
Convex Optimization in Python with CVXPY

Steven Diamond Stephen Boyd
Stanford University

TCMM 2014, September 2014

1

Outline

Convex optimization

Convex modeling languages

CVXPY

Image in-painting

Trade-off curve, in parallel

Single commodity flow

Summary

Convex optimization 2

Convex optimization problem

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b,

with variable x ∈ Rn

I objective and inequality constraints f0, . . . , fm are convex

for all x , y , θ ∈ [0, 1],

fi (θx + (1− θ)y) ≤ θfi (x) + (1− θ)fi (y)

i.e., graphs of fi curve upward

I equality constraints are linear

Convex optimization 3

Why convex optimization?

I beautiful, fairly complete, and useful theory

I solution algorithms that work well in theory and practice

I many applications in
I machine learning, statistics

I control

I signal, image processing

I networking

I engineering design

I finance

. . . and many more

Convex optimization 4

How do you solve a convex problem?

I use someone else’s (‘standard’) solver (LP, QP, SOCP, . . .)
I easy, but your problem must be in a standard form

I cost of solver development amortized across many users

I write your own (custom) solver
I lots of work, but can take advantage of special structure

I use a convex modeling language
I transforms user-friendly format into solver-friendly standard form

I extends reach of problems solvable by standard solvers

Convex optimization 5

Outline

Convex optimization

Convex modeling languages

CVXPY

Image in-painting

Trade-off curve, in parallel

Single commodity flow

Summary

Convex modeling languages 6

Convex modeling languages

I long tradition of modeling languages for optimization
I cf. AMPL, GAMS

I modeling languages for convex optimization
I e.g., CVX, YALMIP, CVXGEN, QCML

I function of a convex modeling language:
I check/verify problem convexity

I convert to standard form

Convex modeling languages 7

Disciplined convex programming (DCP)

I system for constructing expressions with known curvature
I constant, affine, nonnegative (convex), nonpositive (concave)

I expressions formed from
I variables (curvature: affine, unknown sign)

I constants (curvature: constant, known sign)

I library of atoms with known curvature and sign (as function of
their arguments)

I more at dcp.stanford.edu

Convex modeling languages 8

http://dcp.stanford.edu

Standard (conic) form

minimize cT x
subject to Ax = b

x ∈ K

with variable x ∈ Rn

I K is convex cone
I x ∈ K is a generalized nonnegativity constraint

I linear objective, equality constraints

I special cases:
I K = Rn

+: linear program (LP)

I K = Sn
+: semidefinite program (SDP)

I general interface for solvers

Convex modeling languages 9

Outline

Convex optimization

Convex modeling languages

CVXPY

Image in-painting

Trade-off curve, in parallel

Single commodity flow

Summary

CVXPY 10

CVXPY

a modeling language in Python for convex optimization

I translates from math to standard form used by solvers

I uses DCP to verify convexity

I open source all the way from the solvers

I supports parameterized problems

I mixes easily with general Python code, other libraries

I already used in many research projects and two classes

I over 7000 downloads on PyPi

CVXPY 11

CVXPY solvers

I all open source

I CVXOPT (Vandenberghe, Dahl, Andersen)
I interior-point method

I in Python

I ECOS (Domahidi)
I interior-point method

I compact, library-free C code

I SCS (O’Donoghue)
I first-order method

I native support of exponential cone

I parallelism with OpenMP

CVXPY 12

CVXPY example
(constrained LASSO)

minimize ‖Ax − b‖22 + γ‖x‖1
subject to 1T x = 0, ‖x‖∞ ≤ 1

with variable x ∈ Rn

from cvxpy import *
x = Variable(n)
cost = sum_squares(A*x-b) + gamma*norm(x,1)
obj = Minimize(cost)
constr = [sum_entries(x) == 0, norm(x,"inf") <= 1]
prob = Problem(obj, constr)
opt_val = prob.solve()
solution = x.value

CVXPY 13

Outline

Convex optimization

Convex modeling languages

CVXPY

Image in-painting

Trade-off curve, in parallel

Single commodity flow

Summary

Image in-painting 14

Image in-painting

I guess pixel values in obscured/corrupted parts of image

I total variation in-painting: choose pixel values xij ∈ R3 to
minimize

TV(x) =
∑
ij

∥∥∥∥[xi+1,j − xij
xi ,j+1 − xij

]∥∥∥∥
2

I a convex problem

Image in-painting 15

Example

I 512× 512 color image

I denote corrupted pixels with K ∈ {0, 1}512×512

I Kij = 1 if pixel value is known

I Kij = 0 if unknown

I Xcorr ∈ R512×512×3 is corrupted image

Image in-painting 16

Image in-painting CVXPY code

from cvxpy import *
variables = []
constr = []
for i in range(3):

X = Variable(512, 512)
variables += [X]
constr += [mul_elemwise(K, X - X_corr[:,:,i]) == 0]

prob = Problem(Minimize(tv(*variables)), constr)
prob.solve(solver=SCS)

Image in-painting 17

Example

Original Corrupted

Image in-painting 18

Example

Original Recovered

Image in-painting 19

Example (80% of pixels removed)

Original Corrupted

Image in-painting 20

Example (80% of pixels removed)

Original Recovered

Image in-painting 21

Outline

Convex optimization

Convex modeling languages

CVXPY

Image in-painting

Trade-off curve, in parallel

Single commodity flow

Summary

Trade-off curve, in parallel 22

Parameters

I symbolic representations of constants

I fixed sign and dimensions

I change value of constant without rebuilding problem

Trade-off curve, in parallel 23

Parameter syntax

Positive scalar parameter.
gamma = Parameter(sign="positive")

Column vector parameter with unknown sign (by default).
c = Parameter(5)

Matrix parameter with negative entries.
G = Parameter(4, 7, sign="negative")

Assigns a constant value to G.
G.value = -numpy.ones((4, 7))

Trade-off curve, in parallel 24

LASSO in CVXPY

(LASSO)
minimize ‖Ax − b‖22 + γ‖x‖1

with variable x ∈ Rn

x = Variable(n)
gamma = Parameter(sign="positive")
error = sum_squares(A*x-b)
regularization = gamma*norm(x,1)
prob = Problem(Minimize(error + regularization))

Trade-off curve, in parallel 25

For loop style trade-off curve

compute a trade-off curve by updating parameter gamma

x_values = []
for val in numpy.logspace(-4, 2):

gamma.value = val
prob.solve()
x_values.append(x.value)

Trade-off curve, in parallel 26

Trade-off curve for LASSO

Trade-off curve, in parallel 27

Entries of x versus γ: (regularization path)

Trade-off curve, in parallel 28

Parallel style trade-off curve

Use tools for parallelism in standard library.
from multiprocessing import Pool

Assign a value to gamma and find the optimal x.
def get_x(gamma_value):

gamma.value = gamma_value
result = prob.solve()
return x.value

Parallel computation with N processes.
pool = Pool(processes = N)
x_values = pool.map(get_x, numpy.logspace(-4, 2))

Trade-off curve, in parallel 29

Performance

I Lasso with A ∈ R1000×500, 100 values of γ

I single thread time for one LASSO: 4 seconds

I performance using solver SCS:

For loop 4 processes 32 processes
4 core MacBook Pro 403 sec 147 sec 136 sec
32 cores, Intel Xeon 619 sec 175 sec 56 sec

Trade-off curve, in parallel 30

Outline

Convex optimization

Convex modeling languages

CVXPY

Image in-painting

Trade-off curve, in parallel

Single commodity flow

Summary

Single commodity flow 31

Single commodity flow

I directed graph with p nodes, n edges

I flow fi on edge i

I external source/sink flow sj at node j

I single commodity flow problem:

minimize
∑n

i=1 φi (fi) +
∑p

j=1 ψj(sj),
subject to zero net flow at each node

I variables are fi , sj
I φi convex flow cost functions

I ψj convex source cost functions

I can include constraints in φi , ψj

Single commodity flow 32

Matrix representation

I node incidence matrix A ∈ Rp×n

Aij =


+1 edge i leaves node j
−1 edge i enters node j
0 otherwise.

I zero net flow at each node: Af = s

I final problem:

minimize
∑n

i=1 φi (fi) +
∑p

j=1 ψj(sj),
subject to Af = s

Single commodity flow 33

Object-oriented representation

I node object includes source, cost, source/net flow constraints

I edge object includes flow, cost, flow constraints

I solve the problem:
cost = sum([object.cost for object in nodes + edges])
obj = Minimize(cost)
constraints = []
for object in nodes + edges:

constraints += object.constraints()
Problem(obj, constraints).solve()

Single commodity flow 34

Node object

class Node(object):
def __init__(self, cost):

self.source = Variable()
self.cost = cost(self.source)
self.edge_flows = []

def constraints(self):
"""The constraint net flow == 0."""
net_flow = sum(self.edge_flows) + self.source
return [net_flow == 0]

Single commodity flow 35

Edge object

class Edge(object):
def __init__(self, cost):

self.flow = Variable()
self.cost = cost(self.flow)

def connect(self, in_node, out_node):
"""Connects two nodes via the edge."""
in_node.edge_flows.append(-self.flow)
out_node.edge_flows.append(self.flow)

Single commodity flow 36

Example

I 7-by-7 grid of nodes

I 1 unit of flow sent from source s1 to sink sn:
I s1 = +1

I sn = −1
I si = 0 for i = 2, . . . , n − 1

I flow cost φi (fi) = wi
(
|fi |+ λf 2

i
)

I weights wi > 0 randomly chosen

Single commodity flow 37

Shortest path (λ = 0)

Single commodity flow 38

Diffusion (λ = +∞)

Single commodity flow 39

Diffusion with sparsity (λ = 1)

Single commodity flow 40

Outline

Convex optimization

Convex modeling languages

CVXPY

Image in-painting

Trade-off curve, in parallel

Single commodity flow

Summary

Summary 41

Summary

I convex optimization is easy with CVXPY

I mixes well with high level Python
I parallelism

I object oriented design

I building block for
I distributed optimization

I nonconvex optimization

Summary 42

Future work

I not just for prototyping

I speed and scalability

I abstract linear operators

Summary 43

	Convex optimization
	Convex modeling languages
	CVXPY
	Image in-painting
	Trade-off curve, in parallel
	Single commodity flow
	Summary

