
!

A Fast Dynamic Language for Technical Computing

Stefan Karpinski, Jeff Bezanson, Viral Shah, Alan Edelman

u alj i

What is a “technical/numerical” language?

An obvious answer:

‣ specialized for numerical work

Matlab:
‣ everything is a complex matrix

R (and S before it):
‣ allow “NA” values everywhere

‣ data frame as basic data type

Mathematica:
‣ symbolic rewriting everywhere

NumPy:
‣ typed arrays for Python

Are C and Scheme numerical?

Scheme R6RS spec:

‣ 20% numerical

C99 spec:

‣ 20% numerical

That's funny…

Numerical languages are strangely diverse

General languages are strangely numerical

What’s going on here?

The “niche hypothesis”

Numerical computing is still an under-generalized niche

‣ each language picks a different way of specializing numerically

(also happens to be the oldest programming language niche – Fortran)

Hypothesis:

‣ many diverse languages in this niche can be replaced

‣ by a single sufficiently powerful, general-purpose language 

History

Text processing was a niche with a similar variety of languages

‣ SNOBOL, SPITBOL, COMIT, TRAC, TTM, Icon, Unicon, sed, awk, Perl4

lot’s of different views of text processing and how to specialize for it

You don’t see much of these anymore

‣ people use one of Python, Ruby, or Perl5 instead

(we still use sed and awk sometimes, but could use Perl/Python/Ruby)

A few general languages that support text processing

‣ replaced diverse languages that specialized in some aspect of it

Text processing was diverse & hard.

Now it’s unified & easy.

Can we do this for numerical computing?

History

History

We believe the answer is “yes”

Julia is our attempt to do this.

Before we go further

Let’s actually see some code.

function randmatstat(t,n)!
 v = zeros(t)!
 w = zeros(t)!
 for i = 1:t!
 a = randn(n,n)!
 b = randn(n,n)!
 c = randn(n,n)!
 d = randn(n,n)!
 P = [a b c d]!
 Q = [a b; c d]!
 v[i] = trace((P'*P)^4)!
 w[i] = trace((Q'*Q)^4)!
 end!
 std(v)/mean(v), std(w)/mean(w)!
end

Matlab-like

function qsort!(a,lo,hi)!
 i, j = lo, hi!
 while i < hi!
 pivot = a[(lo+hi)>>>1]!
 while i <= j!
 while a[i] < pivot; i = i+1; end!
 while a[j] > pivot; j = j-1; end!
 if i <= j!
 a[i], a[j] = a[j], a[i]!
 i, j = i+1, j-1!
 end!
 end!
 if lo < j; qsort!(a,lo,j); end!
 lo, j = i, hi!
 end!
 return a!
end

Low-level

immutable ModInt{n} <: Integer!
 k::Int!
 ModInt(k) = new(mod(k,n))!
end!
!

-{n}(a::ModInt{n}) = ModInt{n}(-a.k)!
+{n}(a::ModInt{n}, b::ModInt{n}) = ModInt{n}(a.k+b.k)!
-{n}(a::ModInt{n}, b::ModInt{n}) = ModInt{n}(a.k-b.k)!
*{n}(a::ModInt{n}, b::ModInt{n}) = ModInt{n}(a.k*b.k)!
!

convert{n}(::Type{ModInt{n}}, i::Int) = ModInt{n}(i)!
promote_rule{n}(::Type{ModInt{n}}, ::Type{Int}) = ModInt{n}!
!

show{n}(io::IO, k::ModInt{n}) = print(io, "$(k.k) mod $n")!
showcompact(io::IO, k::ModInt) = print(io, k.k)

Different

Why are numbers hard?

Syntax

‣ numerical operators tend use infix syntax

Semantics

‣ numerical operators are usually not “just functions”

‣ things like “+” and indexing are highly polymorphic

‣ special promotion of arguments to a common type

‣ need compact arrays (of numbers at least)

‣ numbers are naturally immutable

Other things that scientists want...

‣ extreme convenience – things Just Work™

‣ code that looks like pseudocode

‣ massive standard library

‣ top performance

Julia design overview

high-level & dynamic

expressive type-system

‣ parametric, dependent, invariant

‣ concrete types are final

but large abstract super-type hierarchy

generic programming with abstract types

‣ unobtrusive – don't need to mention types

metaprogramming

‣ homoiconic: code represented as data

can be constructed, manipulated, eval’d

‣ macros: @time sleep(1)

ubiquitous multiple dispatch

‣ everything is a generic function

even basic performance-critical functions

‣ quantified methods (think templates)

‣ diagonal dispatch

concurrency & parallelism

‣ lightweight coroutine-based I/O

‣ distributed global address space

first-class remote references

easy to run code on a cluster of instances

‣ we’re working on multithreading

Dynamic typing

Dynamic typing is hugely popular for numerical environments:

‣ exploratory, interactive, tangible

‣ “customer is always right”

Julia has a type system, but no static type checking

‣ Leah Hanson observed while learning Julia:

“I like that Julia uses the type system in all the ways that
 don't end with the programmer arguing with the compiler.”

‣ not checking types can allow a more sophisticated type system

Two language compromise

People love dynamic environments

‣ for data analysis and exploration

‣ but dynamism and performance are at odds

A standard compromise:

‣ slow code in convenient dynamic language (Matlab, Python, R)

‣ fast code in static, low-level language (C, C++, Fortran)

Creates a huge impediment to development

‣ continually breaking the abstraction barrier = poor abstraction

Goldilocks

Graydon Hoare (creator of Rust) wrote [http://goo.gl/zQRGu6]:

“Julia, like Dylan and Lisp before it, is a Goldilocks language.

It is trying to span the entire spectrum of its target users’
needs, from numerical inner loops to glue-language scripting

to dynamic code generation and reflection.”

Goldilocks languages are the opposite of two-language systems:

‣ do everything in one language – both low level and high level work

‣ define the language in itself and give users just as much power

http://goo.gl/zQRGu6

Microbenchmarks

Reports from the real world

“[R]eports ... indicate that Julia gives rather significant boosts over
Matlab/R, sometimes by even more than the benchmarks might

suggest. That was surprising to me, since I expected the gap to be
largest for benchmarks. 

⋯ 
[O]ne common factor was fairly sizable (but not ridiculous) memory
requirements; perhaps Julia's ability to manage memory in a more

fine-grained fashion pays major dividends for such problems.”

– Tim Holy, WUSTL 
http://goo.gl/r6qwz

http://goo.gl/r6qwz%5D

Simplex Benchmarks

https://github.com/mlubin/SimplexBenchmarks

Benchmark of some important operations:

Julia C++ C++bnd Matlab PyPy Python
Sp. mat-sp. vec 1.29 0.90 1.00 5.79 19.20 417.16
Sp. vector scan 1.59 0.96 1.00 13.98 13.81 48.39

Sp. axpy 1.85 0.70 1.00 19.12 9.21 78.65

C++bnd = C++ with bounds checking

Execution times relative to C++bnd

7 / 8

source: Miles Lubin & Iain Dunning

Finite element programming

Comparison by Amuthan Ramabathiran [http://goo.gl/SRciE]:

‣ FEniCS

“collection of software for high level finite element code development
written in Python and C++”

‣ FreeFem++

“partial differential equations solver written in C++ with its own DSL
(Domain Specific Language) with a C++ like syntax.”

‣ Julia FEM, simple solver

“Thanks to Julia’s elegant syntax the code is largely self-explanatory.”

http://goo.gl/SRciE%5D

Finite element programming

Finite element programming

“[W]hat is really interesting about Julia is the relative ease with
which various strategies can be implemented and tested without

leading to code swell, while at the same time resulting in high
performance code. 

⋯ 
Julia appears to be a very good choice for developing research
oriented finite element software that is both fast and easy to

develop.”

– Amuthan Ramabathiran 
http://goo.gl/SRciE

http://goo.gl/SRciE%5D

How does Julia go fast?

There are many fast dynamic language implementations these days

‣ JavaScript V8, LuaJIT, PyPy, etc.

Julia doesn’t work the way these do at all

‣ “Julia does static compilation at run time” – Carl Bolz, PyPy core developer

Basically, we’ve cheated

‣ made key design choices that make it much easier to make things fast

native data types (machine ints, floats, etc.)

type annotations; type stability in standard libraries

immutable types; all concrete types are final

multiple dispatch

Collatz

function collatz(n)!
 k = 0!
 while n > 1!
 n = isodd(n) ? 3n+1 : n>>1!
 k += 1!
 end!
 return k!
end!

The Collatz conjecture:

‣ for all n ≥ 0 the function collatz(n) terminates

Cumulative Collatz

function collatz_up_to(m)!
 c = fill(-1,m)!
 c[1] = 0!
 for n = 2:m!
 nʹ, d = n, 0!
 while nʹ > length(c) || c[nʹ] < 0!
 nʹ = isodd(nʹ) ? 3nʹ+1 : nʹ>>1!
 d += 1!
 end!
 d += c[nʹ]!
 while n > length(c) || c[n] < 0!
 n <= length(c) && (c[n] = d)!
 n = isodd(n) ? 3n+1 : n>>1!
 d -= 1!
 end!
 end!
 return c!
end

Other key performance tricks

Run-time (just-in-time) code generation using LLVM

‣ aggressive specialization on runtime types

Very clever data-flow type inference (not Hindley-Milner)

‣ http://localhost:8998/notebooks/dataflow_type_inference.ipynb

Jeff Bezanson is a true performance artist :-)

http://localhost:8998/notebooks/dataflow_type_inference.ipynb

But Julia isn’t really about performance

The benchmarks are what grab people, but…

‣ the real killer is writing high-level generic code that runs fast

‣ and composing unrelated code smoothly (and efficiently)

Sounds esoteric, but multiple dispatch is crucial

‣ choose implementation based on on all arguments, not just the first

trivial to plug in code for efficient special cases

easy to apply existing code to new types

easy to apply new code to existing types

Multiple dispatch

What is multiple dispatch?

‣ dispatch: choose method based on runtime types, not static types

‣ multiple: based on all arguments, not just the receiver

Written as function application:

‣ f(a,b,c) ⟸ like this

‣ a.f(b,c) ⟸ not this

Multiple dispatch ≠ method overloading

Multiple dispatch in action

Let’s go to the IJulia Notebook:

‣ http://localhost:8998/notebooks/multiple_dispatch.ipynb

http://localhost:8998/notebooks/multiple_dispatch.ipynb

Multiple dispatch in Ruby

Arithmetic operators:

Number + Number | String + String | Array + Array!
Number - Number | Time - Time | Time - Number | Array - Array!
Number * Number | Array * Integer | Array * String | String * Integer!
Integer << Integer | String << String | String << Integer!

Arrays, Hashes & Strings:

(Array|Hash).fetch(index,default|block)!
(Array|Hash).new(object|block) | String.new(string)!
(Array|Hash)[int|range] | String[int|range|regex|string]!
(Array|Hash)[int|range]= | String[int|range|regex|string]=!
Array.slice(int|range) | String.slice(int|range|regex|string)!
Array.slice!(int|range) | String.slice!(int|range|regex|string)!

Just Strings:

String.index(string|int|regex)!
String.rindex(string|int|regex)!
String.sub(pattern,replacement|block)!
String.sub!(pattern,replacement|block)!
String.gsub(pattern,replacement|block)!
String.gsub!(pattern,replacement|block)

Multiple dispatch in English

Related meanings:

‣ “she goes (home|away)”	 go(subj::Noun, where::PlaceAdverb)

‣ “it went (wrong|well)”	 go(subj::Noun, how::MannerAdverb)

Default arguments:

‣ “go (home|away|well)”	 go(adv::Adverb) = go(Person("addressee"), adv)

‣ “he goes”	 go(subj::Noun) = go(subj, PlaceAdverb("somewhere"))

‣ “go”	 go() = go(PlaceAdverb("somewhere"))

Open source & friendly

Julia and most of its packages are

‣ MIT-licensed

‣ hosted on GitHub

built-in package manager

integrated with CI and coverage services (Travis & Coveralls.io)

Active, friendly and helpful community

‣ helpful for new and veteran programmers, alike

‣ huge expertise in an breadth of technical subjects

More than just a new language

Julia is a place for programmers, physical scientists, social
scientists, computational scientists, mathematicians, and others to

pool their collective knowledge in the form of code.

