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What is a “technical/numerical” language?

An obvious answer:


‣ specialized for numerical work 

Matlab: 
‣ everything is a complex matrix


R (and S before it): 
‣ allow “NA” values everywhere

‣ data frame as basic data type


Mathematica: 
‣ symbolic rewriting everywhere


NumPy: 
‣ typed arrays for Python



Are C and Scheme numerical?

Scheme R6RS spec:


‣ 20% numerical 

C99 spec:


‣ 20% numerical



That's funny…

Numerical languages are strangely diverse


General languages are strangely numerical


What’s going on here?



The “niche hypothesis”

Numerical computing is still an under-generalized niche


‣ each language picks a different way of specializing numerically


(also happens to be the oldest programming language niche – Fortran)


Hypothesis: 

‣ many diverse languages in this niche can be replaced


‣ by a single sufficiently powerful, general-purpose language 



History

Text processing was a niche with a similar variety of languages


‣ SNOBOL, SPITBOL, COMIT, TRAC, TTM, Icon, Unicon, sed, awk, Perl4 

lot’s of different views of text processing and how to specialize for it


You don’t see much of these anymore


‣ people use one of Python, Ruby, or Perl5 instead


(we still use sed and awk sometimes, but could use Perl/Python/Ruby)


A few general languages that support text processing


‣ replaced diverse languages that specialized in some aspect of it



Text processing was diverse & hard.


Now it’s unified & easy.


Can we do this for numerical computing?

History



History

We believe the answer is “yes”


Julia is our attempt to do this.



Before we go further

Let’s actually see some code.



function randmatstat(t,n)!
    v = zeros(t)!
    w = zeros(t)!
    for i = 1:t!
        a = randn(n,n)!
        b = randn(n,n)!
        c = randn(n,n)!
        d = randn(n,n)!
        P = [a b c d]!
        Q = [a b; c d]!
        v[i] = trace((P'*P)^4)!
        w[i] = trace((Q'*Q)^4)!
    end!
    std(v)/mean(v), std(w)/mean(w)!
end

Matlab-like



function qsort!(a,lo,hi)!
    i, j = lo, hi!
    while i < hi!
        pivot = a[(lo+hi)>>>1]!
        while i <= j!
            while a[i] < pivot; i = i+1; end!
            while a[j] > pivot; j = j-1; end!
            if i <= j!
                a[i], a[j] = a[j], a[i]!
                i, j = i+1, j-1!
            end!
        end!
        if lo < j; qsort!(a,lo,j); end!
        lo, j = i, hi!
    end!
    return a!
end

Low-level



immutable ModInt{n} <: Integer!
    k::Int!
    ModInt(k) = new(mod(k,n))!
end!
!

-{n}(a::ModInt{n}) = ModInt{n}(-a.k)!
+{n}(a::ModInt{n}, b::ModInt{n}) = ModInt{n}(a.k+b.k)!
-{n}(a::ModInt{n}, b::ModInt{n}) = ModInt{n}(a.k-b.k)!
*{n}(a::ModInt{n}, b::ModInt{n}) = ModInt{n}(a.k*b.k)!
!

convert{n}(::Type{ModInt{n}}, i::Int) = ModInt{n}(i)!
promote_rule{n}(::Type{ModInt{n}}, ::Type{Int}) = ModInt{n}!
!

show{n}(io::IO, k::ModInt{n}) = print(io, "$(k.k) mod $n")!
showcompact(io::IO, k::ModInt) = print(io, k.k)

Different



Why are numbers hard?

Syntax 

‣ numerical operators tend use infix syntax


Semantics 

‣ numerical operators are usually not “just functions”


‣ things like “+” and indexing are highly polymorphic


‣ special promotion of arguments to a common type


‣ need compact arrays (of numbers at least)


‣ numbers are naturally immutable



Other things that scientists want...

‣ extreme convenience – things Just Work™


‣ code that looks like pseudocode


‣ massive standard library


‣ top performance



Julia design overview 

high-level & dynamic


expressive type-system


‣ parametric, dependent, invariant


‣ concrete types are final


but large abstract super-type hierarchy

generic programming with abstract types


‣ unobtrusive – don't need to mention types


metaprogramming


‣ homoiconic: code represented as data


can be constructed, manipulated, eval’d


‣ macros:  @time sleep(1)


ubiquitous multiple dispatch


‣ everything is a generic function


even basic performance-critical functions


‣ quantified methods (think templates)


‣ diagonal dispatch


concurrency & parallelism


‣ lightweight coroutine-based I/O


‣ distributed global address space


first-class remote references

easy to run code on a cluster of instances


‣ we’re working on multithreading



Dynamic typing

Dynamic typing is hugely popular for numerical environments:


‣ exploratory, interactive, tangible


‣ “customer is always right” 

Julia has a type system, but no static type checking


‣ Leah Hanson observed while learning Julia:


“I like that Julia uses the type system in all the ways that 
 don't end with the programmer arguing with the compiler.” 

‣ not checking types can allow a more sophisticated type system



Two language compromise

People love dynamic environments


‣ for data analysis and exploration


‣ but dynamism and performance are at odds


A standard compromise:


‣ slow code in convenient dynamic language (Matlab, Python, R)


‣ fast code in static, low-level language (C, C++, Fortran)


Creates a huge impediment to development


‣ continually breaking the abstraction barrier = poor abstraction



Goldilocks

Graydon Hoare (creator of Rust) wrote [http://goo.gl/zQRGu6]:


“Julia, like Dylan and Lisp before it, is a Goldilocks language. 

It is trying to span the entire spectrum of its target users’ 
needs, from numerical inner loops to glue-language scripting 

to dynamic code generation and reflection.” 

Goldilocks languages are the opposite of two-language systems:


‣ do everything in one language – both low level and high level work


‣ define the language in itself and give users just as much power

http://goo.gl/zQRGu6


Microbenchmarks



Reports from the real world

“[R]eports ... indicate that Julia gives rather significant boosts over 
Matlab/R, sometimes by even more than the benchmarks might 

suggest. That was surprising to me, since I expected the gap to be 
largest for benchmarks. 

⋯ 
[O]ne common factor was fairly sizable (but not ridiculous) memory 
requirements; perhaps Julia's ability to manage memory in a more 

fine-grained fashion pays major dividends for such problems.” 

– Tim Holy, WUSTL 
http://goo.gl/r6qwz

http://goo.gl/r6qwz%5D


Simplex Benchmarks

https://github.com/mlubin/SimplexBenchmarks

Benchmark of some important operations:

Julia C++ C++bnd Matlab PyPy Python
Sp. mat-sp. vec 1.29 0.90 1.00 5.79 19.20 417.16
Sp. vector scan 1.59 0.96 1.00 13.98 13.81 48.39

Sp. axpy 1.85 0.70 1.00 19.12 9.21 78.65

C++bnd = C++ with bounds checking

Execution times relative to C++bnd

7 / 8

source: Miles Lubin & Iain Dunning



Finite element programming

Comparison by Amuthan Ramabathiran [http://goo.gl/SRciE]:


‣ FEniCS 

“collection of software for high level finite element code development 
written in Python and C++”


‣ FreeFem++ 

“partial differential equations solver written in C++ with its own DSL 
(Domain Specific Language) with a C++ like syntax.”


‣ Julia FEM, simple solver


“Thanks to Julia’s elegant syntax the code is largely self-explanatory.”

http://goo.gl/SRciE%5D


Finite element programming



Finite element programming

“[W]hat is really interesting about Julia is the relative ease with 
which various strategies can be implemented and tested without 

leading to code swell, while at the same time resulting in high 
performance code. 

⋯ 
Julia appears to be a very good choice for developing research 
oriented finite element software that is both fast and easy to 

develop.” 

– Amuthan Ramabathiran 
http://goo.gl/SRciE

http://goo.gl/SRciE%5D


How does Julia go fast?

There are many fast dynamic language implementations these days


‣ JavaScript V8, LuaJIT, PyPy, etc. 

Julia doesn’t work the way these do at all


‣ “Julia does static compilation at run time” – Carl Bolz, PyPy core developer


Basically, we’ve cheated


‣ made key design choices that make it much easier to make things fast


native data types (machine ints, floats, etc.)

type annotations; type stability in standard libraries

immutable types; all concrete types are final

multiple dispatch



Collatz

function collatz(n)!
    k = 0!
    while n > 1!
        n = isodd(n) ? 3n+1 : n>>1!
        k += 1!
    end!
    return k!
end!

The Collatz conjecture:


‣ for all n ≥ 0 the function collatz(n) terminates



Cumulative Collatz

function collatz_up_to(m)!
    c = fill(-1,m)!
    c[1] = 0!
    for n = 2:m!
        nʹ, d = n, 0!
        while nʹ > length(c) || c[nʹ] < 0!
            nʹ = isodd(nʹ) ? 3nʹ+1 : nʹ>>1!
            d += 1!
        end!
        d += c[nʹ]!
        while n > length(c) || c[n] < 0!
            n <= length(c) && (c[n] = d)!
            n = isodd(n) ? 3n+1 : n>>1!
            d -= 1!
        end!
    end!
    return c!
end



Other key performance tricks

Run-time (just-in-time) code generation using LLVM


‣ aggressive specialization on runtime types


Very clever data-flow type inference (not Hindley-Milner)


‣ http://localhost:8998/notebooks/dataflow_type_inference.ipynb


Jeff Bezanson is a true performance artist :-)

http://localhost:8998/notebooks/dataflow_type_inference.ipynb


But Julia isn’t really about performance

The benchmarks are what grab people, but…


‣ the real killer is writing high-level generic code that runs fast


‣ and composing unrelated code smoothly (and efficiently)


Sounds esoteric, but multiple dispatch is crucial


‣ choose implementation based on on all arguments, not just the first


trivial to plug in code for efficient special cases

easy to apply existing code to new types

easy to apply new code to existing types



Multiple dispatch

What is multiple dispatch?


‣ dispatch: choose method based on runtime types, not static types


‣ multiple: based on all arguments, not just the receiver


Written as function application:


‣ f(a,b,c) ⟸ like this


‣ a.f(b,c) ⟸ not this


Multiple dispatch ≠ method overloading



Multiple dispatch in action

Let’s go to the IJulia Notebook:


‣ http://localhost:8998/notebooks/multiple_dispatch.ipynb

http://localhost:8998/notebooks/multiple_dispatch.ipynb


Multiple dispatch in Ruby

Arithmetic operators:


Number + Number    | String + String  | Array + Array!
Number - Number    | Time - Time      | Time - Number     | Array - Array!
Number * Number    | Array * Integer  | Array * String    | String * Integer!
Integer << Integer | String << String | String << Integer!

Arrays, Hashes & Strings:


(Array|Hash).fetch(index,default|block)!
(Array|Hash).new(object|block) | String.new(string)!
(Array|Hash)[int|range]        | String[int|range|regex|string]!
(Array|Hash)[int|range]=       | String[int|range|regex|string]=!
Array.slice(int|range)         | String.slice(int|range|regex|string)!
Array.slice!(int|range)        | String.slice!(int|range|regex|string)!

Just Strings:


String.index(string|int|regex)!
String.rindex(string|int|regex)!
String.sub(pattern,replacement|block)!
String.sub!(pattern,replacement|block)!
String.gsub(pattern,replacement|block)!
String.gsub!(pattern,replacement|block)



Multiple dispatch in English

Related meanings:

‣ “she goes (home|away)”	 go(subj::Noun, where::PlaceAdverb)
      

‣ “it went (wrong|well)”	 go(subj::Noun, how::MannerAdverb)
           

Default arguments:

‣ “go (home|away|well)”	 go(adv::Adverb) = go(Person("addressee"), adv)
           

‣ “he goes”	 go(subj::Noun)  = go(subj, PlaceAdverb("somewhere"))
                              

‣ “go”	 go() = go(PlaceAdverb("somewhere"))                                       



Open source & friendly

Julia and most of its packages are


‣ MIT-licensed


‣ hosted on GitHub


built-in package manager

integrated with CI and coverage services (Travis & Coveralls.io)


Active, friendly and helpful community


‣ helpful for new and veteran programmers, alike


‣ huge expertise in an breadth of technical subjects



More than just a new language

Julia is a place for programmers, physical scientists, social 
scientists, computational scientists, mathematicians, and others to 

pool their collective knowledge in the form of code.


