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Object Classification

• Assign semantic labels to objects
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Object Classification

• Assign semantic labels to objects
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Object Classification

• Multiclass classifier: Softmax
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Assumes mutual 
exclusive labels. 
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• Independent binary classifiers: Logistic Regression
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Object labels have rich relations
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OverlapSoftmax: all labels are mutually exclusive 
Logistic Regression: all labels overlap 



Goal: A new classification model

Respects real world label relations
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Visual Model + Knowledge Graph
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Assumption in this work:
Knowledge graph is given and fixed. 



Agenda

• Encoding prior knowledge (HEX graph)
• Classification model
• Efficient Exact Inference
• Experiments
• Conclusion and Future Work



Agenda

• Encoding prior knowledge (HEX graph)
• Classification model
• Efficient Exact Inference
• Experiments
• Conclusion and Future Work



Hierarchy and Exclusion (HEX) Graph
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• Hierarchical edges (directed)
• Exclusion edges (undirected) 



Examples of HEX graphs
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State Space: Legal label configurations
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State Space: Legal label configurations
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…Exclusion: (dog, cat) can’t be (1,1)

Hierarchy: (dog, corgi) can’t be (0,1)

Each edge defines a constraint.
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HEX Classification Model
• Pairwise Conditional Random Field (CRF)  

Input scores Binary Label vector
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HEX Classification Model
• Pairwise Conditional Random Field (CRF)  

Binary Label vector

       

Unary: same as logistic regression

If violates constraints

Otherwise
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Pairwise: set illegal configuration to zero

Input scores 



HEX Classification Model
• Pairwise Conditional Random Field (CRF)  

Binary Label vector

Partition function: Sum over all (legal) configurations

Input scores 



HEX Classification Model
• Pairwise Conditional Random Field (CRF)  

Binary Label vector

Probability of a single label: marginalize all other labels.

Input scores 



Special Case of HEX Model

• Softmax
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Learning
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Naïve Exact Inference is Intractable
• Inference: 

– Computing partition function
– Perform marginalization

• HEX-CRF can be densely connected (large treewidth) 



Observation 1: Exclusions are good
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• Lots of exclusions  Small state space  Efficient inference
• Realistic graphs have lots of exclusions.
• Rigorous analysis in paper.

Number of legal states is O(n), not O(2n).



Observation 2: Equivalent graphs
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Observation 2: Equivalent graphs

Sparse equivalent
• Small Treewidth
• Dynamic programming
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Dense equivalent
• Prune states 
• Can brute force
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Exp 1: Learning with weak labels
• Many basic category labels
• Few fine-grained labels 
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Hypothesis: HEX models can improve fine-grained recognition 
using basic level labels.  

Exp 1: Learning with weak labels



• ILSVRC 2012: “relabel” or “weaken” a portion 
of fine-grained leaf labels to basic level labels.

• Evaluate on fine-grained recognition

Exp 1: Learning with weak labels
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• ILSVRC 2012: “relabel” or “weaken” a portion 
of fine-grained leaf labels to basic level labels.

• Evaluate on fine-grained recognition.
• Consistently outperforms baselines.

Exp 1: Learning with weak labels

Top 1 accuracy (top 5 accuracy)



Exp 2: Zero-Shot Recognition using 
Object-Attribute Knowledge

• Animals with Attribute (AwA) dataset (Lampert et al. 2009)
• Training:

• Observe only a subset of animal labels. 
• Given all animal-attribute relations 
• Indirectly learns attributes. 

• Test: predict new classes with no images in training.

DAP (Lampert et al.) IAP (Lampert et al.) Ours

40.5% 27.8% 38.5%

polar bear

black: no
white: yes
brown: no
stripes: no

polar bear
black

white

zebra
brown
stripes

zebra

black: yes
white: yes
brown: no
stripes: yes … …



Related Work
• Multilabel Annotation & Hierarchy

[Lampert et al. NIPS’11]
[Chen et al. ICCV’11]
[Bi & Kwok, NIPS’12]
[Bucak et al. CVPR’11]
Ours: Unifies hierarchy and exclusion. 

• Transfer learning & Attributes
[Rohrbach et al. CVPR’10]
[Lampert et al. CVPR’09]
[Kuettel et al. ECCV’12]
[Akata et al. CVPR’13]
Ours: A classification model that allows transferring. 

• Extracting Common Sense Knowledge
[Chen et al. ICCV’13]
[Zitnick & Parikh CVPR’13]
Ours: Assumes knowledge is given. 

[Hwang et al. CVPR’11]
[Kang et al. CVPR’06]
[Marszalek & Schmid CVPR’07]
[Zweig & Weinshall CVPR’07]

[Farhadi et al. CVPR’10]
[Lim et al. NIPS’11]
[Yu et al. CVPR’13]
[Fergus et al. ECCV’10]

[Zhu et al. ECCV’14]
[Fouhey & Zitnick CVPR’14]
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Conclusions

• A unified framework for single object classification
– Generalizes standard classification models
– Leverages a knowledge graph
– Efficient exact inference

• Future work
– Non-absolute relations
– Spatial relations between object instances 
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