AN OVERVIEW OF DEEP LEARNING
(AND ITS CHALLENGES FOR TECHNICAL COMPUTING)

TCMM 2014
Leuven, Belgium






Motivations,
History

Representation
_earning
Deep Learning

10Sep 2014/ 2
TCMM Workshop Leuven - Deep Learning / G Taylor



Motivations,
History

Representation
_earning
Deep Learning

Supervised
Learning
Unsupervised
Learning

10Sep 2014/ 2
TCMM Workshop Leuven - Deep Learning / G Taylor




Motivations,
History

Representation
_earning
Deep Learning

Supervised
Learning
Unsupervised
Learning

10 Sep 2014/ 2
TCMM Workshop Leuven - Deep Learning / G Taylor

[ J

Composition
Optimization
(parameters &
architecture)
Parallelization &
Hardware acc.




Motivations,
History

Representation
_earning
Deep Learning

Supervised
Learning
Unsupervised
Learning

10Sep 2014/ 2
TCMM Workshop Leuven - Deep Learning / G Taylor

[ J

Composition
Optimization
(parameters &
architecture)
Parallelization &
Hardware acc.

s|* Libraries

Tools

Hardware




Learning Representations

+ Representations are “Concepts” or “Abstractions”
that help us make sense of the variability in data

. Often hand-designed to have desirable properties:
e.g. sensitive to variables we want to predict, less
sensitive to other factors explaining variability

- Representation learning algorithms are machine
learning algorithms which involve the learning of
features or explanatory factors



Deep Learning ...

“An Astounding Baseline for Recognition”

image size 224 110 26 13 13 13 _ -
filter size 7 1|3 1 3
V1 w384 | V1 384 w256 B
| \2‘56 \ \
llstride 2 _ N\9‘6 3x3 max 3x3 max C
3x3 max pool| | contrast pool| |contrast pool 4096 4096 class
stride 2 : stride 2| |norm. stride 2 units units softmax
3 55 —
N 13| 6 256
Input Image 1 '\256 > - -

Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer?7 Output

. Learn multiple layers of representation, corresponding to different levels of
abstraction

- theory on the advantage of depth (Hasted et al 1986 & 1991), (Bengio et al.
2007), (Bengio and Delalleau 2011), (Braverman 2011)

- exploiting composition gives an exponential gain in representational
power (humans organize ideas and concepts hierarchically!)

- biologically inspired learning - the brain is deep!



Deep Learning Timeline



Deep Learning Timeline

h2 |[OOO00O h? |[OOOO

¢ W2 1 W3
h! |OO0O0O L2 00000

T Tlvﬁ
h! |OO0O h! |[OO0O

iwl lel
x |O0O X Q00O

2006
Pre-training & stacking



Deep Learning Timeline

h2 |OO00O h? |OOO0O

¢ W2 1 W3
h' [OOO0 h? (00000

T Tlvﬁ
h! |OO0O ht |[OOO0O

iwl lel
X 000 X OO0

2006 2010

Pre-training & stacking Rectifier units explored



Deep Learning Timeline

h? | OOO000 h* |O00O0

¢ W2 1 W3
h! [OOO0O L2 (00000

t [y
h! |O000 ht |[OO0O

o [4w
x |OO0O X OO0

2010-2012
| 2006 | 3 2010 Most major speech systems
Pre-training & stacking Rectifier units explored incorporate DL

10 Sep 2014/ 5

TCMM Workshop Leuven - Deep Learning / G Taylor Image credit: Alex Krizhevsky, IEEE Signal Processing Magazine



Deep Learning Timeline

h? | OOO000 h* |O00O0

¢ W2 1 W3
h! [OOO0O L2 (00000

t [y
h! |O000 ht |[OO0O

o [4w
x |OO0O X OO0

2010-2012
2006 2010 Most major speech systems
Pre-training & stacking Rectifier units explored incorporate DL

2012
University of Toronto wins
ImageNet with convnet

10 Sep 2014/ 5

TCMM Workshop Leuven - Deep Learning / G Taylor Image credit: Alex Krizhevsky, IEEE Signal Processing Magazine



Deep Learning Timeline

h? | OOO000 h* |O00O0

¢ W2 1 W3
h! [OOO0O L2 (00000

t [y
h! |O000 ht |[OO0O

o [4w
x |OO0O X OO0

2010-2012
2006 2010 Most major speech systems
Pre-training & stacking Rectifier units explored incorporate DL

<|l|i

I Google K

NEC BaX&eE

2012 2012-2013
University of Toronto wins Google, MS, Facebook, IBM, NEC, Baidu, etc.
ImageNet with convnet build DL products and accelerate research

10 Sep 2014/ 5

TCMM Workshop Leuven - Deep Learning / G Taylor Image credit: Alex Krizhevsky, IEEE Signal Processing Magazine



Deep Learning Timeline

h? | OOO00O
v
h! |OOOO
h! |OOOO
P
X Q00O

O000O

} v

OO000O

[y

OO000O

[4w

000

Pre-training & stacking

University of Toronto wins
ImageNet with convnet

10Sep 2014/ 5

TCMM Workshop Leuven - Deep Learning / G Taylor

I Google K

2010
Rectifier units explored

<|l|i

NEC BaX&eE

2012-2013

Google, MS, Facebook, IBM, NEC, Baidu, etc.

2010-2012

Most major speech systems

incorporate DL

2014
DL Mania!
build DL products and accelerate research  Specialized hardware avail

Image credit: Alex Krizhevsky, IEEE Signal Processing Magazine



Example: Visual recognition

Traditional recognition typically goes like this...



Example: Visual recognition

Traditional recognition typically goes like this...

Input data
(pixels)




Example: Visual recognition

Traditional recognition typically goes like this...

No learning

l

Input data Feature.
(bixels) representation
P (engineered)

Low-level vision features
(e.g. SIFT, HOG, LBP, etc.) + some operations
(e.g. quantization, pooling)

10Sep 2014/ 6 Credit: Honglak Lee
TCMM Workshop Leuven - Deep Learning / G Taylor



Example: Visual recognition

Traditional recognition typically goes like this...

No learning

l

nout data Feature Learning
(p els) representation Algorithm
P (engineered) (e.g. SVM)

Low-level vision features
(e.g. SIFT, HOG, LBP, etc.) + some operations Recognition or detection
(e.g. quantization, pooling)

10Sep 2014/ 6 Credit: Honglak Lee
TCMM Workshop Leuven - Deep Learning / G Taylor



Feature Engineering

CV community, much effort engineering features...

SIFT

¥

X

Image gradients Keypoint descriptor

HoG

Orientation Voting

T — Ove\r\lappmg Blocks

Gradient Image ™. "

Input Image

10Sep 2014/ 7
TCMM Workshop Leuven - Deep Learning / G Taylor

Spin Image
Normalized patch Spin image
T e d=1.0,i=0.1

d=04,i=0.3

d=00,i=1.0

Textons

HE - 8o - [0
ool jojele

= NS B\Y R1N B72 B~
~ V| 77 | =

| 4

. '-...
ENNIIAE=SNINZAZ
BSNOEE -~
ENDOEE

n .

Credit: Honglak Lee



What Limits Performance?

- Ablation studies on Deformable Parts Model
(Felzenszwalb et al. 2010)

+ Replace each component with humans (AMT)

10000 0.3 —
- arts

8000. -amognt of trallnlng data 0.25| I Spatial Models
© learning algorithm N CINMS
2 6000 I features T 0f
S € 0.15
% 4000+ g 01
L S

20007 I £ 005

osr ISr pat paz2 cal l
datasets ~0-05 INRIA PASCAL
Parikh & Zitnick (CVPR 2010) Parikh & Zitnick (CVPR 2011)

Multiple recognition tasks Person detectors



Mid-level Representations

- Mid-level cues

=

Continuation Corners

David Marr’s “Tokens” (1982)

+ Difficult to hand-engineer (What about learning them?)

. Object parts

10Sep 2014/ 9 Credit: Rob Fergus
TCMM Workshop Leuven - Deep Learning / G Taylor



Learning a Feature Hierarchy

- Learn a hierarchy
- All the way from pixels to output (e.g. classifier)

. Each layer extracts features from output of prev. layer

Simple
classifier

Imag.e/vid%
pixels

Layer 1 A  Layer? A Layer3

- Train all layers jointly



Learning a Feature Hierarchy (2)

Learning useful mid-level features from images

Feature representation
deetneleiidle
rl-- Oy =y O 3 Layer

el bellrl “Objects”
N el el e

Input data

Al PLE
""K O =l 2"d Layer
. ‘th-'-*‘!' « b ”
.\ BEY =N Object parts
ETNET &
15t Layer
Lee et al. (ICML 2009 & CACM 2011) 9 1
. . Edges
“Convolutional Restricted
Boltzmann Machine” Pixels as input
10 Sep 2014/ 11 Credit: Honglak Lee

TCMM Workshop Leuven - Deep Learning / G Taylor



Feature Hierarchies. So what?

. Better performance on discriminative tasks

- Extension to other domains:
- Kinect (RGB + D)
- Video
- Multi-spectral

- Feature computation time
- Dozens of features now regularly used

- Prohibitive for large datasets (10’s sec/image)

10 Sep 2014/ 12 Credit: Rob Fergus
TCMM Workshop Leuven - Deep Learning / G Taylor



Feature Learning Paradigms

Supervised Learning Unsupervised Learning,
» End-to-end learning of « Learn statistical structure
deep architectures (e.g. or dependencies in the
deep neural networks) data from unlabelled data
using back-propagation « Usually a layer-by-layer
« Works well when there is a training strategy is
lot of labeled data employed
e Structure of the model is « Useful when there is little
important (e.g. convnet) or no labeled data




Neural Networks (Introduction)

. Approximate a complicated function by a
composition of simpler functions

- Each simple function will have parameters
subject to training

- The composition is a highly non-linear function

+ Assume the input is a vector

- Forimages, this means we ignore spatial layout of
the pixels



Neural Networks
for Supervised Learning

Example of a 2 hidden layer (or 4 layer) network ...

X 1 h1 21 1 h2 37 9
—> max(0, W x) —— max(0, W*h") W-h
X Input
h' 15t layer hidden units
h? 2"d layer hidden units

o output (prediction)



Forward Propagation

Forward propagation is the process of computing
the output of the network given its input

X 1 h1 21 1 h2 0]
— max(0, W 'x) > max(0, W*h") W3h? —>
x € R” Wt e RNixP b! e RM h! e R
h' = max(0, W'x 4 b')

Wi 15t layer weights
. :
b lSt layer biases The non-linearity © = max(0,v)is called a ReLU in the DL

literature. Each output hidden unit takes as input all the units at the
previous layer: each such layer is called “fully connected”.



Forward Propagation

h' h?

—> max(0, W'x) | max(0, W?h') | W3h? —>

h! ¢ R™ W2 e RV2xN g2 ¢ RN2 h? ¢ R
h? = max(0, W*h' 4 b*)
W2 2"d layer weights

b? 2"d layer biases



Forward Propagation

X 1 hl 211 h2 34 2
—> max(0, W x) —— max(0, W*h") W-h
h? € Rz W3 e RNsx Nz b € RYs o € RV3

o = max(0, W>h* + b")
w3 3" layer weights

b3 3" layer biases



Alternative Graphical
Representations

=

o
-
o
T

QOO0
O

——> max(0, W*t'h*) ——> T 2 ——

hk’—l—l



How Good is a Network?

1 2
—=5 max(0, W'x) h max(0, W=h') b W3h? s
1 k C
y = [00...010...0]
Probability of class & given input (softmax):
ek
p(ck = 1|x) = —¢
D jq €%

(Per-sample) Loss; e.g. negative log-likelihood
(good for classification of a small number of classes):

L(x,y;0) = = » y;logp(c;|x)

J

10 Sep 2014/ Credit: Marc’Aurelio Ranzato
TCMM Workshop Leuven - Deep Learning / G Taylor



Training

Learning consists of minimizing the loss (plus some
regularization term) w.r.t. parameters over the whole
training set

—argmmZL X", y"; 0)

Question: How to minimize a complicated function of the
parameters?

. Answer: Chain rule, a.k.a. Backpropagation! This is the
procedure to compute gradients of the loss w.r.t.
parameters in a multi-layer neural network.



Learning by Perturbing Weights

1
—=5 max(0, W'x) L>]mf18u><((),1/V2h1) — W3h?

Yy

Let’s say we want to decrease the loss by adjusting W1
We could consider a very smalle = 1e~° and compute:

L(x,y;0)
L(x,y; 0 \W,; ., W, + ¢)

Then update:
Wzlj — W,Llj + esgn (L (x,y;0) — L (X y; 0\ ,L],Wl -+ e))

10 Sep 2014/ Credit: Marc’Aurelio Ranzato
TCMM Workshop Leuven - Deep Learning / G Taylor



The Idea behind Backpropagation

. A betteridea: randomly perturb the activities of the hidden units

- We don’t know what the hiddens ought to do, but we can compute
how fast the error changes when we change a hidden activity

- instead of using desired activities to train hidden units, use error
derivatives w.r.t. activities

- each hidden activity can affect many output units and therefore
have many separate effects on error (sum them)

.+ We can compute error derivatives for all hidden units efficiently at the
same time

- Once we have the error derivatives for the hidden activities, it’s
easy to get the error derivatives for the weights going into a hidden
unit



Derivative w.r.t. Input of Softmax

First convert the discrepancy between each output and its
target value into an error derivative

eCk

Zf:l e

plex = 1|x) =

L(X,y;H):—Zyjlogp(cj\X) y = [00...010...0]

J

By substituting the first formula into the second,
and taking the derivative w.r.t. o we get:

0L
o, p(cj|x) —y;



Backward Propagation

1 OL
1 2 A
—=5 max(0, W'x) L>]mf18u><((),1/V2h1) i W3h? 2o
LOSS
Y

>

Given 0L /0o and assuming we can easily compute the
Jacobian of each module, we have:

0L  JL 0Oo 0L  OL do
OW3  Ho OW3 oh2 9o Oh2

— (p(c|x) —y)h* — W3 (p(clx) —y)

10 Sep 2014/ Credit: Marc’Aurelio Ranzato
TCMM Workshop Leuven - Deep Learning / G Taylor



Backward Propagation

o
X 1 hl 211 h2 34 2
—> max(0, W x) —— max(0, W<h") <—| W°h
Y

Given 9L /0h”we can compute now:

oL OL Oh? oL OL Oh?

OW?2 — 9h2 OW?2 oh! ~ 9h2 oh!

10 Sep 2014/ Credit: Marc’Aurelio Ranzato
TCMM Workshop Leuven - Deep Learning / G Taylor



Backward Propagation

X 1 hl 211 h2 34 2
—> max(0, W x) |<— max (0, W<h") e— W°h
Y

Given 9L /0h' we can compute now:

0L dL on!
WL~ dhl oWl

10 Sep 2014/ Credit: Marc’Aurelio Ranzato
TCMM Workshop Leuven - Deep Learning / G Taylor



Technical Challenge: Composition

- Neural networks are modular architectures
- Often use repeated blocks

+ Forward pass and backward pass must be defined
for each module



Tools for Building Neural Networks

- Modern scientific computing tools exploit modularity

- Torch7 (LuaJIT + C)

+ http://torch.ch/

N 1 N/
;I> - Caffe (C++ w/ Python & Matlab wrappers)

. http://caffe.berkeleyvision.org/

theano - Theano/Pylearn2 (Python) — See Pascal Lamblin’s talk!

. http://deeplearning.net/software_links/



http://torch.ch/
http://caffe.berkeleyvision.org/
http://deeplearning.net/software_links/

Tools for Building Neural Networks

- Modern scientific computing tools exploit modularity

- Torch7 (LuaJIT + C)

+ http://torch.ch/

N 1 N/
;I> - Caffe (C++ w/ Python & Matlab wrappers)

. http://caffe.berkeleyvision.org/

theano - Theano/Pylearn2 (Python) — See Pascal Lamblin’s talk!

. http://deeplearning.net/software_links/

See (https://sites.google.com/site/deeplearningcvpr2014/)
for a short presentation of each.



http://torch.ch/
http://caffe.berkeleyvision.org/
http://deeplearning.net/software_links/
https://sites.google.com/site/deeplearningcvpr2014/

Caffe Example

Caffe nets are composed of layers as defined in a model
schema

10 Sep 2014/ 30
TCMM Workshop Leuven - Deep Learning / G Taylor



Caffe: Each layer defines...

« Forward: given input, compute the output —
«Backward: given the gradient w.r.t. the output, compute
the gradient w.r.t. the input and its internal parameters

Setup: how to initialize the layer

@ﬁe::ConvolutionLayer \

ksize: 11
a oY stride: 4 « >
Input Blob |, num_output: 96 L, Output Blob
256 x 3 x 227 x 227 256 x 96 x 55 x 55
- o - N ~ - 7
Weight Blob Bias Blob

96 x 3 x 11 x 11 96 x1x1x1
K /' %




Caffe: Each layer defines...

« Forward: given input, compute the output —
«Backward: given the gradient w.r.t. the output, compute
the gradient w.r.t. the input and its internal parameters

Setup: how to initialize the layer

@ﬁe::ConvolutionLayer \

ksize: 11
a oY stride: 4 « >
256 x 3 x 227 x 227 256 X.961X 55X 55
0 o \_ 4
a4 N\ [ )
Weight Blob Bias Blob

96 x 3 x 11 x 11 96 x1x1x1
K /' %




Caffe: Definition of a Net

name: "mnist-small"
# data layer for input

layers {
layer {
name: "mnist"
type: "data"

source: "data/mnist-train-leveldb"”
batchsize: 64
scale: 0.00390625

}

top: "data"

top: "label"

}

# linear classifier by inner product
layers {

layer {

name: "“ip"“

type: "innerproduct" num_output: 10 weight_filler {
type: "xavier" }

}
bottom: "data"

top: "1p
}

# softmax loss for training

# takes classifier output and labels
layers {

layer {

name: "prob"

type: "softmax_loss"

}

bottom: "ip"
bottom: "label"
}

10 Sep 2014/ 32
TCMM Workshop Leuven - Deep Learning / G Taylor



What about big nets?

Input

relu3 (relu)

Coomt 3
Output

relul (relu)

relu7 (relu)

relud (relu)

<
[ N
f N
|

| relus (relu)

relu2 (relu)

10 Sep 2014/ 33
TCMM Workshop Leuven - Deep Learning / G Taylor



Technical Challenge: Computing
Gradients

- Computing gradients by hand is tedious and error-
prone

- Checking numerically by finite differences is a
must!

.+ Theano, by way of symbolic differentiation will
compute your derivatives for you, as long as you
assemble a symbolic graph



Theano: teaser

Create a function which computes the derivative of some
expression y w.r.t. its parameter x . For example, we can
compute the gradient of z* with respect to z.

from theano import pp

import theano.tensor as T

X = T.dscalar('x")

y = X **% 2

gy = T.grad(y, X)

pp(gy) # print out the gradient prior to
optimization

'"((fill((x ** TensorConstant{2}),

(x ** (TensorConstant{2} -

f = function([x], gy)
print f(4)
print £(94.2)

8.0
188.4

TensorConstant{1l.0}) * TensorConstant{2}) *




Technical Challenge: Optimization

By and far, Stochastic Gradient Descent (on mini-batches)
IS most popular:

L
0« 0 7726),776(0,1)

Usually with one or more “tricks”, e.g. momentum:

< 60—nA
OL

A < 0.9A 1
T 90

Other tricks include Nesterov momentum, adaptive learning rates, rmsprop, etc...



Technical Challenge:
Hyperparameter Optimization

- Neural networks have many associated architectural
and learning settings, we call these
“hyperparameters’, e.g.

- Number of layers

- Number of hidden units in each layer
- Learning rate

- Regularization (e.g. weight decay)

- When to stop training (overstopping)

- How to set these?



Hyperparameter Optimization

Traditionally, hyperparameters have been set by:
expert knowledge* (experience)
cross-validation

+ Anumber of approaches have been proposed
recently for auto-tuning models based on
Sequential Model-Based Global Optimization
strategies, e.g. Bayesian Optimization

Bergstra et al. Making a science of model search: hyperparameter optimization in
hundred of dimensions for vision architectures, ICML 2013

*For example, see the “Neural Nets: Tricks of the Trade Series”



Hypero pt http://jaberg.github.io/hyperopt/

Hyperopt (James Bergstra and collaborators) is a Python
library for optimizing over awkward search spaces with
real-valued, discrete, and conditional dimensions

# define an objective function
(args):
case, val = args
case == 'case 1':
val

val **

# define a search space
hp
space = hp.choice('a',
|
('case 1°', + hp.lognormal('cl’, O,
('case 2', hp.uniform('c2', -10, ) )

1)

# minimize the objective over the space
fmin, tpe

best = fmin(objective, space, algo=tpe.suggest, max evals= )

best

# => {'a': 1, 'c2': 0.01420615366247227}
hyperopt.space eval (space, best)

# => ('case 2', 0.01420615366247227}

10 Sep 2014/ 39
TCMM Workshop Leuven - Deep Learning / G Taylor


http://jaberg.github.io/hyperopt/

S p ea rm i n t https://github.com/JasperSnoek/spearmint

Spearmint (Jasper Snoek and collaborators) is a Python-
based software package to perform Bayesian optimization

from spearmint salad import hp
from sklearn.svm import SVR

# Encapsulate the class into a hp.Obj to be able to instantiate using variable parameters
# or constant parameters 1f necessary.
hp _space = hp.0bj(SVR)(

C = hp.Float( min_val=0.01, max _val=1000, hp.log scale ), # variable

kernel = 'rbf', # constant

gamma = hp.Float( min_val=10**-5, max _val=1000, hp.log scale ), # variable

epsilon = hp.Float(min_val=0.01, max_val=1l, hp.log scale), # variable

Edit properties

. i i list | Plot risk | Plot time | Plot h
from spearmint_salad import metric Exp st | Plo isk | Plot time | Plot hp

Trace path: [ /home/alex/experimentsFolder/tests/trace_SVR_on_Kinematics_regressoin.pkl

Y I I ZZ@® 8 & @

metric = metric.SquareDifflLoss()
make_salad( hp_space, metric, dataset path)

python vis.py

10 Sep 2014/ 40
TCMM Workshop Leuven - Deep Learning / G Taylor



https://github.com/JasperSnoek/spearmint

Fully-Connected Layer

Example: 200 X200 image
40k hidden units

® ~2B parameters!

» Spatial correlation is local

 Waste of resources

» We don’t have enough
training examples to fit!

10 Sep 2014/ 41 Credit: Marc’Aurelio Ranzato
TCMM Workshop Leuven - Deep Learning / G Taylor



Locally-Connected Layer

Example: 200 X 200 image
40k hidden units

LSS\ Filter size: 10 X 10
e 4M parameters

P—— ") Note: this parameterization is
good when the input images are
o registered (e.g. face recognition)

10 Sep 2014/ 42 Credit: Marc’Aurelio Ranzato
TCMM Workshop Leuven - Deep Learning / G Taylor



Locally-Connected Layer

Example: 200 X 200 image
40k hidden units

Filter size: 10 X 10
(U 4M parameters

STATIONARITY? Statistics are
similar at different locations.

Note: this parameterization is
good when the input images are
registered (e.g. face recognition)

10 Sep 2014/ 43 Credit: Marc’Aurelio Ranzato
TCMM Workshop Leuven - Deep Learning / G Taylor



Convolutional Layer

s { Share the same parameters across
P different locations (assuming

A \ input is stationary)

‘ \ ‘C Convolutions with learned kernels

10Sep 2014/ 44 Credit: Marc’Aurelio Ranzato
TCMM Workshop Leuven - Deep Learning / G Taylor




Convolutional Layer

10 Sep 2014/ 45 Credit: Marc’Aurelio Ranzato
TCMM Workshop Leuven - Deep Learning / G Taylor



Convolutional Layer

Learn multiple filters.

Example: 200 X 200 image
100 filters

Filter size: 10 X 10
10k parameters




Convolutional Layer

K
n n—1 n
h; = max | 0, E hy, — *wy;

\ T

output iInput

kernel
feature map feature map
Convolutional hy
—> —>
layer
n—1
3

" indexes layers
7 indexes maps (features)

10 Sep 2014/ 47 Credit: Marc’Aurelio Ranzato
TCMM Workshop Leuven - Deep Learning / G Taylor



Convolutional Layer
= max ( Zh” ! >1<wa>

\ k= 1/ \
output iInput
feature map feature map cernel

TCMM Workshop Leuven - Deep Learning / G Taylor



Convolutional Layer
= max ( Zh” ! >1<wa>

B VA

kernel

output Input
feature map feature map




Convolutional Net - Recap

- Afully-connected neural network applied to images
- scales quadratically with the size of the input

- does not leverage stationarity

- Solution
- connect each hidden to a small patch of input

- share the weights across space
- This is called a convolutional layer

- A network with convolutional layers is called a convolutional
net



Pooling Layer

Let’s assume the filter is an “eye” detector

How can we make the detection
' robust to the exact location
~ g of the eye?

10 Sep 2014/ 50 Credit: Marc’Aurelio Ranzato
TCMM Workshop Leuven - Deep Learning / G Taylor



Pooling Layer

By “pooling” (e.g. taking max) the filter
responses over a local region we gain

robustness to the exact spatial location
of features

“Shift invariance”

10 Sep 2014/ 51 Credit: Marc’Aurelio Ranzato
TCMM Workshop Leuven - Deep Learning / G Taylor



Types of Pooling

Max- 2!y
% = h;
Pooling ](a:‘,y) x/eN(gi/}’{eN(y) / s y)
1 n—
Average- h;%(x’y):E Z hj 1(x’>y’)
Pooling ' €N (x),y’ €N (y)
ool RN D SN
ooling ' €N (z),y’ €N (y)
2-Pooling R, y) = [y hiH(z,y)?
Over Features kEN(5)




Local Contrast Normalization

R, y) —m? (N (2, y))
o' (N (2, y))

Wi (x,y) =

10 Sep 2014/ 53 Credit: Marc’Aurelio Ranzato
TCMM Workshop Leuven - Deep Learning / G Taylor



Local Contrast Normalization

ST it e MG

Control the dynamic range
of each feature map.

10 Sep 2014/ 54 Credit: Marc’Aurelio Ranzato
TCMM Workshop Leuven - Deep Learning / G Taylor



Local Contrast Normalization

W2 )~ mj (N (z,y))

Performed also across features
and in the higher layers...
Effects:

e IMproves invariance

e IMproves optimization

e INCreases sparsity

Note: computational cost is negligible
compared to convolutional layer.

10 Sep 2014/ 55 Credit: Marc’Aurelio Ranzato
TCMM Workshop Leuven - Deep Learning / G Taylor



Convnets: Single Stage

Convolutional Rectification +
Layer LCN

Rectification
+
Contrast
Normalization

Filter Bank

Pooling

Image credit: Koray Kavukcuoglu

10 Sep 2014/ Credit: Marc’Aurelio Ranzato
TCMM Workshop Leuven - Deep Learning / G Taylor



Convnets: Typical Architecture

Single stage

Convolutional Rectification + .
—> —> — Pooling ——
Layer LCN
Whole system
Input_________ MM Class
image | R/ R/ R/ labels
— S IN T2 S I T2 S I -+
............. 1;;"""""""""". .uuuuuuiga"""""""""". .uuuuuuéayuuuuuuuuuu. ."E{ﬂi;r"""""
stage stage stage connected

Layers



Convnets: Training

. All layers are differentiable
- We can use standard back-propagation

- Algorithm:
- Given a small mini-batch:

+ F-Prop

- B-Prop

. Parameter updates



Convnets: Testing

At test time, only run forward propagation

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

Input i1 17 | [ — 1 1 — 1 1 111 Class
image . . . labels
_ifC N/ pl: | C N/ P &) C N/ N R N
1st znd 3rd FU“y-
stage stage stage connected

Layers

Convnets can naturally process larger images at little cost.
Traditional methods use inefficient sliding windows.



Convnets: today

Until 2012, the common wisdom was that training didn’t
work because we would “get stuck in local minima”

Local minima are all similar, there are long plateaus, and
it can take a long time to break symmetries

Optimization is not the real problem, when:
- the dataset is large
units do not saturate much

- we use normalization layers



Technical Challenge: Scalability

. The real challenges are:
- Generalization
+ How many training examples to fit 1B params?

- How many parameters/samples to model
spaces with 1M dimensions?

- Scalability



Convnets: why so successful now?

capacity
As time goes by, we get more data and
more flops/s. The capacity of ML
models should grow accordingly.

data

flops/s

10 Sep 2014/ Credit: Marc’Aurelio Ranzato
TCMM Workshop Leuven - Deep Learning / G Taylor



Convnets: why so successful now?

capacity CNNs were in many ways premature: we
R did not have enough data and flops/s to
T — train them.
They would overfit and be too slow to
............................................................ ‘ train (apparent local m|n|ma)

data

Note: methods need to be easily scalable!



Tools: Scalability

» DL particularly well-suited to parallelization:

- Data parallelism inherent in pixel-based inputs (e.g.
images and videos)

- Task parallelism inherent in redundant processing units
(neurons)

+ Hardware accelerators (e.g. GPUs)

- Torch 7, Theano, Caffe all provide GPU support by way of
CUDA

+ Distributed frameworks (e.g. Google, Microsoft)



Motivation

~ 3
_ . 3\T . 3 IR B N
5 """"" ) —\:::I:_’~ 3 ___________ 3 ------
/’/’/’/ 3 d
48 192 192 128 2048 2048 \d€NsS€
55 27 128 /J“\\\‘:Z*\\
TN 13 \ 13
5\ Sav i) AN
__________ s 3 ,’/ s -t 3 -—::_-,-:——::
228 3| | 13 A= dense’| [densq| [
27 3 3] ) B 3
-—--\.\:::L 3|
55 1000
X 192 192 128 Max
- 2048 2048
Stride Max 128 Max pooling
lof 4 pooling pooling
3 48

- Most impressive results in deep learning have been obtained with
purely supervised learning methods

- Invision, typically classification (e.g. object recognition)

- Though progress has been slower, it is likely that unsupervised
learning will be important to future advances in DL

Image: Krizhevsky (2012) - AlexNet, the “hammer” of DL

10 Sep 2014/
TCMM Workshop Leuven - Deep Learning / G Taylor



An Interesting Historical Fact

+ Unsupervised learning was the catalyst
for the present DL revolution that started
around 2006

- Now we can train deep supervised neural
nets without “pre-training”, thanks to

- Algorithms (nonlinearities,
regularization)

- More data
- Better computers (e.g. GPUs)

+ Should we still care about unsupervised
learning?

h2

OO0O0OO

| w
0000

Greedy layer-wise
pre-training
(circa 2006)




Why Unsupervised Learning?

Reason 1.
We can exploit unlabelled data; much more readily available
and often free.

You
flickr

10 Sep 2014/ 67
TCMM Workshop Leuven - Deep Learning / G Taylor




Why Unsupervised Learning?

Reason 2:

We can capture enough information about the observed
variables so as to ask new questions about them; questions
that were not anticipated at training time.

10 Sep 2014/ 68

TCMM Workshop Leuven - Deep Learning / G Taylor Image: Features from a convolutional net (Zeiler and Fergus, 2013)



Why Unsupervised Learning?

Reason 3:
Unsupervised learning has been shown to be a good
regularizer for supervised learning; it helps generalize.

This advantage shows up L reswerenne
in practical applications: S T

«transfer learning, L
domain adaptation i
.unbalanced classes
.zero-shot, one-shot ¥
learning

RS e R
£ X D0 XA SRR B
i Sk O
e SO

~1000F

-1500 | | | | | | | J
-4000 -3000 -2000 -1000 0 1000 2000 3000 4000




Why Unsupervised Learning?

Reason 4.

There is evidence that unsupervised learning can be achieved
mainly through a level-local training signal; compare this to
supervised learning where the only signal driving parameter
updates is available at the output and gets backpropagated.

-------------------------
Py "y
b E]
Y
L]
‘e

.
.
o*
.
.
.
.
.
o
.

.
‘e
G
‘e
»
........................
.........
......
* ‘e
. '..
.
L3
Y
-
.
. hd e ] v
u - " [ 2
. I L T L L
- L L] L]
. . HETETIITY -
------
. ° = gewert T R,
. = et T,
. L et e,
L] " . ** .,
. . o* .
G
" * +* 3
» AR *
» oo £Xs
o ’0
. * e ot e
o “ "
'y A d
T JO .. . N Y N .
Q N v, PR
L . -
o L L T TS A -
: = T REag st -
N = T NEEaggggugumanuss’ -
» = n
” - o
0' . N
.
O °, S
Q * Q
Q °, .
Q h Q
‘p» e *
LR o
. o
. .
'. .
LS .*
G R
... .®
", .s®
Tan, auust
"trrrssmammmmnunn®

Supervised learning Local learning



Why Unsupervised Learning?

Reason 5:

A recent trend in machine learning is to consider problems
where the output is high-dimensional and has a complex,
possibly multi-modal joint distribution. Unsupervised
learning can be used in these “structured output” problems.

striped

Attribute
Prediction

Segmentation

10 Sep 2014/
TCMM Workshop Leuven - Deep Learning / G Taylor



Supervised Learning of
Representations

. Learn a representation with the objective of
selecting one that is best suited for predicting
targets given input

(c) Layer 5, strongest
feature map projections

(@) Input Image (b) Layer 5, strongest feature map

s
Bt © o\ s
input prediction
] T r—<r=F [ e
f ) - — ('?.‘ Ly = r‘;\‘
2 :I." 'r /
= . ri ._-_‘_ - s f
—— il [ i)
. r A ¥ i\ . I.- 4 _w_' i =_'l.l\\ { r @:; l@:;
target : DR (G
> !
) o F RS/
-

True Label: Aghan Hound

10 Sep 2014/ 72

TCMM Workshop Leuven - Deep Learning / G Taylor Image: Features from a convolutional net (Zeiler and Fergus, 2013)



Unsupervised Learning of
Representations

input prediction
() >
>




Unsupervised learning of
representations

+ What is the objective? /’ 900 \
reconstruction error? ] 00O

input reconstruction

TTE
,‘ ., L;‘Ar;

disentangle factors of variation? i

-
4 % .
AR
. -~

maximum likelihood?

10 Sep 2014/ 74
TCMM Workshop Leuven - Deep Learning / G Taylor

Image: Lee et al. 2014



Principal Components Analysis

+ PCA works well when the
data is near a linear
manifold in high-
dimensional space

- Project the data onto this
subspace spanned by
principal components

direction of first principal component i.e.
direction of greatest variance

- In dimensions orthogonal
to the subspace the data
has low variance



An inefficient way to fit PCA

+ Train a neural network
with a “bottleneck”
hidden layer

code output

Input (bottleneck)  (reconstruction)

- If the hidden and output layers are linear,
and we minimize squared reconstruction
error:

- Try to make the output
. - The M hidden units will span the same
the Sdame as the mPUt space as the first M principal components

- But their weight vectors will not be
orthogonal

- And they will have approximately equal
variance



Why fit PCA inefficiently?

input code reconstruction
d decod
S BT -

X

>

- With nonlinear layers before and after the code, it should be possible to
represent data that lies on or near a nonlinear manifold

- the encoder maps from data space to co-ordinates on the manifold
- the decoder does the inverse transformation

- The encoder/decoder can be rich, multi-layer functions



Auto-encoder

X

input - code B recons truction
X h(x) X (h (x))
>

Feed-forward architecture

Trained to minimize
reconstruction error

bottleneck or
regularization essential



Auto-encoder
-

reconstruction

x (h (x))

X

>,

>

- Feed-forward architecture

+ Trained to minimize
reconstruction error

- bottleneck or
regularization essential

Example: real-valued data

Encoder




Regularized Auto-encoders

recons truction

input code
d d d
" h(X) % (h(x)) /
X
>

- Permit code to be higher-dimensional than the input

. Capture structure of the training distribution due to
predictive opposition b/w reconstruction distribution
and regularizer

- Regularizer tries to make enc/dec as simple as possible






Simple?

+ Reconstruct the input from the code and make the code
compact
(PCA, auto-encoder with bottleneck)



Simple?

Reconstruct the input from the code and make the code
compact
(PCA, auto-encoder with bottleneck)

Reconstruct the input from the code and make the code sparse
(sparse auto-encoders)



Simple?

Reconstruct the input from the code and make the code

compact
(PCA, auto-encoder with bottleneck)

Reconstruct the input from the code and make the code sparse
(sparse auto-encoders)

- Add noise to the input or code and reconstruct the cleaned-up

version
(denoising auto-encoders)



Simple?

Reconstruct the input from the code and make the code

compact
(PCA, auto-encoder with bottleneck)

Reconstruct the input from the code and make the code sparse
(sparse auto-encoders)

- Add noise to the input or code and reconstruct the cleaned-up

version
(denoising auto-encoders)

Reconstruct the input from the code and make the code
insensitive to the input (contractive auto-encoders)



Sparse Auto-encoders

X

>

Lsar = E[l (x,x (h(x)))] + 5 Z KL (pl[p;)

A

N
1 . .
Pi =N E ‘h;(x;) : mean activation Apply a sparsity penalty to

the hidden activations

. Also see Predictive Sparse
Decomposition (Kavukcuoglu
et al. 2008)

p : target activation (small)



Denoising Auto-encoders

(Vincent et al. 2008)

reconstruction
decoder >,

x (h(x))

Lpae =E[l (x,%x (h(x)))]
X(X)=X4¢€
e~ N (0,071

onl'y one possible choice
of noise model

- The code can be viewed as a lossy
compression of the input

- Learning drives it to be a good
compressor for training examples
(and hopefully others as well) but
not arbitrary inputs



(Rifai et al. 2011)

Contractive Auto-encoders
-

reconstruction

x (h (x))

X

>,

>

- Learn good models of high-
- dimensional data (Bengio et al.

_ .
Coas = E |1(x,% (h (x))) + A || T2 2013)

ox
- 1« Can obtain good representations
h (x) = sigmoid (Wx + b) for classification
. : : T
x (h (x)) = sigmoid (W h + C) + Can produce good quality

samples by a random walk near
the manifold of high density
(Rifai et al. 2012)



What do Denoising Auto-encoders
Learn?



What do Denoising Auto-encoders
Learn?

+ The reconstruction function locally characterizes the data
generating density (Alain and Bengio 2013)

- derivative of the log-density (score) with respect to the
Input

- second derivative of the density

- other local properties



What do Denoising Auto-encoders
Learn?

+ The reconstruction function locally characterizes the data
generating density (Alain and Bengio 2013)

- derivative of the log-density (score) with respect to the
Input

- second derivative of the density
- other local properties

- Bengio et al. (2013) generalized this result to arbitrary
variables (discrete, continuous, or both), arbitrary
corruption, arbitrary loss function



Relatlonal Autoencoders

output I code BB reconstruction
encoder decoder

+ Learns a family of manifolds
(Memisevic 2011)

- Can be viewed as AE whose weights are modulated

+ Used for modelling image transformations,
extracting spatio-temporal features



Relational Autoencoders

|nput

Example: real-valued data

output code reconstruction
encoder decoder
y (h(x,y))

+ Learns a family of manifolds
(Memisevic 2011)

Encoder

hi(x;y) =0 (Z w;;jxiyj)

1)
Decoder

g; (h(x;y)) = ) dj;xibi(x;y)
ki

- Can be viewed as AE whose Weights are modulated

by input vector ey () = 3

+ Used for modelling image transformations,

extracting spatio-temporal features




Boltzmann Machines

. Stochastic Hopfield
Networks with hidden units

+ Both visible and hidden units
are binary

Hidden units

Visible units

- Energy-based model

+ Needs MCMC to sample from
the posterior; this makes 1
inference and learning plhi = 1 (VL7 k) = 1=,
extremely slow

AEk = E(hk — O) — E(hk = 1) = bk + szwzk + Zhlwkl
) [



Restricted Boltzmann Machines

. We restrict the connectivity to
make inference and learning easier.

Hidden units

- Only one layer of hidden units.

Visible units

- No connections between hidden
units.

- Inan RBM it only takes one step to
reach thermal equilibrium when | _ 1
the visible units are clamped

- So we can quickly get the exact
value of (z;n;)._



Learning in RBMs

- Goal: maximize the product of the probabilities that the
RBM assigns to the binary vectors in the training set

- Everything that one weight needs to know about the
other weights and the data is contained in the difference

of two correlations
0 log p(x)

awij

= (wihj), — (zih

j>model

Awij XX <337jhj>x — <£137Jh]>

model



Learning in RBMs

Goal: maximize the product of the probabilities that the
RBM assigns to the binary vectors in the training set

Everything that one weight needs to know about the
other weights and the data is contained in the difference

of two correlations
0 log p(x)

awij

/

Derivative of log prob of
one training vector, X,
under the model

— <£E7;hj>x — <£Ezh

j>model

Aw;j o (wihj), — (Tihj)

model



Learning in RBMs

Goal: maximize the product of the probabilities that the
RBM assigns to the binary vectors in the training set

Everything that one weight needs to know about the
other weights and the data is contained in the difference
of two correlations

0 log p(x)
OW.: o <x@h9>x <x@h9>model
()
/ Expectel value of
Derivative of log prob of product of states at
one training vector, X, thermal equilibrium
under the model when x is clamped on

the visible units
(positive phase)

Awij XX <£I?7;hj>x — <£137Jh]>

model



Learning in RBMs

- Goal: maximize the product of the probabilities that the
RBM assigns to the binary vectors in the training set

- Everything that one weight needs to know about the
other weights and the data is contained in the difference
of two correlations

0 log p(x)
O T <$@h3>x <x@h9>model
(] \

/ Expectel value of Expected value of
Derivative of log prob of product of states at product of states at
one training vector, X, thermal equilibrium thermal equilibrium with
under the model when x is clamped on  no clamping

the visible units (negative phase)

(positive phase)

Awij XX <33ihj>x — <ZIL’Z}L]>

model



The Boltzmann Machine Learning
Algorithm - RBMs

O®O




The Boltzmann Machine Learning
Algorithm - RBMs

OOWO

<$zh37




The B.oltzmann Machine Learning
Algorithm - RBMs

OOWO

/\

OGO | |0O®O




The Boltzmann Machine Learning
Algorithm - RBMs

OO0 ||OO0WO

/\/

OGO | |0O®O




The Boltzmann Machine Learning
Algorithm - RBMs

OO0 ||OO0WO

/\/\

SIOIARIGICIGANIOION®




The Boltzmann Machine Learning
Algorithm - RBMs

OOVO || OO0VWO || O0OVWO

/\/\/

SIOIARIGICIGANIOION®




The Boltzmann Machine Learning
Algorithm - RBMs

OOVO || OO0VWO || O0OVWO OOVO

SAVAVAR S

SIOIARIGICIGANIOION® ODO

t=0



The Boltzmann Machine Learning
Algorithm - RBMs

OOVO || OO0VWO || O0OVWO OOVO

<37z'hj>0 <x’bh]>oo
" a fantas y

SIOIARIGICIGANIOION® ODO “/

t=0



The Boltzmann Machine Learning
Algorithm - RBMs

OOWOOO0VLO |1OOWO OOWO
<xh/ \ / \ / / (wihy)
OO | 10O | 1 O®O O@O ‘/




Contrastive Divergence

Instead of running the Markov
chain to equilibrium, run for
just one (or a few) steps!

O®O

t=0



Contrastive Divergence

Instead of running the Markov
< h7 chain to equilibrium, run for

just one (or a few) steps!




Contrastive Divergence

OOWO

O®O

ODO

t=0

t=1

Instead of running the Markov
chain to equilibrium, run for
just one (or a few) steps!



Contrastive Divergence

OOWO

0
(zihj)
a recons truction

O®O

ODO

t=0

t=1

S

Instead of running the Markov
chain to equilibrium, run for
just one (or a few) steps!



Contrastive Divergence

Instead of running the Markov
OO0 || OO0VO

i /N (o chain to equilibrium, run for
/ \/ just one (or a few) steps!

000| [000]

t=0 t=1



Contrastive Divergence

Instead of running the Markov
OO0 || OO0VO

i /N (o chain to equilibrium, run for
/ \/ just one (or a few) steps!

000| [000]

t=0 t=1

Aw;j = ¢ (<l‘vzhj>0 - <1’7:hj>1)



Contrastive Divergence (A picture)

data point Change the weights to pull the
+ hidden (data point) energy down at the data point

reconstruction
+ hidden

(reconstruction) Change the weights to pull the

energy up at the reconstruction

10 Sep 2014 / Credit: Geoff Hinton
TCMM Workshop Leuven - Deep Learning / G Taylor



Contrastive Divergence (A picture)

data point Change the weights to pull the
+ hidden (data point) energy down at the data point

reconstruction
+ hidden

(reconstruction) Change the weights to pull the

energy up at the reconstruction

10 Sep 2014 / Credit: Geoff Hinton
TCMM Workshop Leuven - Deep Learning / G Taylor



Alternatives to CD

Persistent CD a.k.a. Stochastic Maximum Likelihood (Tieleman 2008)

- don’t reset the Markov chain at the data for every point
- Score Matching/Ratio Matching (Hyvarinen 2005, 2007)

minimize the expected distance b/w model and data “score function”
Minimum Probability Flow (Sohl-Dickstein et al. 2011)

- establish dynamics that would transform the observed data
distribution into the model distribution

minimize the KL divergence b/w the data distribution and the
distribution produced by running the dynamics for an infinitesimal

time

For a comparison, see Inductive Principles for Restricted Boltzmann Machine Learning, Marlin et al. 2010



Stacking to Build Deep Models

Greedy layer-wise training can be
used to build deep models

It is most popular to use RBMs,
but other architectures

(regularized autoencoders, ICA,
even k-means) can be stacked

10 Sep 2014/ 93
TCMM Workshop Leuven - Deep Learning / G Taylor




Stacking RBMs: Procedure



Stacking RBMs: Procedure

hi OOO0O

x |OOO @) Train an RBM




Stacking RBMs: Procedure

h! ©O00O0
T @ Run your data through
the model to generate a
dataset of hidden
1
h* [OOOC activations
|

x |OOO @) Train an RBM




Stacking RBMs: Procedure

2
h* | OOOO0 @ Treat the hiddens like
I W2 data, train another RBM
h! | OOO0O
T @ Run your data through
the model to generate a
dataset of hidden
1
h' [OOOC activations
v

x |OOO @) Train an RBM




Stacking RBMs: Procedure

@ Compose the two
models
2
h* [ OOOO0 @ Treat the hiddens like
I W2 data, train another RBM
(0000 h? | OO00O0O
2
T @ Run your data through I W
the model to generate a h! (O000
dataset of hidden
1 1
h* [OCOC activations ! v
le x 000

x |OOO @) Train an RBM




Hinton et al. 2006)

Deep Belief Networks

- The resulting model is called a
Deep Belief Network

he OOOO
. Generate by alternating Gibbs I 1773
sampling between the top two 2 [00000
layers followed by a down-pass I l 72
+ The lower level bottom-up h' [OO0O0
connections are not part of the I W
generative model, they are used x [000

only for inference



Stacking RBMs: Intuition

- The weights in the bottom-most RBM define many
different distributions: p(x,h), p(x|h), p(h|x), p(x), p(h)

+  We can express the RBM as: p(x Zp p(x|h)
+ If we leave p(x|h) as-is and improve p(h), we improve p(x)

. To improve p(h)we need it to be better than p(h; W')at
modeling the aggregated posterior over hidden
vectors produced by applying the RBM to the data



(Salakhutdinov and Hinton 2009)

Deep Boltzmann Machines

+ DBN is a hybrid directed DBN DBM
graphical model

- maintains a set of “feed-

forward” connections for I W I W

inference h? [OO0O00|  h? [00000

- DBN is an undirected graphical TlWQ I W2
mode h! [0000] h! [00O0C

- feedback is important I 17/ I nre.
+ Both take different approachesto X C)QvQ X 00O

dealing with intractable p(h|x)



Training DBMs



Training DBMs




Training DBMs

- Standard DBM training procedure:




Training DBMs

- Standard DBM training procedure:

- Greedy-wise pre-training of RBMs




Training DBMs

- Standard DBM training procedure:

- Greedy-wise pre-training of RBMs

- Stitch the RBMs into a DBM and
train with variational
approximation to log-likelihood




Training DBMs

- Standard DBM training procedure:

- Greedy-wise pre-training of RBMs

- Stitch the RBMs into a DBM and
train with variational
approximation to log-likelihood

Discriminative fine-tuning (DBM
used as feature learner)




(Goodfellow et al. 2013)

Multi-prediction DBM




(Goodfellow et al. 2013)

Multi-prediction DBM

Multi-prediction training
for classification

Black - variables net is allowed to observe
Blue - prediction targets



(Goodfellow et al. 2013)

Multi-prediction DBM

+ Greedy pre-training is suboptimal Multi-prediction training
for classification

- training procedure for each layer should
account for the influence of deeper layers

- one model for all tasks can use inference
for arbitrary queries

- needing to implement multiple models
and stages makes DBMs cumbersome

S

AN N
Vo‘v l YV"
“ \r’ ~ 4 N
ZLS v

7 O

Black - variables net is allowed to observe
Blue - prediction targets



Multi-prediction DBM

- Greedy pre-training is suboptimal

training procedure for each layer should
account for the influence of deeper layers

one model for all tasks can use inference
for arbitrary queries

needing to implement multiple models
and stages makes DBMs cumbersome

- Joint “multi-prediction” training
(Goodfellow et al. 2013)

Train DBM to predict any subset of vars
given the complement of that subset

(Goodfellow et al. 2013)

Multi-prediction training
for classification

AN N
ARG

L
©

W\ A/\
SN Dk
\
AR NN AN ~

V%" >N

Black - variables net is allowed to observe
Blue - prediction targets



Conclusions and Challenges

- Most DL success has been achieved by supervised
learning in the past few years

+ All of the technical challenges we mentioned for
supervised methods apply to unsupervised learning

- Single-layer unsupervised learners well developed

but joint unsupervised training of deep models
remains difficult

- Can we train deep structured output models?



Thank You!

Montreal O

Guelph
O O Toronto

New York
O



Resources

- Online courses
- Andrew Ng’s Machine Learning (Coursera)
- Geoff Hinton’s Neural Networks (Coursera)
- Websites

- deeplearning.net

- http://deeplearning.stanford.edu/wiki/index.php/
UFLDL Tutorial



http://deeplearning.net
http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial

Surveys and Reviews

Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review
and new perspectives. Pattern Analysis and Machine Intelligence, IEEE

Transactions on

Y. Bengio. Deep
Language and S

. 35(8):1798-1828, Aug 2013.

earning of representations: Looking forward. In Statistical
neech Processing, pages 1-37. Springer, 2013.

Y. Bengio, I. Goodfellow, and A. Courville. Deep Learning. 2014. Draft
available at http://www.iro.umontreal.ca/~bengioy/dlbook/

J. Schmidhuber. Deep learning in neural networks: An overview. arXiv
preprint arXiv:1404.7828, 2014.

Y. Bengio. Learning deep architectures for ai. Foundations and trends in
Machine Learning, 2(1):1-127, 2009.



Papers in this Tutorial

D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio. Why does unsupervised pre-training help deep learning? The
Journal of Machine Learning Research, 11:625-660, 2010.

K. Kavukcuoglu, M. Ranzato, and Y. LeCun. Fast inference in sparse coding algorithms with applications to object recognition. arXiv
preprint arXiv:1010.3467, 2010.

P.Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. In
Proceedings of the 25th international conference on Machine learning, pages 1096-1103. ACM, 2008.

S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contractive auto- encoders: Explicit invariance during feature extraction. In
Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages 833-840, 2011.

G. Alain and Y. Bengio. What regularized auto-encoders learn from the data generating distribution. arXiv preprint arXiv:1211.4246, 2012.

Y. Bengio, L. Yao, G. Alain, and P. Vincent. Generalized denoising auto- encoders as generative models. In Advances in Neural Information
Processing Systems, pages 899-907, 2013.

1H. Kamyshanska and R. Memisevic. On autoencoder scoring. In Proceedings of the 30th International Conference on Machine Learning
(ICML-13), pages 720-728, 2013.

B. M. Marlin, K. Swersky, B. Chen, and N. D. Freitas. Inductive principles for restricted boltzmann machine learning. In International
Conference on Artificial Intelligence and Statistics, pages 509-516, 2010.

G. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural computation, 18(7):1527-1554, 2006.

R. Salakhutdinov and G. E. Hinton. Deep boltzmann machines. In Inter- national Conference on Artificial Intelligence and Statistics,
pages 448-455, 2009.



Recent Work

M. D. Zeiler and R. Fergus. Visualizing and understanding
convolutional neural networks. arXiv preprint arXiv:1311.2901, 2013.

Y. Bengio and E. Thibodeau-Laufer. Deep generative stochastic
networks trainable by backprop. arXiv preprint arXiv:1306.1091,
2013.

l. Goodfellow, M. Mirza, A. Courville, and Y. Bengio. Multi-prediction
deep boltzmann machines. In Advances in Neural Information
Processing Systems, pages 548-556, 2013.

Y. He, K. Kavukcuoglu, Y. Wang, A. Szlam, and Y. Qi. Unsupervised
feature learning by deep sparse coding. In ICLR, 2014.



Practical Tips

Y. Bengio. Practical recommendations for gradient-
based training of deep architectures. In Neural
Networks: Tricks of the Trade, pages 437-478.

Springer, 2012.

G. E. Hinton. A practical guide to training restricted
boltzmann machines. In Neural Networks: Tricks of

the Trade, pages 599-619. Springer, 2012.



