Large-Scale Object Recognition using Label Relation Graphs

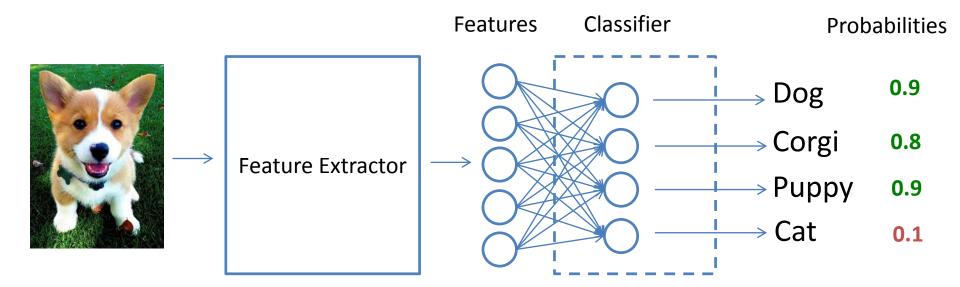
<u>Jia Deng^{1,2}</u> Nan Ding², Yangqing Jia², Andrea Frome², Kevin Murphy², Samy Bengio², Yuan Li², Hartmut Neven², Hartwig Adam²

University of Michigan¹, Google²

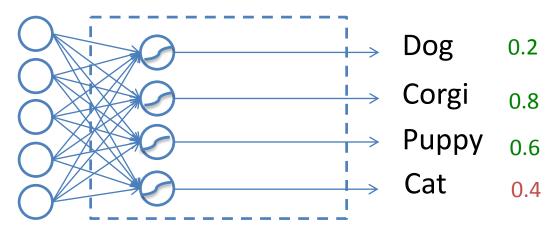
• Assign semantic labels to objects

• Assign semantic labels to objects

• Assign semantic labels to objects

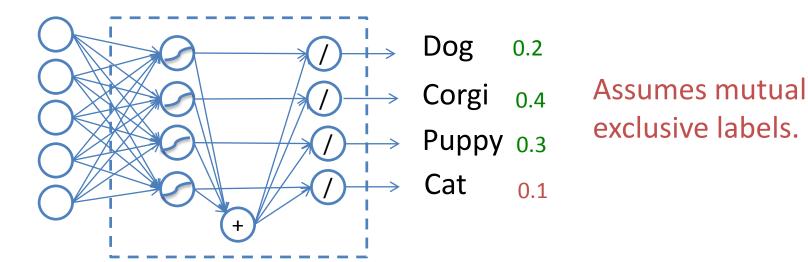


• Independent binary classifiers: Logistic Regression

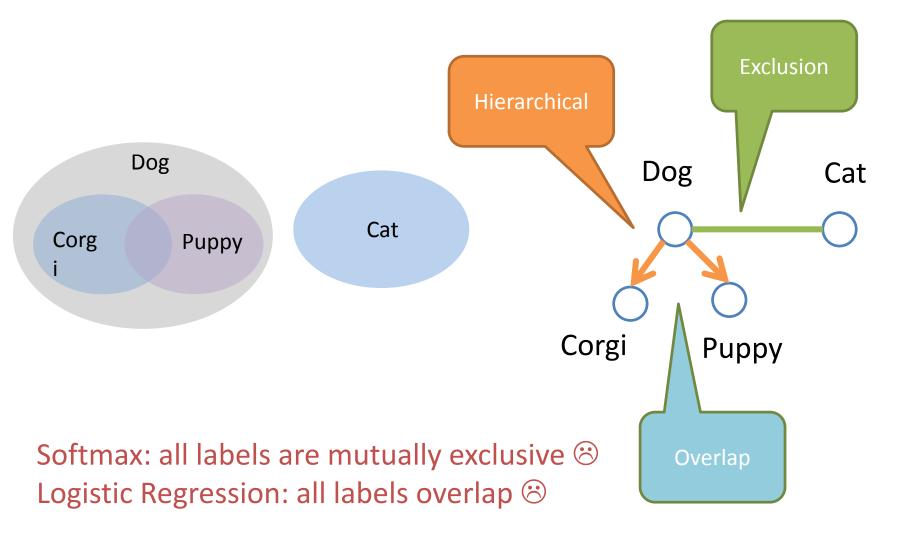


No assumptions about relations.

• Multiclass classifier: Softmax

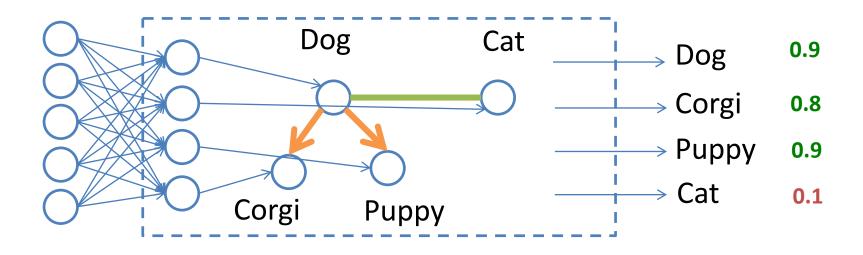


Object labels have rich relations

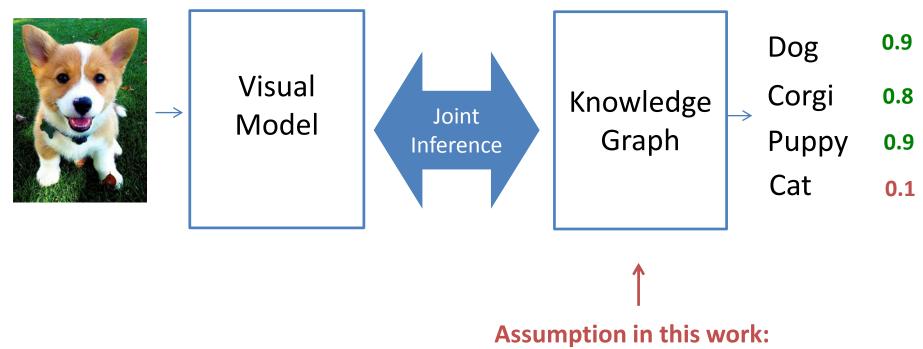


Goal: A new classification model

Respects real world label relations



Visual Model + Knowledge Graph



Knowledge graph is given and fixed.

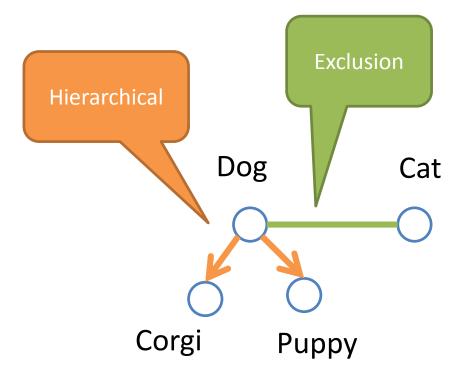
Agenda

- Encoding prior knowledge (HEX graph)
- Classification model
- Efficient Exact Inference
- Experiments
- Conclusion and Future Work

Agenda

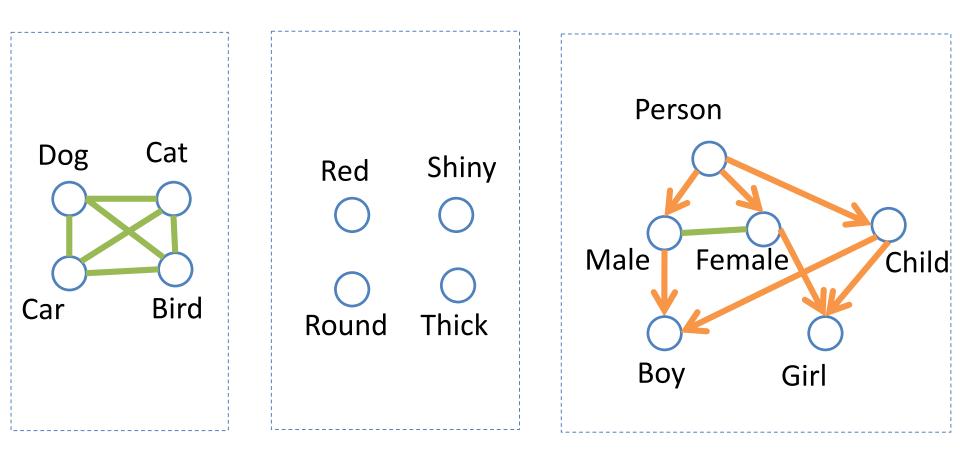
- Encoding prior knowledge (HEX graph)
- Classification model
- Efficient Exact Inference
- Experiments
- Conclusion and Future Work

Hierarchy and Exclusion (HEX) Graph



- Hierarchical edges (directed)
- Exclusion edges (undirected)

Examples of HEX graphs



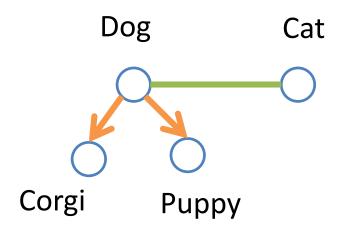
Mutually exclusive

All overlapping

Combination

State Space: Legal label configurations

Each edge defines a constraint.



Dog	Cat	Corgi	Рирру			
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1			
1	0	0	0			
1	1	0	0			
1	1	0	1			

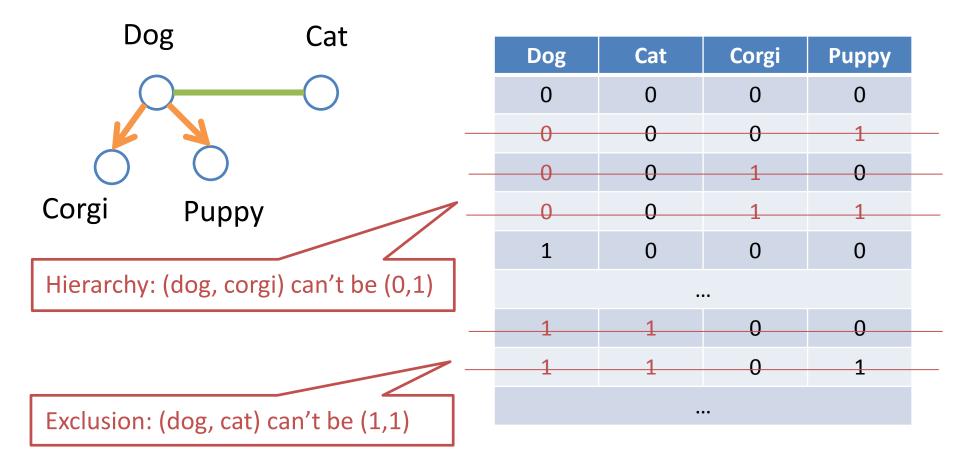
State Space: Legal label configurations

Each edge defines a constraint.

Dog Cat	Cat			
	Dog	Cat	Corgi	Puppy
	0	0	0	0
	0	0	0	1
\bigcirc \bigcirc \bigcirc $-$	0	0	1	0
Corgi Puppy —	0	0	1	1
	1	0	0	0
Hierarchy: (dog, corgi) can't be (0,1)				
	1	1	0	0
	1	1	0	1

State Space: Legal label configurations

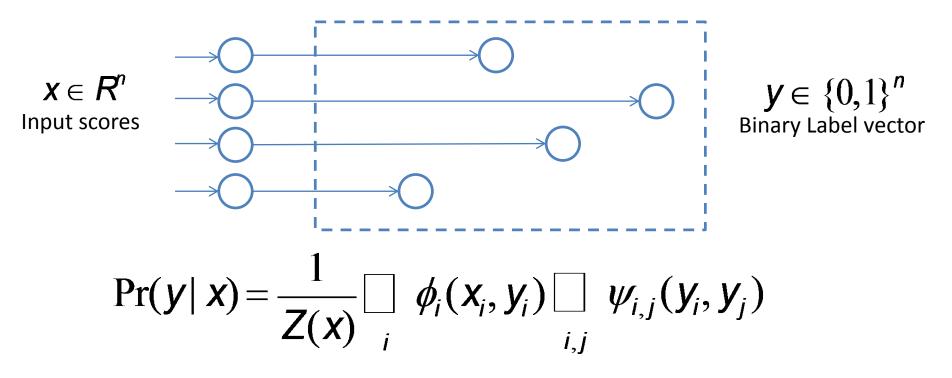
Each edge defines a constraint.



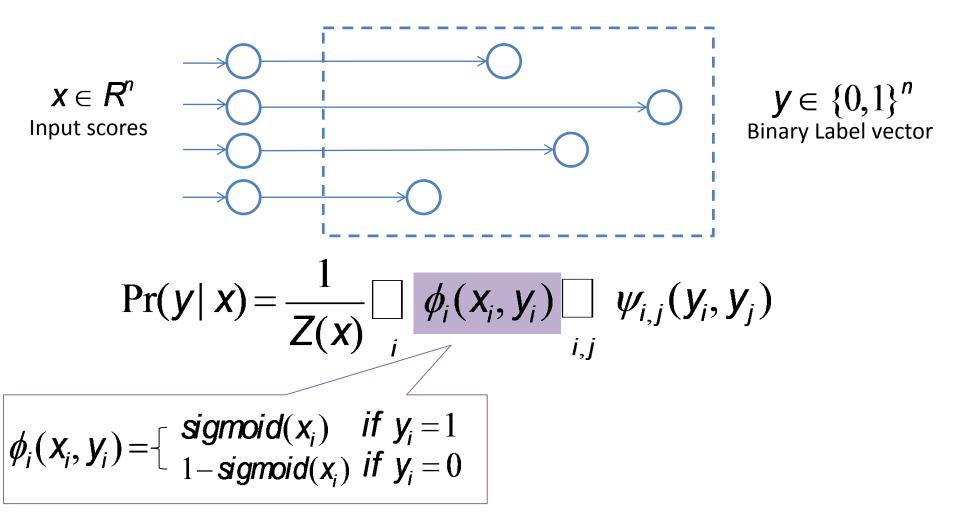
Agenda

- Encoding prior knowledge (HEX graph)
- Classification model
- Efficient Exact Inference
- Experiments
- Conclusion and Future Work

• Pairwise Conditional Random Field (CRF)

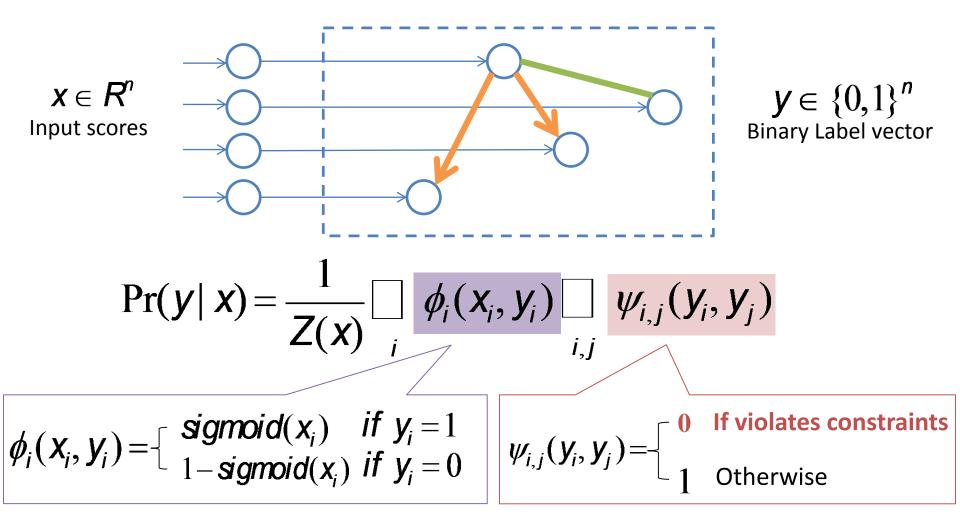


• Pairwise Conditional Random Field (CRF)



Unary: same as logistic regression

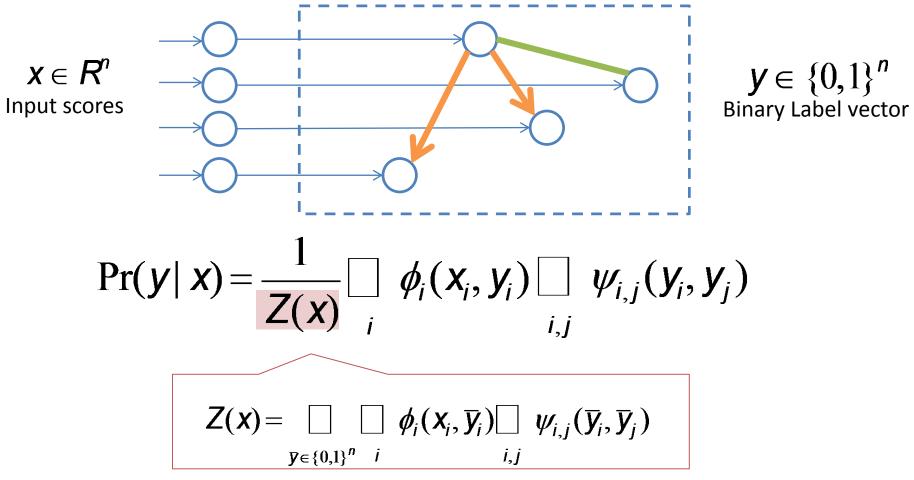
• Pairwise Conditional Random Field (CRF)



Unary: same as logistic regression

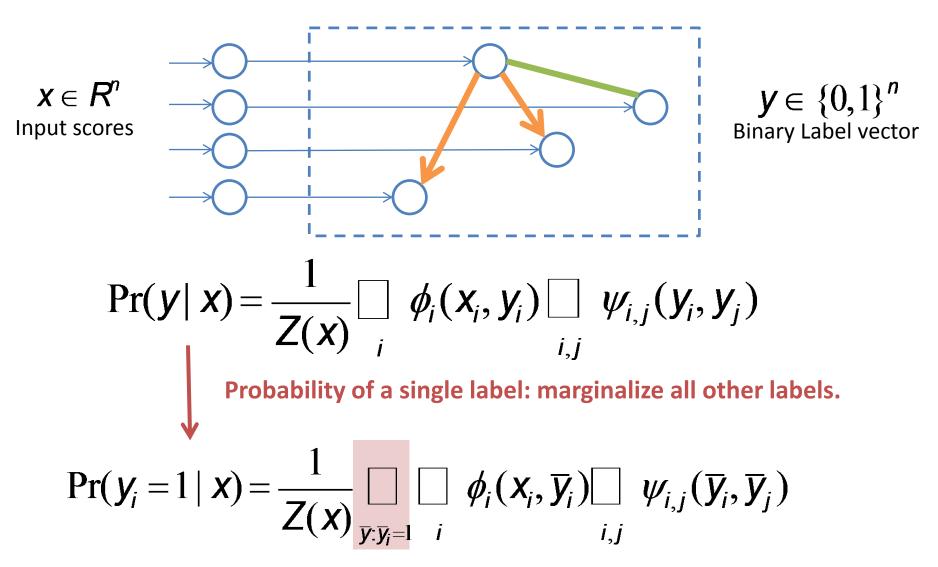
Pairwise: set illegal configuration to zero

• Pairwise Conditional Random Field (CRF)



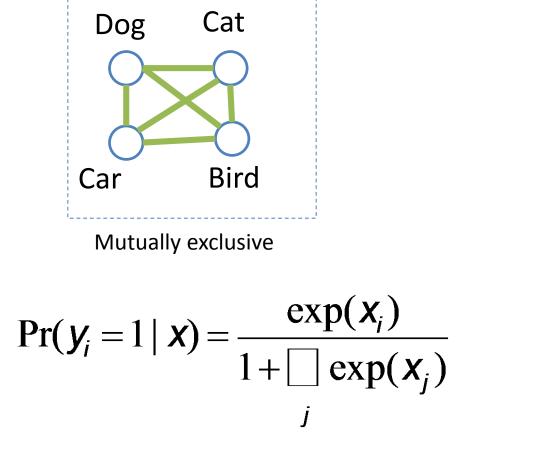
Partition function: Sum over all (legal) configurations

• Pairwise Conditional Random Field (CRF)

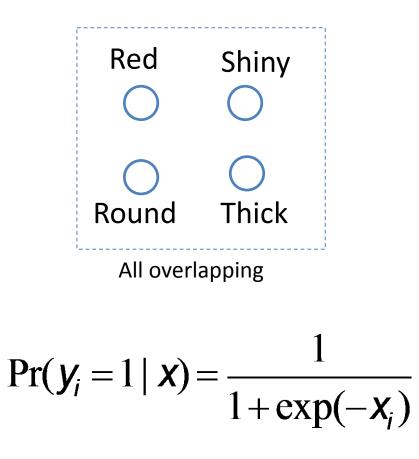


Special Case of HEX Model

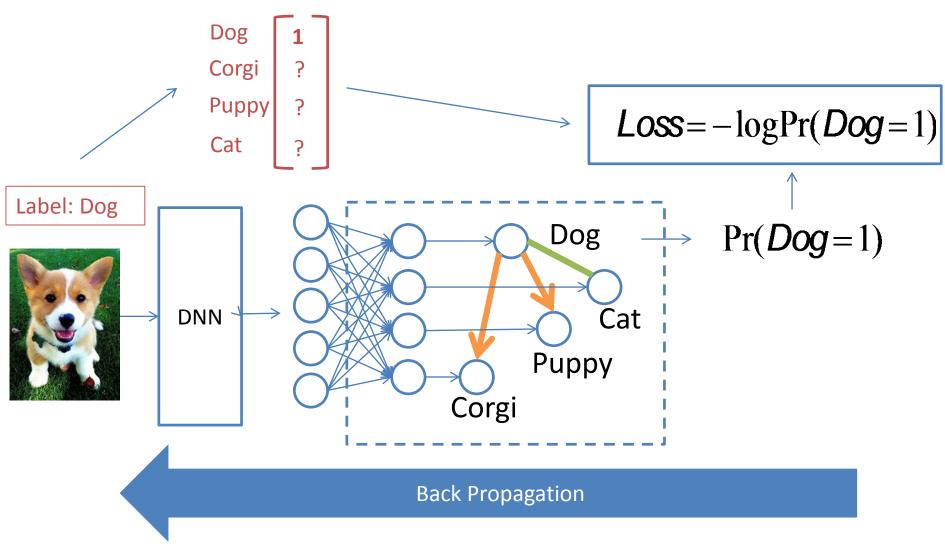
• Softmax



• Logistic Regressions



Learning



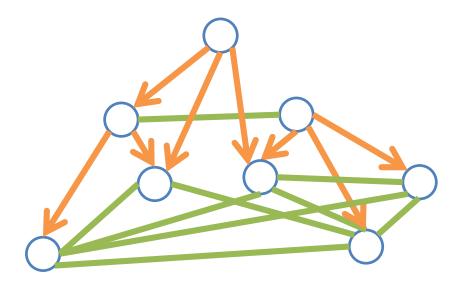
Maximize marginal probability of observed labels

Agenda

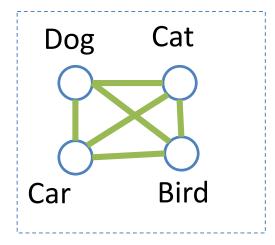
- Encoding prior knowledge (HEX graph)
- Classification model
- Efficient Exact Inference
- Experiments
- Conclusion

Naïve Exact Inference is Intractable

- Inference:
 - Computing partition function
 - Perform marginalization
- HEX-CRF can be densely connected (large treewidth)



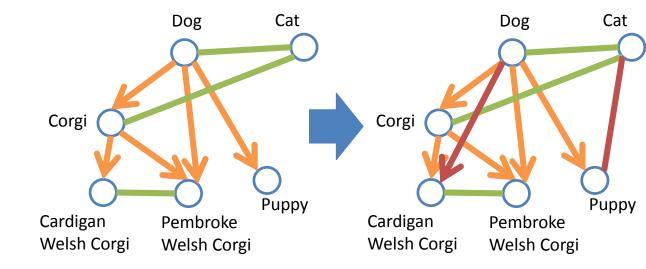
Observation 1: Exclusions are good



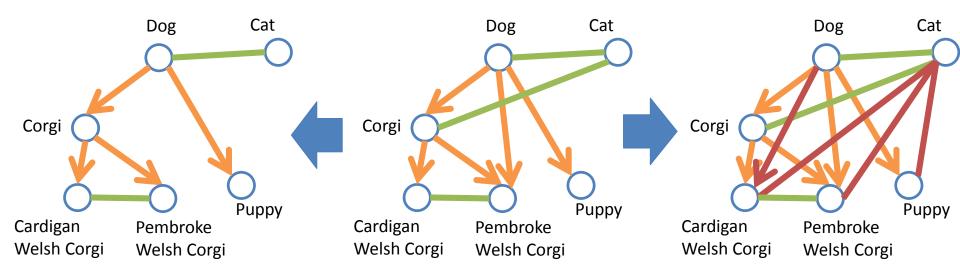
Number of legal states is O(n), not $O(2^n)$.

- Lots of exclusions \rightarrow Small state space \rightarrow Efficient inference
- Realistic graphs have lots of exclusions.
- Rigorous analysis in paper.

Observation 2: Equivalent graphs



Observation 2: Equivalent graphs



Sparse equivalent

- Small Treewidth [©]
- Dynamic programming

Dense equivalent

- Prune states 🙂
- Can brute force

HEX Graph Inference С В 2.Build F Α **Junction Tree** Α В (offline) C F 1. Sparsify loffline В G С В D Α G D Ε С Е F A.Prune Clique States 5. Message Passing on legal states (online) G F 3. Density Ε С lofflinel B

A

F

В

D

С

G

Α

Е

С

G

В

В

D

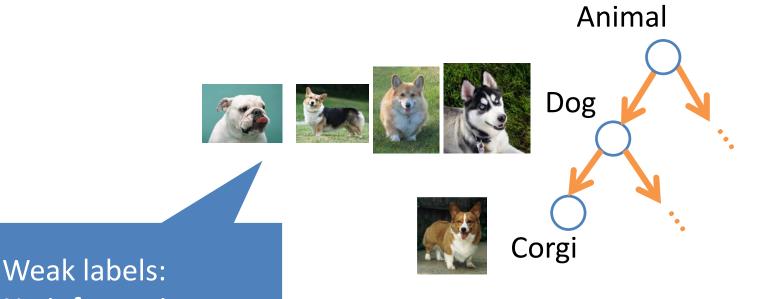
В

D

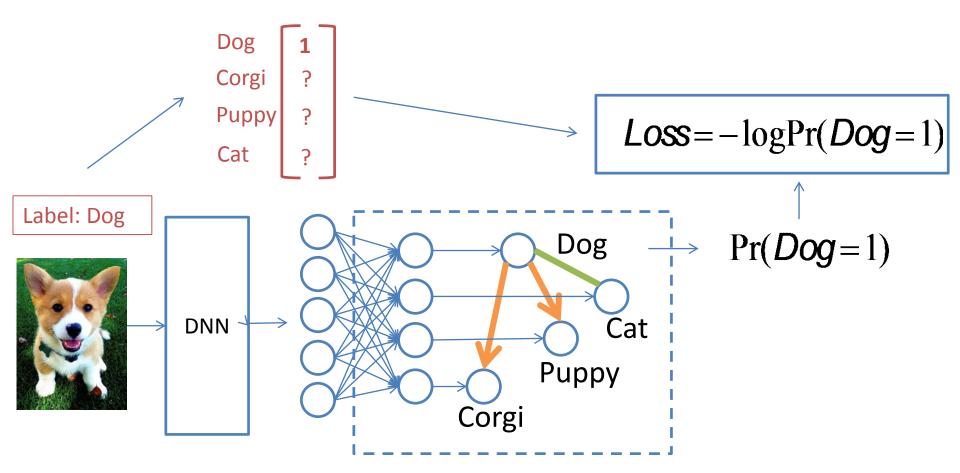
Agenda

- Encoding prior knowledge (HEX graph)
- Classification model
- Efficient Exact Inference
- Experiments
- Conclusion and Future Work

- Many basic category labels
- Few fine-grained labels

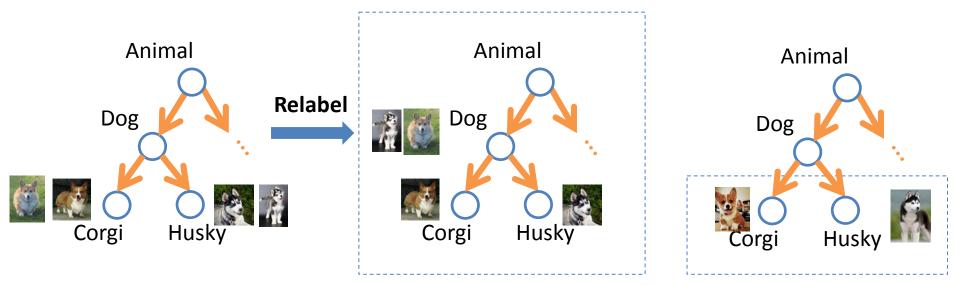


No information on subcategories.



Hypothesis: HEX models can improve fine-grained recognition using basic level labels.

- ILSVRC 2012: "relabel" or "weaken" a portion of fine-grained leaf labels to basic level labels.
- Evaluate on fine-grained recognition



Original ILSVRC 2012 (leaf labels)

Training ("weakened" labels)

Test

- ILSVRC 2012: "relabel" or "weaken" a portion of fine-grained leaf labels to basic level labels.
- Evaluate on fine-grained recognition.
- Consistently outperforms baselines.

relabeling	softmax-leaf	softmax-all	logistic	ours
50%	50.5(74.7)	56.4(79.6)	21.0(45.2)	58.2(80.8)
90%	26.2(47.3)	52.9(77.2)	9.3(27.2)	55.3(79.4)
95%	16.0(32.2)	50.8(76.0)	5.6(17.2)	52.4(77.2)
99%	2.5(7.2)	41.5 (68.1)	1.0(3.8)	41.5(68.5)

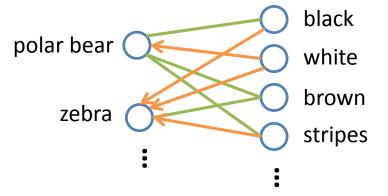
Top 1 accuracy (top 5 accuracy)

Exp 2: Zero-Shot Recognition using Object-Attribute Knowledge

black: no white: yes brown: no stripes: no

polar bear

black: yes white: yes brown: no stripes: yes



- Animals with Attribute (AwA) dataset (Lampert et al. 2009)
- Training:
 - Observe only a subset of animal labels.
 - Given all animal-attribute relations
 - Indirectly learns attributes.
- Test: predict new classes with no images in training.

DAP (Lampert et al.)	IAP (Lampert et al.)	Ours
40.5%	27.8%	38.5%

Related Work

Multilabel Annotation & Hierarchy

[Lampert et al. NIPS'11][Hwang et al. CVPR'11][Chen et al. ICCV'11][Kang et al. CVPR'06][Bi & Kwok, NIPS'12][Marszalek & Schmid CVPR'07][Bucak et al. CVPR'11][Zweig & Weinshall CVPR'07]

Ours: Unifies hierarchy and exclusion.

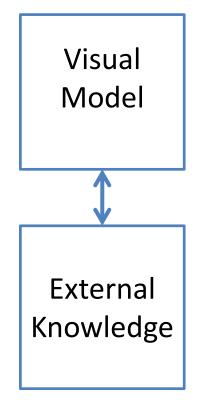
• Transfer learning & Attributes

[Rohrbach et al. CVPR'10]
[Lampert et al. CVPR'09]
[Lim et al. NIPS'11]
[Kuettel et al. ECCV'12]
[Yu et al. CVPR'13]
[Akata et al. CVPR'13]
[Fergus et al. ECCV'10]

Ours: A classification model that allows transferring.

• Extracting Common Sense Knowledge

[Chen et al. ICCV'13]
[Zitnick & Parikh CVPR'13]
[Fouhey & Zitnick CVPR'14]
Ours: Assumes knowledge is given.



Conclusions

- A unified framework for single object classification
 - Generalizes standard classification models
 - Leverages a knowledge graph
 - Efficient exact inference
- Future work
 - Non-absolute relations
 - Spatial relations between object instances

