Polygons

Fortunately ,, both cases have the same relative detour. Since every

subpath between consecutive pairs of vertices on the optimal path to

target has detour, either Ru or Rv, the competitive ratio for

Kleinberg’s strategy is bounded by

R = max{Ru, Rv} ≤
√

4 +
√
8 ≈ 2.613 �

Icking, Klein, Langetepe, Schuierer, Semrau 2004 prove a strategy

with optimal
√
2 ≈ 1.414 competitive factor

58

✬

✫

✩

✪

Exploration Problems

• Competitive search ⇒ exploration. places target so the whole

environment must be explored

• We will look at single agent exploration of:

Polygons with holes (obstacles)

Rectilinear simple polygons

Simple polygons (short overview of problem)

• If there is time, we will consider multiple agent exploration in trees

• First, problem definition

59

✬

✫

✩

✪

The Exploration Problem

Problem: A point agent A is placed at s in an unknown environment and

is required to explore it, i.e., make certain A sees all of it, can draw a map

of it, and return to s. A has vision system, compass, memory

What is the best exploration strategy for the agent?

We compare length of A’s tour to length of shortest tour from s in the

environment

Requirement of a tour is not (too much of) a restriction. Any path can be

made into a tour by following shortest path back to s from other endpoint

of path. Hence,

||path|| ≤ ||tour|| ≤ 2||path|| (triangle inequality)

What is the complexity situation for these problems?

60

✬

✫

✩

✪

The Offline Exploration Problem

Polygons with obstacles

We reduce from Geometric TSP proving NP-hardness (Chin, Ntafos 1988)

Mitchell 2013 proves Ω(log n) inapproximable by reduction from Set Cover.

n is number of vertices of polygon. Also shows O(log2 n) approximation

algorithm

Is there fixed parameter tractable algorithm for polygons with h holes?

Complexity O(f(h) · nc)

61

✬

✫

✩

✪

The Offline Exploration Problem

Simple polygons The shortest watchman tour problem

Chin, Ntafos 1991; Tan, Hirata, Inagaki 1998; Dror, Efrat, Lubiw, Mitchell 2003

s

Transform problem to a shortest path problem.

62

✬

✫

✩

✪

The Shortest Watchman Tour Problem

Solution uses Heron’s reflection principle.

Question: What is the shortest path between two points that visits a line?

Reflect one point, compute the segment, fold the segment

Intersection on line at perfect reflection point

63

✬

✫

✩

✪

The Shortest Watchman Tour Problem, cont’d

We deal with rectilinear polygons having n vertices (Chin, Ntafos 1988)

Assume for now that s is on the boundary!

s

Claim 1: There are segments (extensions) such that if a tour visits them,

the tour sees everything. (see next slide)

Claim 2: A shortest tour visits the extensions in the order they appear

along the polygon boundary.

64

✬

✫

✩

✪

The Shortest Watchman Tour Problem, cont’d

e e′

p

e is a left extension
with respect to p

The extensions are the extended line segments of the sides of the polygon.

With respect to a point p, an extension is a left extension if p lies to the

left of it.

A closed curve sees all of a simple polygon if and only if it has at least one

point to the right of every extension.

65

✬

✫

✩

✪

The Shortest Watchman Tour Problem, cont’d

Cut off unnecessary parts of the polygon.

s

66

✬

✫

✩

✪

The Shortest Watchman Tour Problem, cont’d

Reflect the polygon using the extensions as mirrors, compute the shortest

path from s to s′ and establish the points of reflection

s′

s

67

✬

✫

✩

✪

The Shortest Watchman Tour Problem, cont’d

Fold the path back to obtain a tour

s

The tour can be computed for a rectilinear simple polygon in O(n) time �

Similar ideas can be used to solve the shortest watchman problem for

simple polygons

Problem: Not clear which extensions to reflect on and which to cross.

Dynamic programming is used to choose the correct case. Best algorithm

takes O(n3 logn) time (Dror, Efrat, Lubiw, Mitchell 2003)

68

✬

✫

✩

✪

The Exploration Problem

Back to online exploration Polygons with holes

Remove tour requirement for awhile! Papadimitriou, Yannakakis 1991

· · ·

n2/2

−n2/2

0
A

In a rectangle of width n+ 2 and height n2, places n thin 3-shapes of

height n in front of path, whichever direction A chooses to go. ⇒ A moves

at least distance n
2
· n = n2/2

69

✬

✫

✩

✪

The Exploration Problem

Count how many 3 intersect each vertical line at height

n,−n, 3n,−3n, 5n,−5n, . . . ,
√
nn,−√

nn. A 3 can intersect at most one line. We

have
√
n lines. Not all such lines can intersect >

√
n 3s otherwise we have

>
√
n · √n = n obstacles. (Pigeonhole principle)

0

n3/2

−n3/2

n

−n
−3n
−5n

5n
3n

A

Exists a path of length ≤ 2n3/2. Competitive factor ≥ √
n/4 = Ω(

√
n)

70

✬

✫

✩

✪

Exploring Rectilinear Polygons

Deng, Kameda, Papadimitriou 1991; Kleinberg 1994; Hammar et al. 2003

Problem: A point agent A is placed at s in a rectilinear simple polygons

and is required to explore it, and return to s. A has vision system,

compass, memory

Distance is measured in L1-metric, allows us to impose rectilinear motion

What is the best exploration strategy for the agent?

71

✬

✫

✩

✪

Exploring Rectilinear Polygons, cont’d

The strategy GO Deng, Kameda, Papadimitriou 1991/1998

Strategy GO

1. Shoot a ray from the starting point upwards to the principal projection point

on the boundary.

2. Scan the boundary clockwise until some portion of it (at the frontier) is not

seen.

3. Move to the closest point on the associated (left) extension to the frontier.

4. Iterate from Step 2. until everything has been seen.

72

✬

✫

✩

✪

An example run of GO

s

f1f0

73

✬

✫

✩

✪

An example run of GO

s

f1

f2

f0

74

✬

✫

✩

✪

An example run of GO

s

f1

f2

f0

f3

75

✬

✫

✩

✪

An example run of GO

s

f1

f2

f0

f3 f4

76

✬

✫

✩

✪

An example run of GO

s

f1

f2

f0

f3 f4

f5

77

✬

✫

✩

✪

An example run of GO

s

f1

f2
f4

f5

f8

f9f11

f13

f14

f16

f19 f0

f6 f7

f17
f18

f12

f15

f3

78

✬

✫

✩

✪

Exploring Rectilinear Polygons, cont’d

If the starting point is on the boundary (no need for step one, just scan),

GO has optimal competitive factor 1

Why? Make a proof by induction on the number of extensions visited

If the starting point lies in the interior, GO has competitive ratio 2

Why? Every left extension has to be visited also by OPT

[Scanning clockwise or counterclockwise makes no difference]

We essentially have eight different strategies, dependent on four

directions of principal projection point and two directions of scan

f0

79

✬

✫

✩

✪

Exploring Rectilinear Polygons, cont’d

Proof by example (No joke!) Kleinberg 1994

Produce square of side length 2

?

?

Any deterministic strategy moves ≥ 10

Optimum moves 8 ⇒ Ratio 5/4

80

✬

✫

✩

✪

Exploring Rectilinear Polygons, cont’d

A Randomized Strategy Kleinberg 1994

• Choose a direction out of {N,E, S,W} randomly, shoot a ray in this

direction, and apply GO clockwise from there

Strategy uses two random bits

The strategy has expected competitive factor 5/4 = 1.25

81

✬

✫

✩

✪

Exploring Rectilinear Polygons, cont’d

dW

c(OPT)
dN

. . .

Argument: Introduce finger from each direction, optimal tour crosses

opposite quadrant border at distance dX , X ∈ {N,E, S,W}. c(OPT) is at

least 2(dN + dE + dS + dW), RGO tour is increased by 2dX for randomly

chosen X so

c(OPT) +
∑

dX/2

c(OPT)
= 1 +

∑
dX/2

c(OPT)
≤ 1 +

∑
dX/2

2
∑

dX
=

5

4

82

✬

✫

✩

✪

Exploring Rectilinear Polygons, cont’d

An Improved Deterministic Strategy, BGO Hammar et al. 2003

Q1

s

Q4
Q3

Q2

Divide the polygon into quadrants

Make initial scan to find the (left) extension furthest from s and do the

exploration in the opposite direction using two frontiers, left and right

Move up until you have to make a decision

83

✬

✫

✩

✪

Exploring Rectilinear Polygons, cont’d

Case 0

s

p

Q1

As motion proceeds up one quadrant becomes completely explored

RBGO0
= 1

84

✬

✫

✩

✪

Exploring Rectilinear Polygons, cont’d

Case 1a

s

u

p
v

s

p
v

u

||s, p||y + ||s, u||x ≤ ||s, v||x
RBGO1a = 3/2.

85

✬

✫

✩

✪

Exploring Rectilinear Polygons, cont’d

Case 1b

s

v

u

p
p

v′u

q

s

v

||s, p||y + ||s, u||x > ||s, v||x
RBGO1b

= 3/2.

Case 2 Comprises three further subcases handled similarly

RBGO2
= 3/2

86

✬

✫

✩

✪

Exploring Simple Polygons

Problem: Not clear how to go to an extension

?

Follow rectilinear path + 45◦ when needed to reach extension, like in

streets. Detour is 1 +
√
2 ≈ 2.41

Better solution follow half circle centered on midpoint. Detour is
π

2
≈ 1.57

87

✬

✫

✩

✪

Exploring Simple Polygons

Problem: Not even clear what order to explore/visit windows

In order along the boundary can make tour zig-zag very much

⇒ no competitive bound

Solution: Group similar unexplored windows together

Strategy with competitive factor ≤ 26.5 Messy!!!

Hoffman, Icking, Klein, Kriegel 1997

88

✬

✫

✩

✪

Multi-Agent Tree Exploration

Problem: k point agents A1, . . . , Ak is placed at the root of a tree and are

required to explore it, i.e., make certain every node is visited by some

agent Ai, each agent returns to root.

Every Ai has identification system, memory, communication system

What is the best exploration strategy for the agent?

We compare length of Ai’s tour that moves the longest distance in the

strategy to length of Aj ’s tour that moves the longest distance in the

optimal solution (Makespan)

89

✬

✫

✩

✪

Multi-Agent Tree Exploration, cont’d

All k agents start at the root.

Agents in nodes are aware of edges leading to child nodes but nothing more

No limits on degree or depth
k agents

k = 1: Preorder traversal is optimal.

In general, computing the optimal tours is NP-complete but. . .

max{Traversal
k

, 2 ·Depth} ≤ optimal tour ≤ Traversal

k
+ 2 ·Depth

Good approximation 2

90

✬

✫

✩

✪

Multi-Agent Tree Exploration, cont’d

k = 2

Strategy:

Do preorder traversal with one and reverse preorder traversal with the other.

When they meet and have seen all nodes together, go back to root

2 agents

Total Traversal = 2 · Edges
Each agent has visited ≤ 2 · Edges/2 before they meet, then ≤ Depth to go to the

root
2 · Edges/2 +Depth

optimal tour
≤ 2 · Edges/2 +Depth

max{Edges, 2 ·Depth}
≤ 3

2

91

✬

✫

✩

✪

Multi-Agent Tree Exploration, cont’d

Upper Bound (Fraigniaud, Gasieniec, Kowalski, Pelc 2006).

Simple and natural strategy: (works in synchronous steps)

Strategy Collective Exploration

Consider agents in a node v, in a step perform:

if (not all subtrees of v are explored) {
Distribute agents at v evenly among unexplored subtrees

} else /*all subtrees of v are explored*/ {
if (no subtree of v contains agents) {

Move agents at v to the parent of v

} else /*some subtree of v contains agents*/ Wait

}

Wait is important for the analysis. Competitive ratio is O(k/ log k)

92

✬

✫

✩

✪

Multi-Agent Tree Exploration, cont’d

Lower Bound (Dynia, Lopuszanski, Schindelhauer 2007)

Jellyfish tree: (t ≥ k)

. . .

k/logk

t

...

Keep fraction 1/i of the tentacles in level i. Tree has size O(tk)

Any strategy must use t log k/ log log k steps, optimum uses O(t)

⇒ competitive ratio Ω(log k/ log log k)

93

✬

✫

✩

✪

Multi-Agent Tree Exploration, cont’d

Lower Bound for Monotone Strategies

produces

...

spine

legs

Any strategy will only come log k steps down the spine before it has to

wait for legs to be explored

Optimum comes k steps down ⇒ competitive ratio
k

log k

94

✬

✫

✩

✪

Conclusions

• Competitive analysis

• List access and paging

• Variants on linear search

• Geometric searching and exploration (polygons)

• Exploring trees with multiple agents

95

✬

✫

✩

✪

Thank you for listening

Questions? Comments?

96

