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• Representations are “Concepts” or “Abstractions” 
that help us make sense of the variability in data 

• Often hand-designed to have desirable properties: 
e.g. sensitive to variables we want to predict, less 
sensitive to other factors explaining variability 

• Representation learning algorithms are machine 
learning algorithms which involve the learning of 
features or explanatory factors

Learning Representations 
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Deep Learning
Visualizing and Understanding Convolutional Networks
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Figure 3. Architecture of our 8 layer convnet model. A 224 by 224 crop of an image (with 3 color planes) is presented as
the input. This is convolved with 96 di↵erent 1st layer filters (red), each of size 7 by 7, using a stride of 2 in both x and y.
The resulting feature maps are then: (i) passed through a rectified linear function (not shown), (ii) pooled (max within
3x3 regions, using stride 2) and (iii) contrast normalized across feature maps to give 96 di↵erent 55 by 55 element feature
maps. Similar operations are repeated in layers 2,3,4,5. The last two layers are fully connected, taking features from
the top convolutional layer as input in vector form (6 · 6 · 256 = 9216 dimensions). The final layer is a C-way softmax
function, C being the number of classes. All filters and feature maps are square in shape.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 4. Evolution of a randomly chosen subset of model features through training. Each layer’s features are displayed
in a di↵erent block. Within each block, we show a randomly chosen subset of features at epochs [1,2,5,10,20,30,40,64].
The visualization shows the strongest activation (across all training examples) for a given feature map, projected down to
pixel space using our deconvnet approach. Color contrast is artificially enhanced and the figure is best viewed in electronic
form.
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Figure 5. Analysis of vertical translation, scale, and rotation invariance within the model (rows a-c respectively). Col 1: 5
example images undergoing the transformations. Col 2 & 3: Euclidean distance between feature vectors from the original
and transformed images in layers 1 and 7 respectively. Col 4: the probability of the true label for each image, as the
image is transformed.

• Learn multiple layers of representation, corresponding to different levels of 
abstraction 

- theory on the advantage of depth (Hasted et al 1986 & 1991), (Bengio et al. 
2007), (Bengio and Delalleau 2011), (Braverman 2011) 

- exploiting composition gives an exponential gain in representational 
power (humans organize ideas and concepts hierarchically!) 

- biologically inspired learning - the brain is deep!

Example: A Convolutional Net 
“An Astounding Baseline for Recognition”

Image: Convolutional net architecture (Zeiler and Fergus, 2013)
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Deep Learning Timeline

Image credit: Alex Krizhevsky, IEEE Signal Processing Magazine
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Most current speech recognition systems use 
hidden Markov models (HMMs) to deal with 
the temporal variability of speech and 
Gaussian mixture models (GMMs) to deter-
mine how well each state of each HMM fits a 

frame or a short window of frames of coefficients that repre-
sents the acoustic input. An alternative way to evaluate the fit 
is to use a feed-forward neural network that takes several 
frames of coefficients as input and produces posterior proba-

bilities over HMM states as output. Deep neural networks 
(DNNs) that have many hidden layers and are trained using 
new methods have been shown to outperform GMMs on a vari-
ety of speech recognition benchmarks, sometimes by a large 
margin. This article provides an overview of this progress and 
represents the shared views of four research groups that have 
had recent successes in using DNNs for acoustic modeling in 
speech recognition.

INTRODUCTION
New machine learning algorithms can lead to significant 
advances in automatic speech recognition (ASR). The biggest 

[Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, 
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N. Sainath, and Brian Kingsbury]

[The shared views of four research groups]
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Image credit: Alex Krizhevsky, IEEE Signal Processing Magazine
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

2012 
University of Toronto wins  

ImageNet with convnet

Image credit: Alex Krizhevsky, IEEE Signal Processing Magazine
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

2012 
University of Toronto wins  

ImageNet with convnet

2012-2013 
Google, MS, Facebook, IBM, NEC, Baidu, etc. 
build DL products and accelerate research

Image credit: Alex Krizhevsky, IEEE Signal Processing Magazine
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INTRODUCTION
New machine learning algorithms can lead to significant 
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

2012 
University of Toronto wins  

ImageNet with convnet

2014 
DL Mania! 

Specialized hardware avail

2012-2013 
Google, MS, Facebook, IBM, NEC, Baidu, etc. 
build DL products and accelerate research

Image credit: Alex Krizhevsky, IEEE Signal Processing Magazine
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Example: Visual recognition
Traditional recognition typically goes like this…

Input data  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 (e.g. SVM)

Recognition or detection

Stapler
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Feature Engineering
CV community, much effort engineering features…

SIFT Spin Image

HoG Textons
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• Ablation studies on Deformable Parts Model 
(Felzenszwalb et al. 2010) 

• Replace each component with humans (AMT)

What Limits Performance?

(a) Human detector (b) Human sliding-window (c) Machine spatial model
Figure 11: Example failure cases for scenarios with different amounts of human involvement. Correct detections are shown in white, false positives in
red and false negatives in yellow. (a) Even when subjects are shown the entire image, highly occluded people in bad lighting are missed. (b) When subjects
classify windows in isolation from the rest of the image as containing a person or not, lack of context leads to false positives when the windows locally
appear to have parts of a person. (c) A machine spatial model applied to near-perfect human part-detections fails because of symmetric part detections.
Subjects were asked to classify patches as containing arms, legs, etc. and were not asked to distinguish between left/right arms, legs, etc.
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Figure 12: Summary of our results: The component of a parts-based
person detector that can improve detection performance the most is the
part-detection, followed by the NMS component. Spatial models do not
affect the resultant performance significantly.

(a) Machine part detections (b) Resultant detections

(c) Human part detections (d) Resultant detections

Figure 13: Example detections where human detected parts allow for
successful detection (white), while machine detected parts lead to false
positive (red) and false negative (yellow) detections.

responses. Example failure cases for both human subjects
and machines are shown in Figures 11 and 13.

6. Discussion
Our analysis is restricted to sliding-window parts-based

models. It assumes a pipeline where the parts and spatial
models are considered to be independent. Part models could

be learnt jointly with spatial models as in [1, 13]. Moreover,
the weaker the part models, the bigger role spatial models
could play in the final detection performance. Our analy-
sis does not account for such dependencies among various
components in the pipeline.

In our human studies, subjects were instructed to find
parts with semantic meaning (heads, torso, etc.). Since the
patches were presented in isolation, we do not expect this
semantic knowledge to provide contextual information to
subjects. However, machine object detectors have the free-
dom to model parts without semantic meanings. This flex-
ibility may allow for the use of better parts, but could also
make the underlying learning problem intractable.

The accuracies of human subjects as person detectors on
color and grey-scale images is higher than any experiment
using a combination of machine and human components.
This implies that the pipeline proposed for the machine de-
tector may not be the same as the human subjects’.

In conclusion, we presented numerous studies combin-
ing both machine and human components for detecting peo-
ple. By analyzing their relative performance we can deter-
mine which components could offer the greatest boost in
overall performance if improved. Our results show that part
detection is the weakest link on challenging datasets such as
PASCAL, followed by non-maximal suppression and con-
text. Human spatial models appear to offer negligible per-
formance increase over machine spatial models. Grey-scale
information provided the same level of accuracy as color.
However, accuracies suffered when using only normalized
gradients. Future work involves similar analysis for de-
tecting generic object categories and other object detection
models.
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Figure 6: Human accuracies as the number of training examples increase. We can see that humans do not leverage more
training data aggressively. Human accuracies are shown for the settings for which human studies were conducted. Best
viewed in color

Certain features types, such as Gist and texture histograms,
significantly out perform color based features. The second
set of experiments use humans to generate the feature set
as provide by [36]. This feature set called attributes, as de-
scribed in Section 3.1 is a set of binary labels describing an
object indicating properties such as being round, furry, or
having a head. As we can see, these features are much more
informative for both machines and humans for recognition
on the challenging PASCAL datasets (PA1 and PA2). This
illustrates how critical the feature set can be for recognition.

Given the importance of features, we provide a few ad-
ditional experiments investigating the features used by hu-
mans. In these experiments, humans are shown natural im-
ages from the outdoor scene recognition dataset [18] un-
der different transformations and asked to select a category
name from a list. Since we want humans to use their own
pre-built models and internal features we don’t provide sub-
jects with any training data.

Expanding on the work of Vogel et al. [39], we exper-
iment with two transformations: (1) Block test, where the
image is divided into non-overlapping blocks, and the pix-
els in each block are randomly shuffled. This maintains the
global layout of the scene, but the local statistics are lost.
(2) Puzzle-test, where the image is again divided into non-
overlapping blocks, but the blocks are randomly shuffled in
the image while maintaining the pixels’ relative locations in
the block. In this case, local regions of the image are pre-
served while the global layout is not. Both these transforma-
tions were applied to low resolution (equivalent of) 32⇥ 32
images, and high resolution 256 ⇥ 256 images. We see in
Figure 9, that in both high and low resolution images, hu-
man recognition is robust to a significant loss of local statis-
tics. This indicates that humans rely on the global layout of
the scene for scene recognition. This is also supported by
tests conducted by Torralba et al. [1] and Parikh et al. [7] on
low resolution images. However, in high resolution images,
human recognition rates are also very robust even when the
global layout of the scene is drastically altered, which indi-
cates that humans can also rely on local regions of images
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Figure 10: The F-measure computed using analysis of vari-
ance (ANOVA). We can see that for all datasets where ma-
chines can achieve reasonable recognition accuracy, the fea-
tures have the highest influence on the performance. For
ISR (indoor scene recognition), machines have low recog-
nition rates in all settings.

for scene recognition.
These tests indicate that humans do not rely on a fixed

set of features. Depending on the information available to
them, humans can adaptively rely on different sets of fea-
tures during testing. This is true even if similar instances
have never been seen before. This ability to adapt during
testing is not seen in standard machine learning algorithms.

7. Discussion
In addition to our qualitative results, we performed a

multi-way analysis of variance (ANOVA) on our machine
experiments. In Figure 10, we plot the F -measure for each
of the three factors. We find that the choice of features im-
pacts the recognition accuracy the most, further support-
ing our hypothesis. This is especially pronounced for the
PASCAL dataset in which the human generated feature at-
tributes are studied.

For lack of space, we did not include details of an ad-
ditional experiment we conducted to test if human sub-
jects were essentially using a nearest-neighbor classifica-
tion strategy. In one test, we included some copies of the

Parikh & Zitnick (CVPR 2010) 
Multiple recognition tasks

Parikh & Zitnick (CVPR 2011) 
Person detectors
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• Mid-level cues 

!

!

!

• Object parts 

!

• Difficult to hand-engineer (What about learning them?)

Mid-level Representations

Continuation Parallelism Junctions Corners

Deconvolutional Networks

Matthew D. Zeiler, Dilip Krishnan, Graham W. Taylor and Rob Fergus
Dept. of Computer Science, Courant Institute, New York University

{zeiler,dilip,gwtaylor,fergus}@cs.nyu.edu

Abstract

Building robust low and mid-level image representa-
tions, beyond edge primitives, is a long-standing goal in
vision. Many existing feature detectors spatially pool edge
information which destroys cues such as edge intersections,
parallelism and symmetry. We present a learning frame-
work where features that capture these mid-level cues spon-
taneously emerge from image data. Our approach is based
on the convolutional decomposition of images under a spar-
sity constraint and is totally unsupervised. By building a
hierarchy of such decompositions we can learn rich feature
sets that are a robust image representation for both the anal-
ysis and synthesis of images.

1. Introduction

In this paper we propose Deconvolutional Networks, a
framework that permits the unsupervised construction of hi-
erarchical image representations. These representations can
be used for both low-level tasks such as denoising, as well
as providing features for object recognition. Each level of
the hierarchy groups information from the level beneath to
form more complex features that exist over a larger scale
in the image. Our grouping mechanism is sparsity: by en-
couraging parsimonious representations at each level of the
hierarchy, features naturally assemble into more complex
structures. However, as we demonstrate, sparsity itself is
not enough – it must be deployed within the correct ar-
chitecture to have the desired effect. We adopt a convo-
lutional approach since it provides stable latent representa-
tions at each level which preserve locality and thus facili-
tate the grouping behavior. Using the same parameters for
learning each layer, our Deconvolutional Network (DN) can
automatically extract rich features that correspond to mid-
level concepts such as edge junctions, parallel lines, curves
and basic geometric elements, such as rectangles. Remark-
ably, some of them look very similar to the mid-level tokens
posited by Marr in his primal sketch theory [18] (see Fig. 1).

Our proposed model is similar in spirit to the Convo-
lutional Networks of LeCun et al. [13], but quite different
in operation. Convolutional networks are a bottom-up

(a)

(b)

Figure 1. (a): “Tokens” from Fig. 2-4 of Vision by D. Marr [18].
These idealized local groupings are proposed as an intermediate
level of representation in Marr’s primal sketch theory. (b): Se-
lected filters from the 3rd layer of our Deconvolutional Network,
trained in an unsupervised fashion on real-world images.

approach where the input signal is subjected to multiple
layers of convolutions, non-linearities and sub-sampling.
By contrast, each layer in our Deconvolutional Network
is top-down; it seeks to generate the input signal by a sum
over convolutions of the feature maps (as opposed to the
input) with learned filters. Given an input and a set of
filters, inferring the feature map activations requires solving
a multi-component deconvolution problem that is compu-
tationally challenging. In response, we use a range of tools
from low-level vision, such as sparse image priors and
efficient algorithms for image deblurring. Correspondingly,
our paper is an attempt to link high-level object recognition
with low-level tasks like image deblurring through a unified
architecture.

2. Related Work

Deconvolutional Networks are closely related to a num-
ber of “deep learning” methods [2, 8] from the machine
learning community that attempt to extract feature hierar-
chies from data. Deep Belief Networks (DBNs) [8] and
hierarchies of sparse auto-encoders [22, 9, 26], like our ap-
proach, greedily construct layers from the image upwards
in an unsupervised fashion. In these approaches, each layer
consists of an encoder and decoder1. The encoder provides
a bottom-up mapping from the input to latent feature space
while the decoder maps the latent features back to the input

1Convolutional networks can be regarded as a hierarchy of encoder-
only layers [13].

1

David Marr’s “Tokens” (1982)
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• Learn a hierarchy 

• All the way from pixels to output (e.g. classifier) 

• Each layer extracts features from output of prev. layer  
 
 
 

• Train all layers jointly

Learning a Feature Hierarchy

Layer 1 Layer 3Layer 2Image/video 
pixels

Simple 
classifier
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Learning a Feature Hierarchy (2)

Learning useful mid-level features from images

Input data

Feature representation

Lee et al. (ICML 2009 & CACM 2011) 
“Convolutional Restricted 

Boltzmann Machine”

3rd Layer 
“Objects”

2nd Layer 
“Object parts”

1st Layer 
“Edges”

Pixels as input



10 Sep 2014 /  
TCMM Workshop Leuven ･ Deep Learning / G Taylor 

Credit: Rob Fergus12

• Better performance on discriminative tasks  

• Extension to other domains: 
- Kinect (RGB + D) 
- Video 
- Multi-spectral 

• Feature computation time 
- Dozens of features now regularly used 
- Prohibitive for large datasets (10’s sec/image)

Feature Hierarchies. So what?
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Feature Learning Paradigms
Supervised Learning 

!

• End-to-end learning of 
deep architectures (e.g. 
deep neural networks) 
using back-propagation 

• Works well when there is a 
lot of labeled data 

• Structure of the model is 
important (e.g. convnet)

Unsupervised Learning 
!

• Learn statistical structure 
or dependencies in the 
data from unlabelled data 

• Usually a layer-by-layer 
training strategy is 
employed 

• Useful when there is little 
or no labeled data
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• Approximate a complicated function by a 
composition of simpler functions 

- Each simple function will have parameters 
subject to training 

- The composition is a highly non-linear function 

• Assume the input is a vector 
- For images, this means we ignore spatial layout of 

the pixels

Neural Networks (Introduction)
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Neural Networks  
for Supervised Learning

x h1 h2
max(0,W 1

x) max(0,W 2h1
) W 3h2

Example of a 2 hidden layer (or 4 layer) network …

x input
h1 1st layer hidden units

h2 2nd layer hidden units

output (prediction)

o

o
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Forward Propagation

x h1 h2
max(0,W 1

x) max(0,W 2h1
) W 3h2

Forward propagation is the process of computing  
the output of the network given its input

x 2 RD b1 2 RN1 h1 2 RN1W 1 2 RN1⇥D

h

1
= max(0,W 1

x+ b

1
)

W 1

b1

1st layer weights

1st layer biases The non-linearity                                is called a ReLU in the DL 
literature. Each output hidden unit takes as input all the units at the 
previous layer: each such layer is called “fully connected”.

u = max(0, v)

o
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Forward Propagation

h1 2 RN1

2nd layer weights

2nd layer biases

W 2 2 RN2⇥N1 b2 2 RN2 h2 2 RN2

h2
= max(0,W 2h1

+ b2
)

W 2

b2

x h1 h2
max(0,W 1

x) max(0,W 2h1
) W 3h2 o
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Forward Propagation

3rd layer weights

3rd layer biases

h2 2 RN2

x h1 h2
max(0,W 1

x) max(0,W 2h1
) W 3h2

W 3 2 RN3⇥N2 b3 2 RN3

W 3

b3

o

o = max(0,W 3
h

2
+ b

3
)

o 2 RN3
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Alternative Graphical 
Representations

hk
max(0,W k+1hk

)

hk+1 hk hk+1

W k+1

hk

hk+1

W k+1

hk
1

hk
2

hk
3

hk
4

hk+1
3

hk+1
2

hk+1
1

wk+1
1,1
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How Good is a Network?

x h1 h2
max(0,W 1

x) max(0,W 2h1
) W 3h2 o

Loss
y = [00 . . . 010 . . . 0]

1 k C

p(ck = 1|x) = eok

PC
j=1 e

oj

(Per-sample) Loss; e.g. negative log-likelihood  
(good for classification of a small number of classes):

Probability of class     given input (softmax):k

L(x,y; ✓) = �
X

j

yj log p(cj |x)
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• Learning consists of minimizing the loss (plus some 
regularization term) w.r.t. parameters over the whole 
training set  
 

• Question: How to minimize a complicated function of the 
parameters? 

• Answer: Chain rule, a.k.a. Backpropagation! This is the 
procedure to compute gradients of the loss w.r.t. 
parameters in a multi-layer neural network.

Training

✓⇤ = argmin
✓

PX

n=1

L(xn,yn; ✓)
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Learning by Perturbing Weights

x h1 h2
max(0,W 1

x) max(0,W 2h1
) W 3h2 o

Loss
y

Let’s say we want to decrease the loss by adjusting  
We could consider a very small                    and compute:

W 1
i,j .

✏ = 1e�6

L(x,y; ✓)

L(x,y; ✓ \W 1
i,j ,W

1
i,j + ✏)

Then update:
W 1

i,j  W 1
i,j + ✏ sgn

�
L (x,y; ✓)� L

�
x,y; ✓ \W 1

i,j ,W
1
i,j + ✏

��
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• A better idea: randomly perturb the activities of the hidden units 
• We don’t know what the hiddens ought to do, but we can compute 

how fast the error changes when we change a hidden activity 
- instead of using desired activities to train hidden units, use error 

derivatives w.r.t. activities 
- each hidden activity can affect many output units and therefore 

have many separate effects on error (sum them) 
• We can compute error derivatives for all hidden units efficiently at the 

same time 
- Once we have the error derivatives for the hidden activities, it’s 

easy to get the error derivatives for the weights going into a hidden 
unit

The Idea behind Backpropagation
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Derivative w.r.t. Input of Softmax
First convert the discrepancy between each output and its 
target value into an error derivative

p(ck = 1|x) = eok

PC
j=1 e

oj

L(x,y; ✓) = �
X

j

yj log p(cj |x) y = [00 . . . 010 . . . 0]

By substituting the first formula into the second,  
and taking the derivative w.r.t.      we get:

o

@L

@oj
= p(cj |x)� yj
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Backward Propagation

x h1 h2
max(0,W 1

x) max(0,W 2h1
) W 3h2

Loss
y

Given                 and assuming we can easily compute the  
Jacobian of each module, we have:

@L

@o

@L/@o

@L

@W 3
=

@L

@o

@o

@W 3

@L

@h2
=

@L

@o

@o

@h2

= (p(c|x)� y)h2T
= W 3T (p(c|x)� y)
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Backward Propagation

x h1 h2
max(0,W 1

x) max(0,W 2h1
) W 3h2

Loss
y

Given                  we can compute now:

@L

@o

@L/@h2

@L

@W 2
=

@L

@h2

@h2

@W 2

@L

@h1
=

@L

@h2

@h2

@h1
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Backward Propagation

x h1 h2
max(0,W 1

x) max(0,W 2h1
) W 3h2

Loss
y

Given                  we can compute now:

@L

@o

@L/@h1

@L

@W 1
=

@L

@h1

@h1

@W 1
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• Neural networks are modular architectures 

- Often use repeated blocks 

• Forward pass and backward pass must be defined 
for each module 

Technical Challenge: Composition
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• Modern scientific computing tools exploit modularity 

- Torch7 (LuaJIT + C) 

• http://torch.ch/ 

- Caffe (C++ w/ Python & Matlab wrappers) 

• http://caffe.berkeleyvision.org/ 

- Theano/Pylearn2 (Python) — See Pascal Lamblin’s talk! 

• http://deeplearning.net/software_links/

Tools for Building Neural Networks

http://torch.ch/
http://caffe.berkeleyvision.org/
http://deeplearning.net/software_links/
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• Modern scientific computing tools exploit modularity 

- Torch7 (LuaJIT + C) 

• http://torch.ch/ 

- Caffe (C++ w/ Python & Matlab wrappers) 

• http://caffe.berkeleyvision.org/ 

- Theano/Pylearn2 (Python) — See Pascal Lamblin’s talk! 

• http://deeplearning.net/software_links/

Tools for Building Neural Networks

See (https://sites.google.com/site/deeplearningcvpr2014/) 
for a short presentation of each.

http://torch.ch/
http://caffe.berkeleyvision.org/
http://deeplearning.net/software_links/
https://sites.google.com/site/deeplearningcvpr2014/
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Caffe Example
Caffe nets are composed of layers as defined in a model 
schemaA Layer

caffe::ConvolutionLayer !
    ksize: 11 
    stride: 4 
    num_output: 96 
    ….

Output Blob !
256 x 96 x 55 x 55

Input Blob !
256 x 3 x 227 x 227

Weight Blob 
96 x 3 x 11 x 11

Bias Blob 
96 x 1 x 1 x 1

• The layer is the fundamental unit of computation. 
• Caffe nets are composed of layers as defined in model schema.
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Caffe: Each layer defines…
•Forward: given input, compute the output 
•Backward: given the gradient w.r.t. the output, compute 
the gradient w.r.t. the input and its internal parameters 

•Setup: how to initialize the layer

A Layer

caffe::ConvolutionLayer !
    ksize: 11 
    stride: 4 
    num_output: 96 
    ….

Output Blob !
256 x 96 x 55 x 55

Input Blob !
256 x 3 x 227 x 227

Weight Blob 
96 x 3 x 11 x 11

Bias Blob 
96 x 1 x 1 x 1

• The layer is the fundamental unit of computation. 
• Caffe nets are composed of layers as defined in model schema.
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Caffe: Each layer defines…
•Forward: given input, compute the output 
•Backward: given the gradient w.r.t. the output, compute 
the gradient w.r.t. the input and its internal parameters 

•Setup: how to initialize the layer

A Layer

caffe::ConvolutionLayer !
    ksize: 11 
    stride: 4 
    num_output: 96 
    ….

Output Blob !
256 x 96 x 55 x 55

Input Blob !
256 x 3 x 227 x 227

Weight Blob 
96 x 3 x 11 x 11

Bias Blob 
96 x 1 x 1 x 1

• The layer is the fundamental unit of computation. 
• Caffe nets are composed of layers as defined in model schema.
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Caffe: Definition of a Net
name: "mnist-small"  
# data layer for input  
layers { 
layer { 
name: "mnist" 
type: "data" 
source: "data/mnist-train-leveldb"  
batchsize: 64 
scale: 0.00390625 
} 
top: "data"  
top: "label" 
!
} 
# linear classifier by inner product  
layers { 
layer { 
name: "ip" 
type: "innerproduct" num_output: 10 weight_filler { 
type: "xavier" } 
} 
bottom: "data"  
top: "ip" 
} 
!
# softmax loss for training  
# takes classifier output and labels  
layers { 
layer { 
name: "prob" 
type: "softmax_loss" 
} 
bottom: "ip"  
bottom: "label" 
}
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What about big nets?
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• Computing gradients by hand is tedious and error-
prone 

- Checking numerically by finite differences is a 
must! 

• Theano, by way of symbolic differentiation will 
compute your derivatives for you, as long as you 
assemble a symbolic graph

Technical Challenge: Computing 
Gradients
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Theano: teaser

from theano import pp!
import theano.tensor as T!
x = T.dscalar('x')!
y = x ** 2!
gy = T.grad(y, x)!
pp(gy)  # print out the gradient prior to 
optimization!

!
!

'((fill((x ** TensorConstant{2}), 
TensorConstant{1.0}) * TensorConstant{2}) * 
(x ** (TensorConstant{2} - 

Create a function which computes the derivative of some 
expression     w.r.t. its parameter     . For example, we can 
compute the gradient of        with respect to    .

f = function([x], gy)!
print f(4)!
print f(94.2)!

!
!

8.0!
188.4

x

y

x

2
x



10 Sep 2014 /  
TCMM Workshop Leuven ･ Deep Learning / G Taylor 

Credit: Marc’Aurelio Ranzato36

Technical Challenge: Optimization
By and far, Stochastic Gradient Descent (on mini-batches) 
is most popular:

Usually with one or more “tricks”, e.g. momentum:

✓  ✓ � ⌘
@L

@✓
, ⌘ 2 (0, 1)

✓  ✓ � ⌘�

� 0.9�+
@L

@✓

Other tricks include Nesterov momentum, adaptive learning rates, rmsprop, etc…
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• Neural networks have many associated architectural 
and learning settings, we call these 
“hyperparameters”, e.g. 

- Number of layers 
- Number of hidden units in each layer 
- Learning rate 
- Regularization (e.g. weight decay) 
- When to stop training (overstopping) 

• How to set these?

Technical Challenge: 
Hyperparameter Optimization
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• Traditionally, hyperparameters have been set by: 
- expert knowledge* (experience) 
- cross-validation 

• A number of approaches have been proposed 
recently for auto-tuning models based on 
Sequential Model-Based Global Optimization 
strategies, e.g. Bayesian Optimization 

Hyperparameter Optimization

*For example, see the “Neural Nets: Tricks of the Trade Series”

Bergstra et al. Making a science of model search: hyperparameter optimization in 
hundred of dimensions for vision architectures, ICML 2013 
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Hyperopt

# define an objective function!
def objective(args):!
    case, val = args!
    if case == 'case 1':!
        return val!
    else:!
        return val ** 2!
!
# define a search space!
from hyperopt import hp!
space = hp.choice('a',!
    [!
        ('case 1', 1 + hp.lognormal('c1', 0, 1)),!
        ('case 2', hp.uniform('c2', -10, 10))!
    ])!
!
# minimize the objective over the space!
from hyperopt import fmin, tpe!
best = fmin(objective, space, algo=tpe.suggest, max_evals=100)!
!
print best!
# -> {'a': 1, 'c2': 0.01420615366247227}!
print hyperopt.space_eval(space, best)!
# -> ('case 2', 0.01420615366247227}

Hyperopt (James Bergstra and collaborators) is a Python 
library for optimizing over awkward search spaces with 
real-valued, discrete, and conditional dimensions

http://jaberg.github.io/hyperopt/

http://jaberg.github.io/hyperopt/
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Spearmint
Spearmint (Jasper Snoek and collaborators) is a Python-
based software package to perform Bayesian optimization
from	
  spearmint_salad	
  import	
  hp	
  
from	
  sklearn.svm	
  import	
  SVR	
  
!
#	
  Encapsulate	
  the	
  class	
  into	
  a	
  hp.Obj	
  to	
  be	
  able	
  to	
  instantiate	
  using	
  variable	
  parameters	
  	
  
#	
  or	
  constant	
  parameters	
  if	
  necessary.	
  
hp_space	
  =	
  hp.Obj(SVR)(	
  
	
  	
  	
  	
  C	
  =	
  hp.Float(	
  min_val=0.01,	
  max_val=1000,	
  hp.log_scale	
  ),	
  #	
  variable	
  
	
  	
  	
  	
  kernel	
  =	
  'rbf',	
  #	
  constant	
  
	
  	
  	
  	
  gamma	
  =	
  hp.Float(	
  min_val=10**-­‐5,	
  max_val=1000,	
  hp.log_scale	
  ),	
  #	
  variable	
  
	
  	
  	
  	
  epsilon	
  =	
  hp.Float(min_val=0.01,	
  max_val=1,	
  hp.log_scale),	
  #	
  variable	
  
)

from	
  spearmint_salad	
  import	
  metric	
  
!
metric	
  =	
  metric.SquareDiffLoss()	
  
make_salad(	
  hp_space,	
  metric,	
  dataset_path)

python	
  vis.py

https://github.com/JasperSnoek/spearmint

https://github.com/JasperSnoek/spearmint
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Fully-Connected Layer
Example: 200 ⨉200 image 
 40k hidden units

~2B parameters!

• Spatial correlation is local 
• Waste of resources 
• We don’t have enough 

training examples to fit!



10 Sep 2014 /  
TCMM Workshop Leuven ･ Deep Learning / G Taylor 

Credit: Marc’Aurelio Ranzato42

Locally-Connected Layer
Example: 200 ⨉ 200 image 
 40k hidden units

Filter size: 10 ⨉ 10
4M parameters

Note: this parameterization is 
good when the input images are 
registered (e.g. face recognition)
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Locally-Connected Layer
Example: 200 ⨉ 200 image 
 40k hidden units

Filter size: 10 ⨉ 10
4M parameters

Note: this parameterization is 
good when the input images are 
registered (e.g. face recognition)

STATIONARITY? Statistics are 
similar at different locations.
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Convolutional Layer

Share the same parameters across 
different locations (assuming 
input is stationary) 
Convolutions with learned kernels
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Convolutional Layer

⇤

2

64
�1 0 1

�1 0 1

�1 0 1

3
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Convolutional Layer
Learn multiple filters.

Example: 200 ⨉ 200 image 
 100 filters

Filter size: 10 ⨉ 10
10k parameters
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Convolutional Layer
hn
j = max

 
0,

KX

k=1

hn�1
k ⇤ wn

kj

!

Convolutional 
layer

hn�1
1

hn�1
2

hn�1
3

hn
1

hn
2

input  
feature map kerneloutput  

feature map

j
n

indexes maps (features)
indexes layers
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Convolutional Layer
hn
j = max
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Convolutional Layer
hn
j = max
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• A fully-connected neural network applied to images 
- scales quadratically with the size of the input 
- does not leverage stationarity 

• Solution 
- connect each hidden to a small patch of input 
- share the weights across space 

• This is called a convolutional layer 

• A network with convolutional layers is called a convolutional 
net

Convolutional Net - Recap
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Pooling Layer

How can we make the detection 
robust to the exact location 
of the eye?

Let’s assume the filter is an “eye” detector
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Pooling Layer
By “pooling” (e.g. taking max) the filter 
responses over a local region we gain 
robustness to the exact spatial location 
of features

“Shift invariance”
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Max- 
Pooling

Average- 
Pooling

L2- 
Pooling

L2-Pooling 
Over Features

52

Types of Pooling

h

n

j

(x, y) = max

x

02N(x),y02N(y)
h

n�1
j

(x

0
, y

0
)

h

n

j

(x, y) =
1

K

X

x

02N(x),y02N(y)

h

n�1
j

(x0
, y

0)

h

n

j

(x, y) =
s X

x

02N(x),y02N(y)

h

n�1
j

(x0
, y

0)2

h

n
j (x, y) =

s X

k2N(j)

h

n�1
k (x, y)2



10 Sep 2014 /  
TCMM Workshop Leuven ･ Deep Learning / G Taylor 

Credit: Marc’Aurelio Ranzato53

Local Contrast Normalization

h

n
j (x, y) =

h

n�1(x, y)�m

n�1
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Local Contrast Normalization

h

n
j (x, y) =

h

n�1(x, y)�m

n�1
j (N(x, y))

�

n�1
j (N(x, y))

Control the dynamic range 
of each feature map.
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Local Contrast Normalization

h

n
j (x, y) =

h

n�1(x, y)�m

n�1
j (N(x, y))

�

n�1
j (N(x, y))

Performed also across features 
and in the higher layers… 
Effects: 
• improves invariance 
• improves optimization 
• increases sparsity

Note: computational cost is negligible 
compared to convolutional layer.
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Convnets: Single Stage

Convolutional 
Layer PoolingRectification + 

LCN

Image credit: Koray Kavukcuoglu 
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Convnets: Typical Architecture

Convolutional 
Layer PoolingRectification + 

LCN

Single stage

C R/
N P

Whole system
Input 
image

Class 
labels

1st 
stage

2nd 
stage

3rd 
stage

C R/
N P C R/

N P

Fully-
connected 
Layers
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• All layers are differentiable 

• We can use standard back-propagation 

• Algorithm: 
- Given a small mini-batch: 

• F-Prop 
• B-Prop 
• Parameter updates

Convnets: Training



10 Sep 2014 /  
TCMM Workshop Leuven ･ Deep Learning / G Taylor 

Credit: Marc’Aurelio Ranzato59

Convnets: Testing

C R/
N P

Input 
image

Class 
labels

1st 
stage

2nd 
stage

3rd 
stage

C R/
N P C R/

N P

Fully-
connected 
Layers

Convnets can naturally process larger images at little cost. 
Traditional methods use inefficient sliding windows.

At test time, only run forward propagation



10 Sep 2014 /  
TCMM Workshop Leuven ･ Deep Learning / G Taylor 

Credit: Marc’Aurelio Ranzato60

• Until 2012, the common wisdom was that training didn’t 
work because we would “get stuck in local minima” 

• Local minima are all similar, there are long plateaus, and 
it can take a long time to break symmetries 

• Optimization is not the real problem, when: 
- the dataset is large 
- units do not saturate much 
- we use normalization layers

Convnets: today
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• The real challenges are: 

- Generalization 

• How many training examples to fit 1B params? 

• How many parameters/samples to model 
spaces with 1M dimensions? 

- Scalability

Technical Challenge: Scalability
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Convnets: why so successful now?

1M

1k

100M

1M

10T

1B

flops/s

capacity

data

tim
e

time

As time goes by, we get more data and 
more flops/s. The capacity of ML 
models should grow accordingly.

+
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Convnets: why so successful now?

1M

1k

100M

1M

10T

1B

flops/s

capacity

data

1B

CNNs were in many ways premature: we 
did not have enough data and flops/s to 
train them.  
!
They would overfit and be too slow to 
train (apparent local minima).

Note: methods need to be easily scalable!
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• DL particularly well-suited to parallelization: 
- Data parallelism inherent in pixel-based inputs (e.g. 

images and videos) 
- Task parallelism inherent in redundant processing units 

(neurons) 

• Hardware accelerators (e.g. GPUs) 

- Torch 7, Theano, Caffe all provide GPU support by way of 
CUDA 

• Distributed frameworks (e.g. Google, Microsoft)

Tools: Scalability
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Motivation

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

Image: Krizhevsky (2012) - AlexNet, the “hammer” of DL

• Most impressive results in deep learning have been obtained with 
purely supervised learning methods 

• In vision, typically classification (e.g. object recognition) 

• Though progress has been slower, it is likely that unsupervised 
learning will be important to future advances in DL
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An Interesting Historical Fact

x

W 1

h1

h2

h1

W 2

W 2

W 1

W 3

x

h1

h2

h3

Greedy layer-wise  
pre-training 
(circa 2006)

• Unsupervised learning was the catalyst 
for the present DL revolution that started 
around 2006 

• Now we can train deep supervised neural 
nets without “pre-training”, thanks to 

- Algorithms (nonlinearities, 
regularization) 

- More data 

- Better computers (e.g. GPUs) 

• Should we still care about unsupervised 
learning?
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Why Unsupervised Learning?
Reason 1: 
We can exploit unlabelled data; much more readily available 
and often free.
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Why Unsupervised Learning?
Reason 2: 
We can capture enough information about the observed 
variables so as to ask new questions about them; questions 
that were not anticipated at training time.

Visualizing and Understanding Convolutional Neural Networks

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 3. Evolution of model features through training. Each layer’s features are displayed in a di↵erent block. Within
each block, we show a randomly chosen subset of features at epochs [1,2,5,10,20,30,40,64]. The visualization shows the
strongest activation (across all training examples) for a given feature map, projected down to pixel space using our
deconvnet approach. Color contrast is artificially enhanced and the figure is best viewed in electronic form.

(R2,C4)). Layer 4 shows significant variation, but
is more class-specific: dog faces (R1,C1); bird’s legs
(R4,C2). Layer 5 shows entire objects with significant
pose variation, e.g. keyboards (R1,C11) and dogs (R4).

Fig. 4 shows 5 sample images being translated, rotated
and scaled by varying degrees while looking at the
changes in the feature vectors from the top and bot-
tom layers of the model, relative to the untransformed
feature. Small transformations have a dramatic e↵ect
in the first layer of the model, but a lesser impact at
the top feature layer, being quasi-linear for translation
& scaling. The network output is stable to translations
and scalings, but not to rotation.

4.3. Occlusion Sensitivity

With image classification approaches, a natural ques-
tion is if the model is truly classifying the object alone,
or if it is using the surrounding context. Fig. 5 at-
tempts to answer this question by systematically oc-
cluding di↵erent portions of the input image with a
grey square, and monitoring the output of the clas-
sifier. The examples clearly show the model is local-
izing the objects within the scene, as the probability
of the correct class drops significantly when the ob-
ject is occluded. Fig. 5 also shows visualizations from
the strongest feature map of the top convolution layer,
in addition to activity in this map as a function of
occluder position. When the occluder covers the im-
age region that appears in the visualization, we see a
strong drop in activity in the feature map. This shows
that the visualization genuinely corresponds to the im-
age structure that stimulates that feature map, hence
validating the other visualizations in Fig. 3 and Fig. 8.

4.4. Correspondence Analysis

Deep models di↵er from many existing recognition
approaches in that there is no explicit mechanism
for establishing correspondence between specific ob-
ject parts in di↵erent images (e.g. eyes and noses
for faces). However, an intriguing possibility is that
deep models might be implicitly computing them. To
explore this, we take 5 randomly drawn dog images
with frontal pose and systematically mask out the

Figure 6. Images used for correspondence experiments.
Col 1: Original image. Col 2,3,4: Occlusion of the right
eye, left eye, and nose respectively. Other columns show
examples of random occlusions.

same part of the face in each image (e.g. all left
eyes, see Fig. 6). For each image i, we then com-
pute: ✏

l
i = x

l
i � x̃

l
i, where x

l
i and x̃

l
i are the feature

vectors at layer l for the original and occluded im-
ages respectively. We then measure the consistency of
this di↵erence vector ✏ between all related image pairs
(i, j): �l =

P5
i,j=1,i 6=j H(sign(✏li), sign(✏

l
j)), where H

is Hamming distance. A lower value indicates greater
consistency in the change resulting from the masking
operation, hence tighter correspondence between the
same object parts in di↵erent images. In Table 3 we
compare the � score for three parts of the face (left
eye, right eye and nose) to random parts of the ob-
ject, using features from layer l = 5 and l = 7. The
lower score for these parts, relative to random object
regions, for the layer 5 features show the model does
establish some degree of correspondence.

5. Feature Generalization

The experiments above show the importance of the
convolutional part of our ImageNet model in obtain-
ing state-of-the-art performance. This is supported by
the visualizations of Fig. 8 which show the complex in-
variances learned in the convolutional layers. We now

Image: Features from a convolutional net (Zeiler and Fergus, 2013)
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Why Unsupervised Learning?
Reason 3: 
Unsupervised learning has been shown to be a good 
regularizer for supervised learning; it helps generalize.

WHY DOES UNSUPERVISED PRE-TRAINING HELP DEEP LEARNING?

−4000 −3000 −2000 −1000 0 1000 2000 3000 4000
−1500

−1000

−500

0

500

1000

1500

Without pre−training

With pre−training

Figure 6: 2D visualization with ISOMAP of the functions represented by 50 networks with and
50 networks without pre-training, as supervised training proceeds over MNIST. See Sec-
tion 6.3 for an explanation. Color from dark blue to cyan indicates a progression in
training iterations (training is longer without pre-training). The plot shows models with
2 hidden layers but results are similar with other depths.

3. From the visualization focusing on global structure (Figure 6), we see the pre-trained models
live in a disjoint and much smaller region of space than the not pre-trained models. In fact,
from the standpoint of the functions found without pre-training, the pre-trained solutions
look all the same, and their self-similarity increases (variance across seeds decreases) during
training, while the opposite is observed without pre-training. This is consistent with the
formalization of pre-training from Section 3, in which we described a theoretical justification
for viewing unsupervised pre-training as a regularizer; there, the probabilities of pre-traininig
parameters landing in a basin of attraction is small.

The visualizations of the training trajectories do seem to confirm our suspicions. It is difficult
to guarantee that each trajectory actually does end up in a different local minimum (corresponding
to a different function and not only to different parameters). However, all tests performed (visual
inspection of trajectories in function space, but also estimation of second derivatives in the directions
of all the estimated eigenvectors of the Jacobian not reported in details here) were consistent with
that interpretation.

We have also analyzed models obtained at the end of training, to visualize the training criterion
in the neighborhood of the parameter vector θ∗ obtained. This is achieved by randomly sampling
a direction v (from the stochastic gradient directions) and by plotting the training criterion around

641

Image: ISOMAP embedding of functions represented by 
50 networks w and w/o pre training (Erhan et al., 2010)

This advantage shows up 
in practical applications: 
•transfer learning, 
domain adaptation 

•unbalanced classes 
•zero-shot, one-shot 
learning
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Why Unsupervised Learning?
Reason 4: 
There is evidence that unsupervised learning can be achieved 
mainly through a level-local training signal; compare this to 
supervised learning where the only signal driving parameter 
updates is available at the output and gets backpropagated.

Propagate credit

Supervised learning Local learning
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Why Unsupervised Learning?
Reason 5: 
A recent trend in machine learning is to consider problems 
where the output is high-dimensional and has a complex, 
possibly multi-modal joint distribution. Unsupervised 
learning can be used in these “structured output” problems.

Problem & Motivation

Structured output learning is hard - the number of possible output 
con�gurations can be exponential, and interactions among outputs complex.

multilabel classi�cation

�nance
business
politics

To address these concerns, we propose a class of models inspired by 
autoencoders in which features are derived from multiplicative interactions.

Autoencoders

Gated Models for Structured Output

Experiments

Conditional random �elds (CRFs) take the output structure into account, 
however they are intractible unless the output structure is highly constrained 
(e.g. pairwise interactions only)

Hybrid RBM-CRF approaches [Li et al., 2013] yield excelent results. However, 
they require a more complicated inference/training procedure and an 
expensive optimization for each example at test time. 

Multilabel Classi�cation

Occluded MNIST

For comparison with the CRBM model, we use the same occluded MNIST 
dataset as used by Mnih, et al [2011]. The MNIST dataset is �rst binarized and 
then each digit is corrupted by setting a random 8x8 to 0. The binary value for 
each pixel is predicted and the error is given as the percentage of incorrectly 
labelled pixels.

To determine whether the performance gain is due to the multiplicative 
interactions or the stacked training procedure, we test both an MLP (1024 
ReLU hiddens) and a gated model where both inputs are set to the corrupted 
image. All gated models have 512 ReLU hidden units and 512 factors. 

MLP MLP-GSP-�ne GAE-GSP-�ne

Prediction from selected models. Columns from left 
to right: corrupted input, original input, mean 
prediction, binary prediction.

* results from Mnih et al. 2011

Conclusions and Future Work

We proposed a gated model for structured output prediction
Both conceptually and computationally simple
Trainable exactly by backprop
To explore a multi-modal output space, the model can be extended 
through the GSN framework

image segmentation

Autoencoder

Feed forward neural network architecture
Trained to minimize reconstruction error, often with 
a denoising criterion
Hidden units learn latent structure of the data

Gated Autoencoder

Autoencoder variant where hidden units 
learn a relatio between two input vectors 
[Memisevic, 2011]
Learns a family of manifolds - can be 
interpreted as a traditional autoencoder 
where the model's weights are modulated 
by the second input vector.
Hidden representation can be easily 
inferred given the two input vectors, just as 
one output can be inferred given one input 
and the hidden vector

Neural network architectures for structured output:
Simple to train via back-propagation
Fast inference; the output of the network is computed as a series of matrix 
multiplications and elementwise non-linearities
No enforced constraints on the output, i.e. each output unit is conditionally 
independent given the penultimate hidden layer

Another approach involves conditional restricted Boltzman machines (CRBMs). 
Although the usual generative training procedure is not ideal for prediction, 
Mnih et. al [2011] have proposed more appropriate training techniques for 
such tasks. However:

Cannot evaluate the probability of an input-output pair, must resort to 
approximate training methods
Such models make strong assumptions about the latent variable structure
Training a complicated generative model may not be necessary when the 
end goal is prediction

Learning Multiplicative Interactions for Structured Prediction
Jan Rudy, Graham Taylor

Architecture is similar to GAE,  but instead of 
providing a pair of inputs, the second input is 
computed as the output of a naive model such as 
logistic regression or an MLP
The gated model learns the structure of the 
output by denoising the prediction of the naive 
model, conditional on the original input
The proposed model is agnostic to the type of 
naive model used for the initial prediction
Gated models can be stacked on top of each other,
forming a type of deep network with each layer 
improving on previous' prediction

We evaluated our model on various multilabel classi�cation datasets. Here, 
we use logistic regression for the naive predictor.

All models were trained with minibatch stochastic gradient descent on cross 
entropy loss with early stopping. Recti�ed linear units were used for the 
hidden units and sigmoids on the output. Reported values are average test 
error over 10 folds of cross-validation.  Hidden and factor layer sizes were 
chosen from {32, 64, 128, 256}. GSP results are trained holding the logistic 
regression weights �xed. GSP-�ne training is a �netuning stage that 
backpropagates through both the gated model and the logistic regression 
weights.

naive
prediction

Model Yeast Scene
20.16 10.11 8.10 4.34
20.02 8.80 7.24 4.24

GSP 19.69 8.83 7.55 4.35
19.68 8.80 7.53 4.32
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Attribute 
Prediction

Segmentation

Problem & Motivation

Structured output learning is hard - the number of possible output 
con�gurations can be exponential, and interactions among outputs complex.

multilabel classi�cation

�nance
business
politics

To address these concerns, we propose a class of models inspired by 
autoencoders in which features are derived from multiplicative interactions.

Autoencoders

Gated Models for Structured Output

Experiments

Conditional random �elds (CRFs) take the output structure into account, 
however they are intractible unless the output structure is highly constrained 
(e.g. pairwise interactions only)

Hybrid RBM-CRF approaches [Li et al., 2013] yield excelent results. However, 
they require a more complicated inference/training procedure and an 
expensive optimization for each example at test time. 

Multilabel Classi�cation

Occluded MNIST

For comparison with the CRBM model, we use the same occluded MNIST 
dataset as used by Mnih, et al [2011]. The MNIST dataset is �rst binarized and 
then each digit is corrupted by setting a random 8x8 to 0. The binary value for 
each pixel is predicted and the error is given as the percentage of incorrectly 
labelled pixels.

To determine whether the performance gain is due to the multiplicative 
interactions or the stacked training procedure, we test both an MLP (1024 
ReLU hiddens) and a gated model where both inputs are set to the corrupted 
image. All gated models have 512 ReLU hidden units and 512 factors. 

MLP MLP-GSP-�ne GAE-GSP-�ne

Prediction from selected models. Columns from left 
to right: corrupted input, original input, mean 
prediction, binary prediction.

* results from Mnih et al. 2011

Conclusions and Future Work

We proposed a gated model for structured output prediction
Both conceptually and computationally simple
Trainable exactly by backprop
To explore a multi-modal output space, the model can be extended 
through the GSN framework

image segmentation

Autoencoder

Feed forward neural network architecture
Trained to minimize reconstruction error, often with 
a denoising criterion
Hidden units learn latent structure of the data

Gated Autoencoder

Autoencoder variant where hidden units 
learn a relatio between two input vectors 
[Memisevic, 2011]
Learns a family of manifolds - can be 
interpreted as a traditional autoencoder 
where the model's weights are modulated 
by the second input vector.
Hidden representation can be easily 
inferred given the two input vectors, just as 
one output can be inferred given one input 
and the hidden vector

Neural network architectures for structured output:
Simple to train via back-propagation
Fast inference; the output of the network is computed as a series of matrix 
multiplications and elementwise non-linearities
No enforced constraints on the output, i.e. each output unit is conditionally 
independent given the penultimate hidden layer

Another approach involves conditional restricted Boltzman machines (CRBMs). 
Although the usual generative training procedure is not ideal for prediction, 
Mnih et. al [2011] have proposed more appropriate training techniques for 
such tasks. However:

Cannot evaluate the probability of an input-output pair, must resort to 
approximate training methods
Such models make strong assumptions about the latent variable structure
Training a complicated generative model may not be necessary when the 
end goal is prediction

Learning Multiplicative Interactions for Structured Prediction
Jan Rudy, Graham Taylor

Architecture is similar to GAE,  but instead of 
providing a pair of inputs, the second input is 
computed as the output of a naive model such as 
logistic regression or an MLP
The gated model learns the structure of the 
output by denoising the prediction of the naive 
model, conditional on the original input
The proposed model is agnostic to the type of 
naive model used for the initial prediction
Gated models can be stacked on top of each other,
forming a type of deep network with each layer 
improving on previous' prediction

We evaluated our model on various multilabel classi�cation datasets. Here, 
we use logistic regression for the naive predictor.

All models were trained with minibatch stochastic gradient descent on cross 
entropy loss with early stopping. Recti�ed linear units were used for the 
hidden units and sigmoids on the output. Reported values are average test 
error over 10 folds of cross-validation.  Hidden and factor layer sizes were 
chosen from {32, 64, 128, 256}. GSP results are trained holding the logistic 
regression weights �xed. GSP-�ne training is a �netuning stage that 
backpropagates through both the gated model and the logistic regression 
weights.

naive
prediction

Model Yeast Scene
20.16 10.11 8.10 4.34
20.02 8.80 7.24 4.24

GSP 19.69 8.83 7.55 4.35
19.68 8.80 7.53 4.32

Mturk MajMin
LogReg
HashCRBM*
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Model Test Error
1.560
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• Learn a representation with the objective of 
selecting one that is best suited for predicting 
targets given input

Supervised Learning of 
Representations

f()
Error

input prediction

target

Visualizing and Understanding Convolutional Networks

(a) (b)

(c) (d) (e)

Figure 6. (a): 1st layer features without feature scale clipping. Note that one feature dominates. (b): 1st layer features
from (Krizhevsky et al., 2012). (c): Our 1st layer features. The smaller stride (2 vs 4) and filter size (7x7 vs 11x11)
results in more distinctive features and fewer “dead” features. (d): Visualizations of 2nd layer features from (Krizhevsky
et al., 2012). (e): Visualizations of our 2nd layer features. These are cleaner, with no aliasing artifacts that are visible in
(d).
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True Label: Pomeranian

(a) Input Image (b) Layer 5, strongest feature map
(c) Layer 5, strongest
feature map projections

(d) Classifier, probability 
of correct class 

(e) Classifier, most 
probable class 

True Label: Car Wheel

True Label: Afghan Hound

Figure 7. Three test examples where we systematically cover up di↵erent portions of the scene with a gray square (1st
column) and see how the top (layer 5) feature maps ((b) & (c)) and classifier output ((d) & (e)) changes. (b): for each
position of the gray scale, we record the total activation in one layer 5 feature map (the one with the strongest response
in the unoccluded image). (c): a visualization of this feature map projected down into the input image (black square),
along with visualizations of this map from other images. The first row example shows the strongest feature to be the
dog’s face. When this is covered-up the activity in the feature map decreases (blue area in (b)). (d): a map of correct
class probability, as a function of the position of the gray square. E.g. when the dog’s face is obscured, the probability
for “pomeranian” drops significantly. (e): the most probable label as a function of occluder position. E.g. in the 1st row,
for most locations it is “pomeranian”, but if the dog’s face is obscured but not the ball, then it predicts “tennis ball”. In
the 2nd example, text on the car is the strongest feature in layer 5, but the classifier is most sensitive to the wheel. The
3rd example contains multiple objects. The strongest feature in layer 5 picks out the faces, but the classifier is sensitive
to the dog (blue region in (d)), since it uses multiple feature maps.

Image: Features from a convolutional net (Zeiler and Fergus, 2013)
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Unsupervised Learning of 
Representations

Error

input prediction

?

f()
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• What is the objective? 

- reconstruction error? 

- maximum likelihood? 

- disentangle factors of variation?

Unsupervised learning of 
representations

input

code

reconstruction

Learning to Disentangle Factors of Variation with Manifold Interaction

Scott Reed REEDSCOT@UMICH.EDU
Kihyuk Sohn KIHYUKS@UMICH.EDU
Yuting Zhang YUTINGZH@UMICH.EDU
Honglak Lee HONGLAK@UMICH.EDU

Dept. of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA

Abstract
Many latent factors of variation interact to gen-
erate sensory data; for example, pose, morphol-
ogy and expression in face images. In this work,
we propose to learn manifold coordinates for the
relevant factors of variation and to model their
joint interaction. Many existing feature learning
algorithms focus on a single task and extract fea-
tures that are sensitive to the task-relevant factors
and invariant to all others. However, models that
just extract a single set of invariant features do
not exploit the relationships among the latent fac-
tors. To address this, we propose a higher-order
Boltzmann machine that incorporates multiplica-
tive interactions among groups of hidden units
that each learn to encode a distinct factor of vari-
ation. Furthermore, we propose correspondence-
based training strategies that allow effective dis-
entangling. Our model achieves state-of-the-art
emotion recognition and face verification perfor-
mance on the Toronto Face Database. We also
demonstrate disentangled features learned on the
CMU Multi-PIE dataset.

1. Introduction
A key challenge in understanding sensory data (e.g., image
and audio) is to tease apart many factors of variation that
combine to generate the observations (Bengio, 2009). For
example, pose, shape and illumination combine to generate
3D object images; morphology and expression combine to
generate face images. Many factors of variation exist for
other modalities, but in this work we focus on modeling
images.

Most previous work focused on building (Lowe, 1999) or
learning (Kavukcuoglu et al., 2009; Ranzato et al., 2007;
Lee et al., 2011; Le et al., 2011; Huang et al., 2012b;a;

Proceedings of the 31 st
International Conference on Machine

Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).
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Figure 1. Illustration of our approach for modeling pose and iden-
tity variations in face images. When fixing identity, traversing
along the corresponding “fiber” (denoted in red ellipse) changes
the pose. When fixing pose, traversing across the vertical cross-
section (shaded in blue rectangle) changes the identity. Our model
captures this via multiplicative interactions between pose and
identity coordinates to generate the image.

Sohn & Lee, 2012) invariant features that are unaffected
by nuisance information for the task at hand. However, we
argue that image understanding can benefit from retaining
information about all underlying factors of variation, be-
cause in many cases knowledge about one factor can im-
prove our estimates about the others. For example, a good
pose estimate may help to accurately infer the face mor-
phology, and vice versa. From a generative perspective,
this approach also supports additional queries involving la-
tent factors; e.g. “what is the most likely face image as
pose or expression vary given a fixed identity?”

When the input images are generated from multiple factors
of variation, they tend to lie on a complicated manifold,
which makes learning useful representations very challeng-
ing. We approach this problem by viewing each factor of
variation as forming a sub-manifold by itself, and modeling
the joint interaction among factors. For example, given face
images with different identities and viewpoints, we can en-

Image: Lee et al. 2014
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• PCA works well when the 
data is near a linear 
manifold in high-
dimensional space 

• Project the data onto this 
subspace spanned by 
principal components 

• In dimensions orthogonal 
to the subspace the data 
has low variance 

Principal Components Analysis

direction of first principal component i.e. 
direction of greatest variance
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• Train a neural network 
with a “bottleneck” 
hidden layer 

• Try to make the output 
the same as the input

An inefficient way to fit PCA

input code 
(bottleneck)

output 
(reconstruction)

• If the hidden and output layers are linear, 
and we minimize squared reconstruction 
error: 

• The M hidden units will span the same 
space as the first M principal components 

• But their weight vectors will not be 
orthogonal 

• And they will have approximately equal 
variance
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Why fit PCA inefficiently?

encoder

Error

input code
decoder

reconstruction

x

h(x) x̂ (h (x))

x

• With nonlinear layers before and after the code, it should be possible to 
represent data that lies on or near a nonlinear manifold 

- the encoder maps from data space to co-ordinates on the manifold 

- the decoder does the inverse transformation 

• The encoder/decoder can be rich, multi-layer functions 
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Auto-encoder
encoder

Error

input code
decoder

reconstruction

x

h(x) x̂ (h (x))

x

• Feed-forward architecture 

• Trained to minimize 
reconstruction error 

- bottleneck or 
regularization essential
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Auto-encoder
encoder

Error

input code
decoder

reconstruction

x

h(x) x̂ (h (x))

x

Encoder

Decoder

Error

Example: real-valued data

E =
X

↵

(x̂ (h (x↵))� x

↵)2

hj(x) = �

 
X

i

wjixi

!

x̂i (h (x)) =
X

j

wjihj(x)

• Feed-forward architecture 

• Trained to minimize 
reconstruction error 

- bottleneck or 
regularization essential
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Regularized Auto-encoders
encoder

Error

input code
decoder

reconstruction

x

h(x) x̂ (h (x))

x

• Permit code to be higher-dimensional than the input 

• Capture structure of the training distribution due to 
predictive opposition b/w reconstruction distribution 
and regularizer 

• Regularizer tries to make enc/dec as simple as possible 
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Simple?
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• Reconstruct the input from the code and make the code 
compact 
(PCA, auto-encoder with bottleneck)

Simple?
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• Reconstruct the input from the code and make the code 
compact 
(PCA, auto-encoder with bottleneck)

• Reconstruct the input from the code and make the code sparse  
(sparse auto-encoders)

Simple?
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• Reconstruct the input from the code and make the code 
compact 
(PCA, auto-encoder with bottleneck)

• Reconstruct the input from the code and make the code sparse  
(sparse auto-encoders)

• Add noise to the input or code and reconstruct the cleaned-up 
version 
(denoising auto-encoders)

Simple?
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• Reconstruct the input from the code and make the code 
compact 
(PCA, auto-encoder with bottleneck)

• Reconstruct the input from the code and make the code sparse  
(sparse auto-encoders)

• Add noise to the input or code and reconstruct the cleaned-up 
version 
(denoising auto-encoders)

• Reconstruct the input from the code and make the code 
insensitive to the input (contractive auto-encoders)

Simple?
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Sparse Auto-encoders
encoder

Error

input code
decoder

reconstruction

x

h(x) x̂ (h (x))

x

LSAE = E[l (x, x̂ (h (x)))] + �
X

j

KL (⇢||⇢̂j)

⇢̂j =
1

N

NX

i

hj(xi)

⇢ : target activation (small)

: mean activation
• Apply a sparsity penalty to 

the hidden activations 

• Also see Predictive Sparse 
Decomposition (Kavukcuoglu 
et al. 2008)
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Denoising Auto-encoders
noise

Error

input code
decoder

reconstruction

x

encoder

noisy 
input

x̃ (x)x

h (x̃) x̂ (h (x̃))

(Vincent et al. 2008)

x̃ (x) = x+ ✏

✏ ⇠ N
�
0,�2I

�

LDAE = E [l (x, x̂ (h (x̃)))]

only one possible choice 
of noise model

• The code can be viewed as a lossy 
compression of the input 

• Learning drives it to be a good 
compressor for training examples 
(and hopefully others as well) but 
not arbitrary inputs
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Contractive Auto-encoders
encoder

Error

input code
decoder

reconstruction

x

h(x) x̂ (h (x))

x

(Rifai et al. 2011)

LCAE = E
"
l (x, ˆx (h (x))) + �

����

����
@h (x)

@x

����

����
2
#

h (x) = sigmoid (Wx+ b)

ˆ

x (h (x)) = sigmoid

�
WT

h+ c
�

• Learn good models of high-
dimensional data  (Bengio et al. 
2013) 

• Can obtain good representations 
for classification 

• Can produce good quality 
samples by a random walk near 
the manifold of high density 
(Rifai et al. 2012)
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What do Denoising Auto-encoders 
Learn?
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• The reconstruction function locally characterizes the data 
generating density (Alain and Bengio 2013) 

- derivative of the log-density (score) with respect to the 
input 

- second derivative of the density 

- other local properties

What do Denoising Auto-encoders 
Learn?
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• The reconstruction function locally characterizes the data 
generating density (Alain and Bengio 2013) 

- derivative of the log-density (score) with respect to the 
input 

- second derivative of the density 

- other local properties

• Bengio et al. (2013) generalized this result to arbitrary 
variables (discrete, continuous, or both), arbitrary 
corruption, arbitrary loss function

What do Denoising Auto-encoders 
Learn?
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• Learns a family of manifolds  
(Memisevic 2011) 

• Can be viewed as AE whose weights are modulated 
by input vector 

• Used for modelling image transformations, 
extracting spatio-temporal features

Relational Autoencoders
encoder

Error

output code
decoder

reconstruction

input

y

x

h(x,y) ŷ (h (x,y))

wkj (x) =
X

i

ŵ

i
kjxi
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• Learns a family of manifolds  
(Memisevic 2011) 

• Can be viewed as AE whose weights are modulated 
by input vector 

• Used for modelling image transformations, 
extracting spatio-temporal features

Relational Autoencoders
encoder

Error

output code
decoder

reconstruction

input

y

x

h(x,y) ŷ (h (x,y))

wkj (x) =
X

i

ŵ

i
kjxi

Example: real-valued data

Encoder

Decoder

hk(x;y) = �

0

@
X

ij

ŵ

i
kjxiyj

1

A

ŷj (h (x;y)) =
X

ki

ŵ

i
kjxihk(x;y)
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Boltzmann Machines

Visible units

Hidden units

xi

hj

• Stochastic Hopfield 
Networks with hidden units 

• Both visible and hidden units 
are binary 

• Energy-based model 

• Needs MCMC to sample from 
the posterior; this makes 
inference and learning 
extremely slow

p(hk = 1|x, {hl}8l 6= k) =
1

1 + e��Ek

�Ek = E(hk = 0)� E(hk = 1) = bk +
X

i

xiwik +
X

l

hlwkl
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• We restrict the connectivity to 
make inference and learning easier. 

- Only one layer of hidden units. 

- No connections between hidden 
units. 

• In an RBM it only takes one step to 
reach thermal equilibrium when 
the visible units are clamped 

- So we can quickly get the exact 
value of

Restricted Boltzmann Machines

Visible units

Hidden unitshj

xi

p(h
j

= 1|x) = 1

1 + e�(bj+
P

i2vis xiwij)

hxihji
x
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@wij
= hxihji

x

� hxihji
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88

Learning in RBMs
• Goal: maximize the product of the probabilities that the 

RBM assigns to the binary vectors in the training set 

• Everything that one weight needs to know about the 
other weights and the data is contained in the difference 
of two correlations

�wij / hxihji
x

� hxihji
model
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Learning in RBMs

Derivative of log prob of 
one training vector, x,  
under the model

• Goal: maximize the product of the probabilities that the 
RBM assigns to the binary vectors in the training set 

• Everything that one weight needs to know about the 
other weights and the data is contained in the difference 
of two correlations

�wij / hxihji
x

� hxihji
model
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Learning in RBMs

Derivative of log prob of 
one training vector, x,  
under the model

Expected value of 
product of states at 
thermal equilibrium 
when x is clamped on 
the visible units  
(positive phase)

• Goal: maximize the product of the probabilities that the 
RBM assigns to the binary vectors in the training set 

• Everything that one weight needs to know about the 
other weights and the data is contained in the difference 
of two correlations

�wij / hxihji
x

� hxihji
model
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Learning in RBMs

Derivative of log prob of 
one training vector, x,  
under the model

Expected value of 
product of states at 
thermal equilibrium 
when x is clamped on 
the visible units  
(positive phase)

Expected value of 
product of states at 
thermal equilibrium with 
no clamping 
(negative phase)

• Goal: maximize the product of the probabilities that the 
RBM assigns to the binary vectors in the training set 

• Everything that one weight needs to know about the 
other weights and the data is contained in the difference 
of two correlations

�wij / hxihji
x

� hxihji
model
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The Boltzmann Machine Learning 
Algorithm - RBMs
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The Boltzmann Machine Learning 
Algorithm - RBMs
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The Boltzmann Machine Learning 
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The Boltzmann Machine Learning 
Algorithm - RBMs
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• Persistent CD a.k.a. Stochastic Maximum Likelihood (Tieleman 2008) 

- don’t reset the Markov chain at the data for every point 

• Score Matching/Ratio Matching (Hyvarinen 2005, 2007) 

- minimize the expected distance b/w model and data “score function” 

• Minimum Probability Flow (Sohl-Dickstein et al. 2011) 

- establish dynamics that would transform the observed data 
distribution into the model distribution 

- minimize the KL divergence b/w the data distribution and the 
distribution produced by running the dynamics for an infinitesimal 
time

Alternatives to CD

For a comparison, see Inductive Principles for Restricted Boltzmann Machine Learning, Marlin et al. 2010
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Stacking to Build Deep Models

• Greedy layer-wise training can be 
used to build deep models 

• It is most popular to use RBMs, 
but other architectures 
(regularized autoencoders, ICA, 
even k-means) can be stacked
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Stacking RBMs: Procedure
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Deep Belief Networks

W 2

W 1

W 3

x

h1

h2

h3

(Hinton et al. 2006)

• The resulting model is called a 
Deep Belief Network 

• Generate by alternating Gibbs 
sampling between the top two 
layers followed by a down-pass 

• The lower level bottom-up 
connections are not part of the 
generative model, they are used 
only for inference
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• The weights in the bottom-most RBM define many 
different distributions: 

• We can express the RBM as: 

• If we leave            as-is and improve        , we improve 

• To improve        we need it to be better than                at 
modeling the aggregated posterior over hidden 
vectors produced by applying the RBM to the data

Stacking RBMs: Intuition

p(x,h), p(x|h), p(h|x), p(x), p(h)

p(x) =
X

h

p(h)p(x|h)

p(x|h) p(h)

p(h)

p(x)

p(h;W 1)
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Deep Boltzmann Machines

W 2

W 1

W 3

x

h1

h2

h3

DBN

W 2

W 1

W 3

x

h1

h2

h3

DBM

(Salakhutdinov and Hinton 2009)

• DBN is a hybrid directed 
graphical model 

- maintains a set of “feed-
forward” connections for 
inference 

• DBN is an undirected graphical 
model 

- feedback is important 

• Both take different approaches to 
dealing with intractable p(h|x)
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Image: (Goodfellow et al. 2013)

c) d)b)a)

Figure 1: The training procedure used by Salakhutdi-
nov and Hinton [18] on MNIST. a) Train an RBM to
maximize log P (v) using CD. b) Train another RBM
to maximize log P (h(1), y) where h(1) is drawn from
the first RBM’s posterior. c) Stitch the two RBMs into
one DBM. Train the DBM to maximize log P (v, y).
d) Delete y from the model (don’t marginalize it out,
just remove the layer from the model). Make an MLP
with inputs v and the mean field expectations of h(1)

and h(2). Fix the DBM parameters. Initialize the MLP
parameters based on the DBM parameters. Train the
MLP parameters to predict y.

Figure 2: Multi-prediction training: This diagram
shows the neural nets instantiated to do multi-
prediction training on one minibatch of data. The
three rows show three different examples. Black cir-
cles represent variables the net is allowed to oberve.
Blue circles represent prediction targets. Green arrows
represent computational dependencies. Each column
shows a single mean field fixed point update. Each
mean field iteration consists of two fixed point up-
dates. Here we show only one iteration to save space,
but in a real application MP training should be run
with 5-15 iterations.

Figure 3: Mean field inference applied to MNIST dig-

its. Within each pair of rows, the upper row shows pix-
els and the lower row shows class labels. The first col-
umn shows a complete, labeled example. The second
column shows information to be masked out, using red
pixels to indicate information that is removed. The
subsequent columns show steps of mean field. The im-
ages show the pixels being filled back in by the mean
field inference, and the blue bars show the probability
of the correct class under the mean field posterior.

Mean Field Iteration

Multi-Inference Iteration

+ =

Step 1 Step 2Previous State + Reconstruction

Step 1 Step 2Previous State

Figure 4: Multi-inference trick: When estimating y
given v, a mean field iteration consists of first applying
a mean field update to h(1) and y, then applying one to
h(2). To use the multi-inference trick, start the itera-
tion by computing r as the mean field update v would
receive if it were not observed. Then use 0.5(r + v)

in place of v and run a regular mean field iteration.

Figure 5: Samples generated by alternately sampling
Si uniformly and sampling O�Si from Qi(O�Si).
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• Standard DBM training procedure:
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- Greedy-wise pre-training of RBMs
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• Standard DBM training procedure:

- Greedy-wise pre-training of RBMs

- Stitch the RBMs into a DBM and 
train with variational 
approximation to log-likelihood
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• Standard DBM training procedure:

- Greedy-wise pre-training of RBMs

- Stitch the RBMs into a DBM and 
train with variational 
approximation to log-likelihood

- Discriminative fine-tuning (DBM 
used as feature learner)
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subsequent columns show steps of mean field. The im-
ages show the pixels being filled back in by the mean
field inference, and the blue bars show the probability
of the correct class under the mean field posterior.
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Figure 5: Samples generated by alternately sampling
Si uniformly and sampling O�Si from Qi(O�Si).
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Multi-prediction DBMs
(Goodfellow et al. 2013)
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Figure 1: The training procedure used by Salakhutdi-
nov and Hinton [18] on MNIST. a) Train an RBM to
maximize log P (v) using CD. b) Train another RBM
to maximize log P (h(1), y) where h(1) is drawn from
the first RBM’s posterior. c) Stitch the two RBMs into
one DBM. Train the DBM to maximize log P (v, y).
d) Delete y from the model (don’t marginalize it out,
just remove the layer from the model). Make an MLP
with inputs v and the mean field expectations of h(1)

and h(2). Fix the DBM parameters. Initialize the MLP
parameters based on the DBM parameters. Train the
MLP parameters to predict y.

Figure 2: Multi-prediction training: This diagram
shows the neural nets instantiated to do multi-
prediction training on one minibatch of data. The
three rows show three different examples. Black cir-
cles represent variables the net is allowed to oberve.
Blue circles represent prediction targets. Green arrows
represent computational dependencies. Each column
shows a single mean field fixed point update. Each
mean field iteration consists of two fixed point up-
dates. Here we show only one iteration to save space,
but in a real application MP training should be run
with 5-15 iterations.
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in place of v and run a regular mean field iteration.
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for classification

• Greedy pre-training is suboptimal 

- training procedure for each layer should 
account for the influence of deeper layers 

- one model for all tasks can use inference 
for arbitrary queries 

- needing to implement multiple models 
and stages makes DBMs cumbersome
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4

Multi-prediction training 
for classification

• Greedy pre-training is suboptimal 

- training procedure for each layer should 
account for the influence of deeper layers 

- one model for all tasks can use inference 
for arbitrary queries 

- needing to implement multiple models 
and stages makes DBMs cumbersome

• Joint “multi-prediction” training 
(Goodfellow et al. 2013) 

- Train DBM to predict any subset of vars 
given the complement of that subset
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• Most DL success has been achieved by supervised 
learning in the past few years 

• All of the technical challenges we mentioned for 
supervised methods apply to unsupervised learning 

• Single-layer unsupervised learners well developed 
but joint unsupervised training of deep models 
remains difficult 

• Can we train deep structured output models?

Conclusions and Challenges
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• Online courses 

- Andrew Ng’s Machine Learning (Coursera) 

- Geoff Hinton’s Neural Networks (Coursera) 

• Websites 

- deeplearning.net 

- http://deeplearning.stanford.edu/wiki/index.php/
UFLDL_Tutorial

Resources

http://deeplearning.net
http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial
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